
Online Optimization : Competing with Dynamic Comparators

Ali Jadbabaie Alexander Rakhlin Shahin Shahrampour Karthik Sridharan
University of Pennsylvania University of Pennsylvania University of Pennsylvania Cornell University

Abstract

Recent literature on online learning has focused
on developing adaptive algorithms that take ad-
vantage of a regularity of the sequence of obser-
vations, yet retain worst-case performance guar-
antees. A complementary direction is to develop
prediction methods that perform well against
complex benchmarks. In this paper, we ad-
dress these two directions together. We present
a fully adaptive method that competes with dy-
namic benchmarks in which regret guarantee
scales with regularity of the sequence of cost
functions and comparators. Notably, the regret
bound adapts to the smaller complexity measure
in the problem environment. Finally, we ap-
ply our results to drifting zero-sum, two-player
games where both players achieve no regret guar-
antees against best sequences of actions in hind-
sight.

1 Introduction

The focus of this paper is an online optimization problem
in which a learner plays against an adversary or nature. At
each round t ∈ {1, . . . , T}, the learner chooses an action
xt from some convex feasible set X ⊆ Rd. Then, nature
reveals a convex function ft ∈ F to the learner. As a result,
the learner incurs the corresponding loss ft(xt). A learner
aims to minimize his regret, a comparison to a single best
action in hindsight:

RegsT ,
T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x). (1)

Let us refer to this as static regret in the sense that the com-
parator is time-invariant. In the literature, there are numer-
ous algorithms that guarantee a static regret rate ofO(

√
T )
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(see e.g. [1–3]). Moreover, when the loss functions are
strongly convex, a rate of O(log T ) could be achieved [4].
Furthermore, minimax optimality of algorithms with re-
spect to the worst-case adversary has been established (see
e.g. [5]).

There are two major directions in which the above-
mentioned results can be strengthened: (1) by exhibiting
algorithms that compete with non-static comparator se-
quences (that is, making the benchmark harder), and (2) by
proving regret guarantees that take advantage of niceness of
nature’s sequence (that is, exploiting some non-adversarial
quality of nature’s moves). Both of these distinct directions
are important avenues of investigation. In the present pa-
per, we attempt to address these two aspects by developing
a single, adaptive algorithm with a regret bound that shows
the interplay between the difficulty of the comparison se-
quence and niceness of the sequence of nature’s moves.

With respect to the first aspect, a more stringent benchmark
is a time-varying comparator, a notion that can be termed
dynamic regret [3, 6–8]:

RegdT ,
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ), (2)

where x∗t , argminx∈X ft(x). More generally, dynamic
regret against a comparator sequence {ut}Tt=1 is

RegdT (u1, . . . , uT ) ,
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut).

It is well-known that in the worst case, obtaining a bound
on dynamic regret is not possible. However, it is possible
to achieve worst-case bounds in terms of

CT (u1, . . . , uT ) ,
T∑
t=1

∥∥ut − ut−1

∥∥, (3)

i.e., the regularity of the comparator sequence, interpolat-
ing between the static and dynamic regret notions. Fur-
thermore, the authors in [9] introduce an algorithm which
proposes a variant of CT involving a dynamical model.

In terms of the second direction, there are several ways of
incorporating potential regularity of nature’s sequence. The
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authors in [10, 11] bring forward the idea of predictable
sequences – a generic way to incorporate some external
knowledge about the gradients of the loss functions. Let
{Mt}Tt=1 be a predictable sequence computable by the
learner at the beginning of round t. This sequence can then
be used by an algorithm in order to achieve regret in terms
of

DT ,
T∑
t=1

∥∥∇ft(xt)−Mt

∥∥2

∗. (4)

The framework of predictable sequences captures variation
and path-length type regret bounds (see e.g. [12, 13]). Yet
another way in which niceness of the adversarial sequence
can be captured is through a notion of temporal variability
studied in [14]:

VT ,
T∑
t=1

sup
x∈X

∣∣ft(x)− ft−1(x)
∣∣. (5)

What is interesting—and intuitive—dynamic regret against
the optimal sequence {x∗t }Tt=1 becomes a feasible objective
when VT is small. When only noisy versions of gradients
are revealed to the algorithm, Besbes et al. in [14] show
that using a restarted Online Gradient Descent (OGD) [3]
algorithm, one can get a bound of form T 2/3(VT + 1)1/3

on the expected regret. However, the regret bounds attained
in [14] are only valid when an upper bound on VT is known
to the learner before the game begins. For the full informa-
tion online convex optimization setting, when one receives
exact gradients instead of noisy gradients, a bound of order
VT is trivially obtained by simply playing (at each round)
the minimum of the previous round.

The three quantities we just introduced — CT , DT , VT —
measure distinct aspects of the online optimization prob-
lem, and their interplay is an interesting object of study.
Our first contribution is to develop a fully adaptive method
(without prior knowledge of these quantities) whose dy-
namic regret is given in terms of these three complexity
measures. This is done for the full information online con-
vex optimization setting, and augments the existing regret
bounds in the literature which focus on only one of the three
notions — CT , DT , VT — (and not all the three together).
To establish a sub-linear bound on the dynamic regret, we
utilize a variant of the Optimistic Mirror Descent (OMD)
algorithm [10].

When noiseless gradients are available and we can calcu-
late variations at each round, we not only establish a regret
bound in terms of VT and T (without a priori knowledge
of a bound on VT ), but also show how the bound can in
fact be improved when deviation DT is o(T ). We further
also show how the bound can automatically adapt to CT
the length of sequence of comparators. Importantly, this
avoids suboptimal bounds derived only in terms of one of

the quantities — CT , VT — in an environment where the
other one is small.

The second contribution of this paper is the technical anal-
ysis of the algorithm. The bound on the dynamic regret is
derived by applying the doubling trick to a non-monotone
quantity which results in a non-monotone step size se-
quence (which has not been investigated to the best of au-
thors’ knowledge).

We provide uncoupled strategies for two players playing
a sequence of drifting zero sum games. We show how
when the two players play the provided strategies, their
pay offs converge to the average minimax value of the se-
quence of games (provided the games drift slowly). In this
case, both players simultaneously enjoy no regret guaran-
tees against best sequences of actions in hindsight that vary
slowly. This is a generalization of the results by Daskalakis
et al. [15], and Rakhlin et al. [11], both of which are for
fixed games played repeatedly.

2 Preliminaries and Problem Formulation

2.1 Notation

Throughout the paper, we assume that for any action x ∈
X ⊂ Rd at any time t, it holds that

|ft(x)| ≤ G. (6)

We denote by ‖ · ‖∗ the dual norm of ‖ · ‖, by [T ] the set
of natural numbers {1, . . . , T}, and by f1:t the shorthand
of f1, ..., ft, respectively. Whenever CT is written without
arguments, it will refer to regularity CT (x∗1, . . . , x

∗
T ) of the

sequence of minimizers of the loss functions. We point
out that our initial statements hold for the regularity of any
sequence of comparators. However, for upper bounds in-
volving

√
CT , one needs to choose a computable quantity

to tune the step size, and hence our main results are stated
for CT (x∗1, . . . , x

∗
T ).

The quantityDT is defined with respect to an arbitrary pre-
dictable sequence {Mt}Tt=1, but this dependence is omitted
for brevity.

2.2 Comparing with existing regret bounds in the
dynamic setting

We state and discuss relevant results from the literature
on online learning in dynamic environments. For any
comparator sequence {ut}Tt=1 and the specific minima se-
quence {x∗t }Tt=1 the following results are established in the
literature:
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Reference Regret Notion
Regret Rate

[3]
∑T

t=1 ft(xt)− ft(ut)

[9] O
(√

T (1 + CT (u1, . . . , uT ))
)

[14]
∑T

t=1 E [ft(xt)]− ft(x∗t )

O
(
T 2/3(1 + VT )1/3

)
[11]

∑T
t=1 ft(xt)− ft(u)
O
(√
DT

)
Our

∑T
t=1 ft(xt)− ft(x

∗
t )

work Õ
(√
DT + 1+

min
{√

(DT + 1)CT , (DT + 1)1/3T 1/3V
1/3
T

})
where Õ(·) hides the log T factor. Lemma 1 below also
yields a rate of O

(√
DT + 1(1 + CT (u1, . . . , uT ))

)
for any

comparator sequence {ut}Tt=1. A detailed explanation of
the bounds will be done after Theorem 3.

We remark that the authors in [14] consider a setting in
which a variation budget (an upper bound on VT ) is known
to the learner, but he/she only has noisy gradients available.
Then, the restarted OGD guarantees the mentioned rate for
convex functions; the rate is modified to

√
(VT + 1)T for

strongly convex functions.

For the case of noiseless gradients, we first aim to show that
our algorithm is adaptive in the sense that the learner needs
not know an upper bound on VT in advance when he/she
can calculate variations observed so far. Furthermore, we
shall establish that our method recovers the known bounds
for stationary settings (as well as cases where VT does not
change gradually along the time horizon)

2.3 Comparison of Regularity and Variability

We now show that VT and CT are not comparable in gen-
eral. To this end, we consider the classical problem of pre-
diction with expert advice. In this setting, the learner deals
with the linear loss ft(x) = 〈ft, x〉 on the d-dimensional
probability simplex. Assume that for any t ≥ 1, we have
the vector sequence

ft =

{
(− 1

T , 0, 0, . . . , 0) , if t even
(0,− 1

T , 0, . . . , 0) , if t odd .

Setting ut, the comparator of round t, to be the minimizer
of ft, i.e. ut = x∗t , we have

CT =
T∑
t=1

‖x∗t − x∗t−1‖1 = Θ(T )

VT =
T∑
t=1

‖ft − ft−1‖∞ = O (1) ,

according to (3) and (5), respectively. We see that VT
is considerably smaller than CT in this scenario. On the
other hand, consider prediction with expert advice with

two experts. Let ft = (−1/2, 0) on even rounds and
ft = (0, 1/2) on odd rounds. Expert 1 remains to be the
best throughout the game, and thus CT = O(1), while
variation VT = Θ(T ). Therefore, one can see that tak-
ing into account only one measure might lead us to sub-
optimal regret bounds. We show that both measures play
a key role in our regret bound. Finally, we note that if
Mt = ∇ft−1(xt−1), the notion of DT can be related to
VT in certain cases, yet we keep the predictable sequence
arbitrary and thus as playing a role separate from VT and
CT .

3 Main Results

3.1 Optimistic Mirror Descent and Relation to
Regularity

We now outline the OMD algorithm previously proposed
in [10]. Let R be a 1-strongly convex function with re-
spect to a norm ‖ · ‖, and DR(·, ·) represent the Bregman
divergence with respect to R. Also, let Ht be the set con-
taining all available information to the learner at the begin-
ning of time t. Then, the learner can compute the vector
Mt : Ht → Rd, which we call the predictable process.
Supposing that the learner has access to the side informa-
tion Mt ∈ Rd from the outset of round t, the OMD al-
gorithm is characterized via the following interleaved se-
quence,

xt = argminx∈X

{
ηt
〈
x,Mt

〉
+DR(x, x̂t−1)

}
(7)

x̂t = argminx∈X

{
ηt
〈
x,∇t

〉
+DR(x, x̂t−1)

}
, (8)

where ∇t , ∇ft(xt), and ηt is the step size that can be
chosen adaptively to attain low regret. One could observe
that for Mt = 0, the OMD algorithm amounts to the well-
known Mirror Descent algorithm [16, 17]. On the other
hand, the special case of Mt = ∇t−1 recovers the scheme
proposed in [13]. It is shown in [10] that the static regret
satisfies

RegsT ≤ 4Rmax

(√
DT + 1

)
,

using the step size

ηt = Rmax min

{(√
Dt−1 +

√
Dt−2

)−1

, 1

}
,

where R2
max , supx,y∈X DR(x, y). The following lemma

extends the result to arbitrary sequence of comparators
{ut}Tt=1. Throughout, we assume that ‖∇0 −M0‖2∗ = 1
by convention.

Lemma 1. Let X be a convex set in a Banach space B.
Let R : B 7→ R be a 1-strongly convex function on X with
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respect to a norm ‖ · ‖, and let ‖ · ‖∗ denote the dual norm.
For any L > 0, employing the time-varying step size

ηt =
L√∑t−1

s=0 ‖∇s −Ms‖2∗ +
√∑t−2

s=0 ‖∇s −Ms‖2∗
,

and running the Optimistic Mirror Descent algorithm for
any comparator sequence {ut}Tt=1, yields

RegdT (u1, . . . , uT ) ≤ 2
√

1 +DTL

+ 2
√

1 +DT
γCT (u1, . . . , uT ) + 4R2

max

L
,

so long asDR(x, z)−DR(y, z) ≤ γ‖x−y‖,∀x, y, z ∈ X .

Lemma 1 underscores the fact that one can get a tighter
bound for regret once the learner advances a sequence
of conjectures {Mt}Tt=1 well-aligned with the gradients.
Moreover, if the learner has prior knowledge of CT (or
an upper bound on it), then the regret bound would be
O
(√

(DT + 1)CT

)
by tuning L.

Note that when the functionR is Lipschitz on X , the Lips-
chitz condition on the Bregman divergence is automatically
satisfied. For the particular case of KL divergence this can
be achieved via mixing a uniform distribution to stay away
from boundaries (see e.g. section 4.2 of the paper in this
regard). In this case, the constant γ is of O(log T ).

3.2 The Adaptive Optimistic Mirror Descent
Algorithm

The main objective of the paper is to develop the Adap-
tive Optimistic Mirror Descent (AOMD) algorithm. The
AOMD algorithm incorporates all notions of variationDT ,
CT and VT to derive a comprehensive regret bound. The
proposed method builds on the OMD algorithm with adap-
tive step size, combined with a doubling trick applied to a
threshold growing non-monotonically (see e.g. [1, 10] for
application of doubling trick on monotone quantities). The
scheme is adaptive in the sense that no prior knowledge of
DT , CT or VT is necessary.

Observe that the prior knowledge of a variation budget (an
upper bound on VT ) does not tell us how the changes be-
tween cost functions are distributed throughout the game.
For instance, the variation can increase gradually along the
time horizon, while it can also take place in the form of dis-
crete switches. The learner does not have any information
about the variation pattern. Therefore, she must adopt a
flexible strategy that achieves low regret in the benign case
of finite switches or shocks, while it is simultaneously able
to compete with the worst-case of gradual change. Before
describing the algorithm, let us first use Lemma 1 to bound
the general dynamic regret in terms of DT , CT and VT .

Lemma 2. Let X be a convex set in a Banach space B.
Let R : B 7→ R be a 1-strongly convex function on X

with respect to a norm ‖ · ‖. Run the Optimistic Mirror
Descent algorithm with the step size given in the statement
of Lemma 1. Letting the comparator sequence be {ut}Tt=1,
for any L > 2Rmax we have

RegdT (u1, . . . , uT ) ≤ 4
√

1 +DTL

+ 1
{
γCT (u1, . . . , uT ) > L2 − 4R2

max

} 4γRmaxTVT
L2 − 4R2

max

,

so long asDR(x, z)−DR(y, z) ≤ γ‖x−y‖,∀x, y, z ∈ X .

We now describe AOMD algorithm shown in table 1, and
prove that it automatically adapts to VT , DT and CT . The
algorithm can be cast as a repeated OMD using different
step sizes. The learner sets the parameter L = 3Rmax in
Lemma 1, and runs the OMD algorithm. Along the pro-
cess, the learner collects deviation, variation and regular-
ity observed so far, and checks the doubling condition in
table 1 after each round. Once the condition is satisfied,
the learner doubles L, discards the accumulated deviation,
variation and regularity, and runs a new OMD algorithm.
Note importantly that the doubling condition results in a
non-monotone sequence of step size during the learning
process.

Notice that once we have completed running the algorithm,
N is the number of doubling epochs, ∆i is the number
of instances in epoch i, ki and ki+1 − 1 are the start and
end points of epoch i,

∑
i=1 ∆i = T ,

∑N
i=1 C(i) = CT ,∑N

i=1D(i) = DT +N and
∑N
i=1 V(i) = VT . Also, there is

a technical reason for initialization choice of L which shall
become clear in the proof of Lemma 2. Theorem 3 shows
the bound enjoyed by the proposed AOMD algorithm.

Theorem 3. Assume that DR(x, z) − DR(y, z) ≤ γ‖x −
y‖,∀x, y, z ∈ X , and let CT =

∑T
t=1

∥∥x∗t − x∗t−1

∥∥. The
AOMD algorithm enjoys the following bound on dynamic
regret :

RegdT ≤ Õ
(√

DT + 1
)

+ Õ
(

min
{√

(DT + 1)CT , (DT + 1)1/3T 1/3V
1/3
T

})
,

where ˜O(·) hides a log T factor.

Based on Theorem 3 we can obtain the following table that
summarizes bounds on RegdT for various cases (disregard-
ing the first term Õ

(√
DT + 1

)
in the bound above):

Regime Rate

CT ≤ T 2/3(DT + 1)−1/3V
2/3
T Õ

(√
CT (DT + 1)

)
VT ≤ DT + 1 Õ

(
(DT + 1)2/3T 1/3

)
DT ≤ VT − 1 Õ

(
V

2/3
T T 1/3

)
DT = O(T ) Õ

(
T 2/3V

1/3
T

)
The following remarks are in order :
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Algorithm 1 Adaptive Optimistic Mirror Descent Algo-
rithm

Parameter : Rmax, some arbitrary x0 ∈ X
Initialize N = 1, C(1) = V(1) = 0, D(1) = 1, x1 = x0,
L1 = 3Rmax, ∆1 = 0 and k1 = 1.
for t = 1 to T do
% check doubling condition

if L2
N < γmin

{
C(N) , V

2/3
(N) ∆

2/3
N D

−1/3
(N)

}
+ 4R2

max

then
% increment N and double LN
N = N + 1
LN = 3Rmax2N−1, C(N) = V(N) = 0, D(N) = 1
and ∆N = 0
kN = t

end if
Play xt and suffer loss ft(xt)
Calculate Mt+1 (predictable sequence) and gradient
∇t = ∇ft(xt)
% update D(N), C(N), V(N) and ∆N

D(N) = D(N) + ‖∇t −Mt‖2∗
C(N) = C(N) +

∥∥x∗t − x∗t−1

∥∥
V(N) = V(N) + supx∈X |ft(x)− ft−1(x)|
∆N = ∆N + 1
% set step-size and perform
optimistic mirror descent update

ηt+1 = LN

(√
D(N) +

√
D(N) − ‖∇t −Mt‖2∗

)−1

x̂t = argmin
x∈X

{
ηt
〈
x,∇t

〉
+DR(x, x̂t−1)

}
xt+1 = argmin

x∈X

{
ηt+1

〈
x,Mt+1

〉
+DR(x, x̂t)

}
end for

• In all cases, given the condition VT = o(T ), the re-
gret is sub-linear. When the gradients are bounded,
the regime DT = O(T ) always holds, guaranteeing
the worst-case bound of Õ

(
T 2/3V

1/3
T

)
.

• Theorem 3 allows us to recover Õ(1) regret for certain
cases where VT = O(1). Let nature divide the horizon
into B batches, and play a smooth convex function
fi(x) on each batch i ∈ [B], that is for some Hi > 0
it holds that

‖∇fi(x)−∇fi(y)‖∗ ≤ Hi‖x− y‖, (9)

∀i ∈ [B] and ∀x, y ∈ X . Set Mt = ∇fi(x̂t−1) and
note that the gradients are Lipschitz continuous. In
this case, the OMD corresponding to each batch can
be recognized as the Mirror Prox method [18], which
results in Õ(1) regret during each period. Also, since
CT = O(1) the bound in Theorem 3 is of O(log T ).

4 Applications

4.1 Competing with Strategies

So far, we mainly considered dynamic regret RegdT de-
fined in Equation 2. However, in many scenarios one might
want to consider regret against a more specific set of strate-
gies, defined as follows :

RegΠ
T ,

T∑
t=1

ft(xt)− inf
π∈Π

T∑
t=1

ft(πt(f1:t−1)),

where each π ∈ Π is a sequence of mappings π =
(π1, . . . , πT ) and πt : F t−1 → X . Notice that if Π is
the set of all mappings then RegΠ

T corresponds to dynamic
regret RegdT and if Π corresponds to set of constant history
independent mappings, that is, each π ∈ Π is indexed by
some x ∈ X and πx1 (·) = . . . = πxT (·) = x, then RegΠ

T

corresponds to the static regret RegsT . We now define

CΠ
T =

T∑
t=1

∥∥π∗t (f1:t−1)− π∗t−1(f1:t−2)
∥∥ ,

where π∗t = arginfπ∈Π

∑t
s=1 fs(πs(f1:s−1)). Assume that

there exists sequence of mappings C̃1, . . . , C̃T where C̃t
maps any f1, . . . , ft to reals and is such that for any t and
any f1, . . . , ft−1,

C̃t−1(f1:t−1) ≤ C̃t(f1:t),

and further, for any T and any f1, . . . , fT ,

T∑
t=1

∥∥π∗t (f1:t−1)− π∗t−1(f1:t−2)
∥∥ ≤ C̃T (f1:T ).

In this case a simple modification of AOMD algorithm
where C(N)’s are replaced by C̃∆N

(fkN :kN+1−1) leads to
the following corollary of Theorem 3.
Corollary 4. Assume that DR(x, z)−DR(y, z) ≤ γ‖x−
y‖,∀x, y, z ∈ X . The AOMD algorithm with the modi-
fication mentioned above achieves the following bound on
regret

RegΠ
T ≤ Õ

(√
DT + 1

)
+ Õ

(
min

{√
(DT + 1)C̃T (f1:T ), (DT + 1)1/3T 1/3V

1/3
T

})
.

The corollary naturally interpolates between the static and
dynamic regret. In other words, letting C̃T (f1:T ) = 0
(which holds for constant mappings), we recover the result
of [11] (up to logarithmic factors), whereas C̃T (f1:T ) =
CT simply recovers the regret bound in Theorem 3 cor-
responding to dynamic regret. The extra log factor is the
cost of adaptivity of the algorithm as we assume no prior
knowledge about the environment.
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4.2 Switching Zero-sum Games with Uncoupled
Dynamics

Consider two players playing T zero sum games defined
by matrices At ∈ [−1, 1]m×n for each t ∈ [T ]. We would
like to provide strategies for the two players such that, if
both players honestly follow the prescribed strategies, the
average payoffs of the players approach the average min-
imax value for the sequence of games at some fast rate.
Furthermore, we would also like to guarantee that if one of
the players (say the second) deviates from the prescribed
strategy, then the first player still has small regret against
sequence of actions that do not change drastically. To this
end, one can use a simple modification of the AOMD algo-
rithm for both players that uses KL divergence as DR, and
mixes in a bit of uniform distribution on each round, pro-
ducing an algorithm similar to the one in [11] for unchang-
ing uncoupled dynamic games. The following theorem pro-
vides bounds for when both players follow the strategy and
bound on regret for player I when player II deviates from
the strategy.

On round t, Player I performs

Play xt and observe f>t At

Update

x̂t(i) ∝ x̂′t−1(i) exp{−ηt[fT

tAt]i}
x̂′t = (1− β) x̂t + (β/n)1n

xt+1(i) ∝ x̂′t(i) exp{−ηt+1[fT

tAt]i}

and simultaneously Player II performs

Play ft and observe Atxt

Update

f̂t(i) ∝ f̂ ′t−1(i) exp{−η′t[Atxt]i}

f̂ ′t = (1− β) f̂t + (β/m)1m

ft+1(i) ∝ f̂ ′t(i) exp{−η′t+1[Atxt]i}

Note that in the description of the algorithm as well as
the following proposition and its proof, any letter with the
prime symbol refers to Player II, and it is used to differen-
tiate the letter from its counterpart for player I.

Proposition 5. Let Ft ,
∑t
i=1

∥∥f>i Ai − f>i−1Ai−1

∥∥2

∞,
and set

ηt = min

{
log(T 2n)

L√
Ft−1 +

√
Ft−2

,
1

32L

}
.

Also define At ,
∑t
i=1 ‖Aixi −Ai−1xi−1‖2∞, and let

η′t = min

{
log(T 2m)

L√
At−1 +

√
At−2

,
1

32L

}
.

Let β = 1/T 2, Mt = f>t−1At−1, and M ′t = At−1xt−1.
When Player I uses the prescribed strategy, irrespective of
the actions of player II, the regret of Player I w.r.t. any
sequence of actions u1, . . . , uT is bounded as :

T∑
t=1

(
f>t Atxt − f>t Atut

)
≤ log(T 2n)

L

2

√
FT

+ 2 log(T 2n) (CT (u1, . . . , uT ) + 2)

(
32L+

2
√

FT

log(T 2n)L

)
.

Further if both players follow the prescribed strategies
then, as long as

2L2 > max {CT , C ′T }+ 3, (10)

we get,

T∑
t=1

sup
ft∈∆m

f>t Atxt ≤
T∑

t=1

inf
xt∈∆n

sup
ft∈∆m

f>t Atxt

+
256L

T
+

1

2L
+ 4

T∑
t=1

‖At−1 −At‖∞

+ 32L
(
log(T 2n)CT + log(T 2m)C′T + 2 log(T 4nm)

)
+
(
CT + C′T + 4

) 20 + 4
√∑T

t=1 ‖At−1 −At‖2∞
L

.

A simple consequence of the above proposition is that if
for instance the game matrix At changes at most K times
over the T rounds, and we knew this fact a priori, then
by letting L = 1√

log(T 2n)
, we get that regret for Player I

w.r.t. any sequence of actions that switches at mostK times
even when Player II deviates from the prescribed strategy
is O

(
(K + 2)

√
log(T 2n)T

)
.

At the same time if both players follow the strategy, then
average payoffs of the players converge to the average min-
imax equilibrium at the rate of O

(
L (K + 2) log(T 4nm)

)
under the condition on L given in (10). This shows that if
the game matrix only changes/switches a constant number
of times, then players get

√
log(T )T regret bound against

arbitrary sequences and comparator actions that switch at
most K times while simultaneously get a convergence rate
of O (log(T )) to average equilibrium when both players
are honest.

Note that when we let K = 0 and set L to some constant,
the proposition recovers the rate in static setting [11] where
the matrix sequence is time-invariant.

5 Conclusion

In this paper, we proposed an online learning algorithm for
dynamic environments. We considered time-varying com-
parators to measure the dynamic regret of the algorithm.
Our proposed method is fully adaptive in the sense that the
learner needs no prior knowledge of the environment. We
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derive a comprehensive upper bound on the dynamic re-
gret capturing the interplay of regularity in the function se-
quence versus the comparator sequence. Interestingly, the
regret bound adapts to the smaller quantity among the two,
and selects the best of both worlds. As an instance of dy-
namic regret, we considered drifting zero-sum, two-player
games, and characterized the convergence rate to the av-
erage minimax equilibrium in terms of variability in the
sequence of payoff matrices.
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Appendix

Proof of Theorem 3. For the sake of clarity in presentation,
we stick to the following notation for the proof

D(i) , D(i) − ‖∇ki+1−1 −Mki+1−1‖2∗
C(i) , C(i) − ‖x∗ki+1−1 − x∗ki+1−2‖

V (i) , V(i) − sup
x∈X

∣∣fki+1−1(x)− fki+1−2(x)
∣∣

∆(i) , ∆i − 1,

for any doubling epoch i = 1, ..., N , where we recall that
ki+1 − 1 is the last instance of epoch i. Therefore, any
symbol with lower bar refers to its corresponding quantity
removing only the value of the last instance of that interval.

Let the AOMD algorithm run with the step size given by
Lemma 1 in the following form

ηt =
Li√∑t−1

s=0 ‖∇s −Ms‖2∗ +
√∑t−2

s=0 ‖∇s −Ms‖2∗
,

and let Li be tuned with a doubling condition explained in
the algorithm. Once the condition stated in the algorithm
fails, the following pair of identities must hold

γmin{C(i) , ∆
2/3
i V

2/3
(i) D

−1/3
(i) }+ 4R2

max ≤ L2
i

γmin{C(i) , ∆
2/3
i V

2/3
(i) D

−1/3
(i) }+ 4R2

max > L2
i . (11)

Observe that the algorithm doubles Li only after the con-
dition fails, so at violation points we suffer at most 2G
by boundedness (6). Then, under purview of Lemma 2,

it holds that

RegdT ≤ 2NG+
N∑
i=1

4
√
D(i)Li

+
N∑
i=1

1
{
γC(i) > L2

i − 4R2
max

} 4γRmax∆iV (i)

L2
i − 4R2

max

≤ 2NG+
N∑
i=1

4
√
D(i)Li

+
N∑
i=1

1
{
C(i) > ∆

2/3
i V

2/3
(i) D

−1/3
(i)

} 4γRmax∆iV (i)

L2
i − 4R2

max

,

(12)

where the last step follows directly from (11) and the fact
that D(i) ≤ D(i).

Bounding
√
D(i)Li in above, using the second inequality

in (11), we get

√
D(i)Li ≤

√
γmin

{
D(i)C(i) , ∆

2/3
i V

2/3

(i) D
2/3

(i)

}
+ 4R2

maxD(i)

≤ 2Rmax

√
D(i)

+
√
γmin

{√
D(i)C(i) , ∆

1/3
i V

1/3

(i) D
1/3

(i)

}
,

by the simple inequality

√
a+ b ≤

√
a+
√
b.

Plugging the bound above into (12) and noting that

N∑
i=1

√
D(i) = N

N∑
i=1

1

N

√
D(i)

≤ N

√√√√ 1

N

N∑
i=1

D(i) =
√
NDT +N,

by Jensen’s inequality, we obtain

RegdT ≤ 2NG+ 8Rmax

√
NDT +N

+ 4
√
γ

N∑
i=1

min
{√

D(i)C(i) , D
1/3
(i) ∆

1/3
i V

1/3
(i)

}

+
N∑
i=1

1
{
C(i) > ∆

2/3
i V

2/3
(i) D

−1/3
(i)

}
4Rmax∆iV (i)

min
{
C(i),∆

2/3
i V

2/3
(i) D

−1/3
(i)

} ,

where we used the first inequality in (11) to bound the last
term. Given the condition in the indicator function 1 {·},
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we can simplify above to derive,

Regd
T ≤ 2NG+ 8Rmax

√
NDT +N

+ 4
√
γ

N∑
i=1

min
{√

D(i)C(i) , D
1/3

(i) ∆
1/3
i V

1/3

(i)

}
+ 4Rmax

N∑
i=1

1
{
C(i) > ∆

2/3
i V

2/3

(i) D
−1/3

(i)

}
D

1/3

(i) V
1/3

(i) ∆
1/3
i

= 2NG+ 8Rmax

√
NDT +N

+ 4
√
γ

N∑
i=1

min
{√

D(i)C(i) , D
1/3

(i) ∆
1/3
i V

1/3

(i)

}
+ 4Rmax

N∑
i=1

1
{√

D(i)C(i) > ∆
1/3
i V

1/3

(i) D
1/3

(i)

}
D

1/3

(i) V
1/3

(i) ∆
1/3
i

≤ 2NG+ 8Rmax

√
NDT +N

+ 4
√
γ

N∑
i=1

min
{√

D(i)C(i) , D
1/3

(i) ∆
1/3
i V

1/3

(i)

}
+ 4Rmax

N∑
i=1

min
{√

D(i)C(i), D
1/3

(i) V
1/3

(i) ∆
1/3
i

}
. (13)

Given the fact that removing the last instance along the
interval only reduces variation, we get

C(i) ≤ C(i) D(i) ≤ D(i)

V (i) ≤ V(i) ∆i ≤ ∆i,

and return to (13) to derive

Regd
T ≤ 2NG+ 8Rmax

√
NDT +N

+ (4
√
γ + 4Rmax)

N∑
i=1

min
{√

D(i)C(i) , D
1/3

(i) ∆
1/3
i V

1/3

(i)

}
≤ 2NG+ 8Rmax

√
NDT +N

+ (4
√
γ + 4Rmax) min

{
N∑
i=1

√
D(i)C(i),

N∑
i=1

D
1/3

(i) ∆
1/3
i V

1/3

(i)

}
≤ 2N

(
G+ 4Rmax

√
DT + 1

)
+ 4N(

√
γ +Rmax) min

{√
(DT + 1)CT , (DT + 1)1/3T 1/3V

1/3
T

}
.

(14)

where we bounded the sums using the following fact about
the summands

C(i) ≤ CT D(i) ≤ DT + 1

V(i) ≤ VT ∆i ≤ T.

To bound the number of batches N , we recall from the de-
scription of the AOMD algorithm that

Li = 3Rmax2i−1,

and use the second inequality in (11) to bound LN−1 as

follows

N = 2 + log2(2N−2)

= 2 + log2(LN−1)− log2(3Rmax)

≤ 2 +
1

2
log2

(
γC(N−1) + 4R2

max

)
− log2(3Rmax)

≤ 2 +
1

2
log2

(
2γRmaxT + 4R2

max

)
− log2(3Rmax).

In view of the preceding relation and (14), we have

Regd
T ≤ κ

(
G+ 4Rmax

√
DT + 1

)
+ 2κ

√
γmin

{√
(DT + 1)CT , (DT + 1)1/3T 1/3V

1/3
T

}
+ 2κRmax min

{√
(DT + 1)CT , (DT + 1)1/3T 1/3V

1/3
T

}
,

where

κ , 4 + log2

(
2γRmaxT + 4R2

max

)
− 2 log2(3Rmax),

and thereby completing the proof. �
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