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A Estimation of ¢ and 7

Proof of Lemma B. We first recall the following for-
mula, derived in Parisiet_all [20T4], for the vector p
containing the mean values of the m classifiers,

pn=20+0b2m —1) (27)

where = (d1,...,d,) denotes the vector containing
half the difference between 1 and 7,

6= ? (28)

Next, recall from Lemma [ (also proven in Parisiefal
[2014]) that the off-diagonal elements of the covariance
matrix R correspond to a rank-1 matrix vv? where,

v=v1-0b02r—1). (29)

Inverting the relation between v and 7 in Eq. (29)
gives

1 v
T=—|—+1]). 30

5 (= +1) (30)
Plugging (BO) into (@), we obtain the following ex-
pression for the vector d, in terms of v and p,

6:;(“_1’\/1‘,_752)' (31)

Combining (B8), (BO) and (BI) we obtain t)(b) and
n(b),
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B Statistical Properties of ¢ and 7
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Proof of Lemma 3. Eq.
pression for 1/3 and 7 as a function of the estimates v
and fi. The empirical mean f is clearly not only unbi-
ased, but by the law of large numbers also a consistent
estimate of u, and its error indeed satisfies

pereon ()

The estimate v, computed by one of the methods de-
scribed in [Parisi_ef_all [2014] may be biased, but as
proven there is still consistent, and assuming at least

(B) provides an explicit ex-

three classifiers are different than random (in particu-
lar, implying that the eigenvalue of the rank one ma-

trix is non-zero), its error also decreases as Op (i),

7
. 1
v=v+0Op (ﬁ)

Given the exact value of the class imbalance b, since
the dependency of ¥ and ) on Vv and f is linear, it

follows that both are also consistent and that their

estimation error is Op ﬁ . O

C The joint covariance tensor T

Proof of Lemma [}. To simplify the proof, we first in-
troduce the following linear transformation to the orig-
inal classifiers,

filw) = 7

Note, that the output space ) of the new classifiers
is {0,1}, with class probabilities equal to 1 — p and
p respectively. Let us also denote by 7; and 1; the
following probabilities,

i = Pr(fi(z) = 1|Y = 0),d; = Pr(fi(z) = 1|Y = 1).
Note that 7; is not the specificity of classifier i, but
rather its complement, 7; = 1 — 7).

The mean of classifier f,-, denoted ji;, is given by
fis = E[fi(X))] = Pr(fi(X) = 1) = phi + (1 — p)ili
(32)

Next, let us calculate the (un-centered) covariance be-
tween two different classifiers i # j,

E[fi(X)f;(X)] = Pr(fi(X) = 1, f;(X) = 1)
= pi; + (L —p)ii;  (33)
Last, the joint covariance between 3 different classifiers
1 # j # k is given by

E[fi(X)f;(X) fr(X)] = Pr(fi(X)=f;(X)=fr(X)=1)
Pt + (1 — p)iiitjie (34)

The first step in calculating the joint covariance tensor
of the original classifiers is to note that f; = 2f; — 1
and p; = 2/1; — 1. Hence,

Tiji = BI(fi(X) =) (f5(X) = p) (S (X) = pux)] = 8T

where
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Upon opening the brackets, the latter can be equiva-
lently written as

Ty = E [ (0 (X0 fu(20)]
— BE [F(0)f(X)] = BE | Fi(0f(X)]
— B [Fi(X0O ()] + 20y (35)
Plugging (82),(83) and (&d) into (B3) we get,
Tijn = pithyihn + (1 — p)ifieilj —
(s + (L= p)i) (P00 + (1 = pYiigie ) -
(ps + (1= p)iy ) (peds + (1 = p)iis ) —
(pic+ (1= pyiie) (st + (1 = p)iidy ) +
2 (p% +(1 —p)fh) (p% +(1

Opening the brackets and collecting similar terms
yields

Tije = (p — 3p% + 20° )b+

(2p*(1 = p) — p(1 - p)) (ﬁiﬂ;ﬂzk + bt + ﬁk@i@j) +
(20(1 = p)* = p(1 = p)) (iiy o + Ayl + iy ) +
(1 =p) =3(1 = p)* +2(1 = p)*) 7irhw7;-

Note that all polynomials in p in the above expression
are equal to £p(1 — p)(1 — 2p). Hence,

Tijie=p(1 — p)(1 — 2p) (Psthhr — Tithjn — jbwidi—
iy + iU + Rk + efisb; — Aiiwily)  (36)

1+b

Finally, replacing - Vi, 7; =1 —mn; and p =

yields
Tijr = —2b(1=b%)(¢s+n; 1
= —2b(1

) (Wb +n;—1) (Yre+me—1)
—b?)(2m; — 1)(2m; — 1)(2m — 1).

O
Proof of Lemma @. To prove that by, is consistent with

an asymptotic error Op(1/y/n), we first recall that
according to Parisief-all [2014], it follows that

v=v+0Op <\}ﬁ>

By its definition, each entry of T, ik also incurs an error
of Op(1/4/n). Hence, by the delta method, the esti-
mate & of Eq. ([9), being a least squares minimizer,
also satisfies

G = Oé+(9p(1/\/ﬁ).

—p)ﬁj) (pzfjk +(1 —p)ﬁk)

Since by, is found by the smooth relation of Eq. (I7),
again by the delta method, b, = b+ Op(1/y/n). Fi-
nally, the fact that the corresponding estimates ¥; and
7); also have errors Op(1/+/n) follows by standard ap-
plication of the delta method to Eq. (B), where all
quantities f, v and b have errors Op(1/y/n). O

Dependence of estimated parameters on num-
ber of classifiers and their accuracies. Beyond
the fact that & and consequently b, P, 7 7 are all

O(1/+/n) consistent, it is of interest to study the de-
pendence of these estimates on the number of classi-
fiers and their accuracies. To this end, we first prove
the following simple result.

Lemma 6. Let & be the estimate of a in Eq. ().
Then asymptotically as n — oo, its estimation error is
given by

<T —T,v®3) (VO3 — y®3 y®3) 1
o ()

a-a= (vO3 yB3) (v®3, y®3

(37)
where v&3 = v ® v ®@ v, and for any two tensors T, S,
<Ta S> = Zi<j<k Tijksijk'

Proof. The minimizer of Eq. (I9) is given by

N )
*= (v@3,3@3)

According to Parisi_ef-all [2014], as n — oo, the es-
timate v is O(1//n) consistent, namely v = v + v,
where 0v = Op(1/y/n). Writing T = T + (T —T)
where the latter is also Op(1/4/n) and inserting these
into the expression for & above gives that

(T, v®3) + (T — T, v®) +

(T,v®3 —v®3) + Op(1/n)

«= (VB3 vE3) 1 2(ve3 &3 — v&3)  Op(1/n)

Next, recall that T = av®3. Now, keeping only the
leading order error terms yields Eq. (B2). O

According to Eq. (B@), the estimation error depends
on the statistical properties of the deviations v — v
and T — T and their correlations. While these are
quite complicated, we may gain insight by looking
at some particular instances. Assume for simplicity
that all classifiers have comparable accuracies. Then,
(v®3,v®3) o m(m—1)(m—2)/6-(2r—1)5. Hence, the
estimation error in & should decrease with the number
of classifiers. Moreover, for a balanced problem with
b = 0 and hence @ = 0, to leading order, the errors
in & and consequently also in by, should not depend
on the errors in estimating the eigenvector v. Figure
A shows this empirically. The z-axis is the number of
classifiers, the y-axis is the mean absolute deviation
E[|b,, — b|] (MAE), both on a log scale. We considered
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Fig. 4: Mean absolute error for the tensor based
method, E[|b, — b|]] vs. number of classifiers m, on
log-log scale.

two values b = 0 and b = 0.3, and for each value of b
we plotted two curves, one corresponding to the esti-
mate b computed from & based on v, and the second,
an “oracle” one, where & is estimated using the true
v. Indeed, for b = 0 both curves nearly coincide, in
accordance to Eq. (Bd). In this simulation, all classi-
fiers had a balanced accuracy in the range [0.69,0.71],
and n = 10,000. These results suggest that it is po-
tentially profitable to estimate the eigenvector v and
the scalar « jointly from both the covariance matrix
R and the tensor T, and not separately as done in the
present paper. This, as well as a more detailed study
of the estimation errors are issues beyond the scope of
the current work.

D The Restricted Likelihood Function

Proof of Theorem . By definition, the function
Gn(£(z)b) in Eq. (E2) is the log-likelihood of the
observed vector f(z) of predicted labels at an instance
x, assuming the class imbalance is b and using the
estimates 1,2) and 7 for the sensitivities and specificities
of the m classifiers.

Under the assumption that all classifiers make inde-
pendent errors, the expression for Pr(f(x)|,n,b) is

given by
Pr(f|b) = Pr(y = 1|b) Pr(f|b,y = 1)+
Pr(y = —1|b) Pr(f|b,y = —1) =
( )ﬁzﬁ% L—4y) 5
- 1-fi(x) 14 £i(2)

(% )H )T (38)
We first prove Eq. (B8), that upon using the exact log-
likelihood function g(f|b), its mean is maximized at
the true value b. To this end, we write the expectation
explicitly,

Elg(£[b)]

Y. Pr(fb)g(flb)

fE{—l,l}m

> Pr(f[b)log Pr(f[b) (39)

fE{—l,l}m

Note the difference between the assumed class imbal-
ance b, which appears inside the logarithm, and its
true value b, over which we take the expectation.

To prove Eq. (BE8), let us first present the following
auxiliary lemma, which can be easily proved using La-
grange multipliers.

Lemma 7. Consider the following function of k un-
known variables {c;}%_,,

({Cl}z 1‘{a’1 i= 1 Zallog Cl (40)

where {a; }¥_, are k non-negative constants. Under the

constraints that Zle ¢; =1, and ¢; > 0, the function
h has a global mazima at ¢; = a; for all i.

We use this lemma with £ = 2™ and the following
set of 2™ constants ag(b) = Pr(f|b), over all possible
m-dimensional vectors f € {—1,1}™, and the 2™ vari-

ables c¢ = Pr(f|b). The expectation of g is now equal
to
~ 2771,
G(b) = E[g(f]D)] Zaz log(c;) (41)

By Eq. (E0), over all possible ch01ces of ¢;, the expec-
tation attains its maxima at ¢; = a; for all 7. Since at
b = b, the corresponding probabilities Pr(f|b = b) =
ag, Eq. (B8) follows.

Next, we wish to prove that b, — b in probability.
To this end, we follow the approach outlined in Newey
[T997)], and prove the following uniform convergence in
probability of Gy, to G,

sup |@n(5) —
be[—1+6,1-9]

G(b)| = 0r(1)
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This equation, coupled with the equicontinuity of G
implies the convergence in probability of the maxi-
mizer of G, (namely b,) to that of G, which by Eq.
(28) is b.

As proved in [Newey, T991, Theorem 2.1], this uni-
form convergence in probability is satisfied if and only
if there is pointwise convergence of Gn(b) to G(b), and
G (b) is stochastic equicontinuous. Fortunately, a suf-
ficient condition for the latter property is that Gn(l;) is
continuously differentiable and its derivative bounded,

see Neweyl [T991] Corollary 2.2 and discussion after it.

In our case, since G, (D) = 1/n'Y; gn(£(x:)]D), it suf-
fices to prove that for any vector f, the function g, (f |l~))
is continuously differentiable with a bounded deriva-
tive. First note that by their definition, Eq. (B),
the functions 1 (b) and 7; (b) are continuously differen-
tiable with bounded derivative for all b € [~1+4,1—4].
Next, under the assumptions of the theorem, that ;
and n; are e bounded from 0 and from 1, and hence also
their estimates can be restricted to € < 1/31-, M, <1—e,
the term inside the logarithm in Eq. (B2) is bounded
away from zero. Hence, by its definition §, satisfies
the required condition. O

E Ambiguity in the Multi-Class Case

Proof of Theorem B. For simplicity, let us assume that
all K class probabilities are equal, p; = % for i =
1,..., K. Let f; be the set of original classifiers with
confusion matrices {)*}7 ;. We shall now construct
another set of classifiers with different confusion ma-
trices that nonetheless lead to the same values MA and
R 4 for all subsets A.

To this end, assume that all entries of the first confu-
sion matrix ¢! are strictly positive and strictly smaller
than one. Consider a second set of confusion matrices
{¢"}, identical to the first, except for the following
six changes in 1': For three fixed indices j # k # I,
let

- L -

=Vt A Y= — A

= L -

Y =v; +A %1'1 :1/51'1 —A

Vi =Y+ A Pl =) A
where A is sufficiently small so that all entries of !
are in [0, 1].

Note that the new matrix 9! is a valid confusion ma-
trix, since for any column r € {1,..., K}

K ~
ook =1
=1

Let fl be the classifier corresponding to the modified

matrix Y. Next, note that the first order statistics of
f1 and of f; are unchanged. Indeed, by definition

~ 1K
Pr(fl(X):T):gz ri

If r ¢ {j,k,1}, then ¢}, = !, and thus
Pr(fi(X) =r) = Pr(fi(X) =r) (42)

If r € {4,k,1}, then by construction, in the r-th row
of 1[)1 there are precisely two modified entries, one in-
creased by A and the other reduced by A, so overall
the above equation still holds. Eq. (E2) directly im-
plies that Y = uY for all subsets A.

Next, let us show that the covariance matrices R4
also remain unchanged. Recall that the entries of R 4
are determined by the values d}i‘ .Y and 77}4 ey
Hence, it suffices to show that for all subsets A

Pu =1l and iy =n} (43)

To this end, recall that by definition

Ph= Y3 and =g YOk

Qi €A ii'gA

First consider the case |A N {j,k,l}| = 0. Here, all
relevant entries in the sum for 1/)}4 are unchanged. In
contrast, the sum for 7% includes all six modified en-

tries. Both sums remain unchanged, and so Eq. (£3)
holds.

The proof for the other cases, where AN {j,k,1} # 0
follows similar arguments.

To conclude, both {¢*}/™, and {¢)"}!™, have the same
values 'y and covariance matrices I 4. O

F Ensemble of Machine Learning
Classifiers

Table 0 presents the 10 different classifiers used in
our experiments. For each dataset, each classifier
was trained with 200 different (randomly chosen) in-
stances.

G Real Datasets

We tested our methods on a total of five datasets, 4
from the UCI repository and the MNIST digits data.
A short description of each of the datasets is given in
Table B. A comparison of the performance of various
ensemble learners on these datasets appears in Fig. B.
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Fig. 5: The balanced accuracies of 4 unsupervised ensemble learning algorithms, all with m = 10 classifiers. In
panel Bd we do not show the accuracy of majority voting which was significantly lower than all others.

classifier Weka library

IBk - K nearest

neighbours, K =1 lazy.IBk

KStar - Instance

based classifier lazy. KStar

J48 - Decision tree trees.J48

PART - Partial decision

trees classifier rules. PART

LMT - Logistic model

trees trees. LMT

Random forest -

with n = 10 trees trees.RandomForest
Logistic Regression functions.SimpleLogistic
Decision Stump -

One level decision tree trees.DecisionStump
Sequential Minimal

Optimization functions.SMO
NaiveBayes bayes.NaiveBayes

Table 1: 10 classification methods implemented in the
software package Weka.
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dataset Task instances attributes
Magic classifying gamma 19000 11

rays from back-

ground noise

Spam  classifying spam 4600 57
from regular mail
Musk  classifying different 6600 88

types of molecules
to be 'musk’ or 'non
musk’
Miniboo distinguish electron 130000 50
neutrinos  (signal)
from muon neutri-
nos (background)’
Mnist  To define a binary 40000 282
problem, we di-
vided the MNIST
data set into two
classes as follows:
0—4vs. 5—-9

Table 2: Properties of datasets from the UCI reposi-
tory
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