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Abstract

In various situations one is given only the pre-
dictions of multiple classifiers over a large un-
labeled test data. This scenario raises the fol-
lowing questions: Without any labeled data
and without any a-priori knowledge about
the reliability of these different classifiers, is it
possible to consistently and computationally
efficiently estimate their accuracies? Further-
more, also in a completely unsupervised man-
ner, can one construct a more accurate un-
supervised ensemble classifier? In this pa-
per, focusing on the binary case, we present
simple, computationally efficient algorithms
to solve these questions. Furthermore, un-
der standard classifier independence assump-
tions, we prove our methods are consistent
and study their asymptotic error. Our ap-
proach is spectral, based on the fact that the
off-diagonal entries of the classifiers’ covari-
ance matrix and 3-d tensor are rank-one. We
illustrate the competitive performance of our
algorithms via extensive experiments on both
artificial and real datasets.

1 Introduction

Consider a classification problem from an instance
space X’ to an output label set Y = {1,...,K}. In
contrast to the classical supervised setting, in vari-
ous contemporary applications, one has access only to
the predictions of multiple experts or classifiers over a
large number of unlabeled instances. Moreover, the re-
liability of these experts may be unknown, and at test
time there is no labeled data to assess it. This occurs
for example when due to privacy considerations each
classifier is trained with its own possibly proprietary
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labeled data, unavailable to us. Another scenario is
crowdsourcing, where an annotation task over many
instances is distributed to many annotators whose re-
liability is a-priori unknown, see for example Welin-
der et al. [2010], Whitehill et al. [2009], Sheshadri and
Lease [2013]. This setup, denoted as unsupervised-
supervised learning in Donmez et al. [2010], appears
in several other application domains, including deci-
sion science, economics and medicine, see Snow et al.
[2008], Raykar et al. [2010], Parisi et al. [2014].

Given only the m x n matrix Z, or a significant part
of it, with Z;; = fi(z;) holding the predictions of the
given m classifiers over n instances, and without any
labeled data, two fundamental questions arise: (i) Un-
der the assumption that different classifiers make inde-
pendent errors, is it possible to consistently estimate
the accuracies of the m classifiers in a computationally
efficient way; and (ii) is it possible to construct, again
by some computationally efficient procedure, an unsu-
pervised ensemble learner, more accurate than most if
not all of the original m classifiers.

The first question is important in cases where obtain-
ing the predictions of these m classifiers is by itself an
expensive task, and after collecting a certain number of
instances and their predictions, we wish to pick only
a few of the most accurate ones, see Rokach [2009)].
The second question, also known as offline consensus,
is of utmost importance in improving the quality of
automatic decision making systems based on multiple
sources of information.

Beyond the simplest approach of majority voting, per-
haps the first to define and address these questions
were Dawid and Skene [1979]. With the increasing
popularity of crowdsourcing and large scale expert
opinion systems, the last years have seen a surge of
interest in these problems, see Sheng et al. [2008],
Whitehill et al. [2009], Raykar et al. [2010], Platanios
et al. [2014] and references therein. Yet, the most com-
mon methods to address questions (i) and (ii) above
are based on the expectation maximization (EM) al-
gorithm, already proposed in this context by Dawid
and Skene, and whose only guarantee is convergence
to a local maxima.
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Two recent exceptions, proposing spectral (and thus
computationally efficient) methods with strong con-
sistency guarantees are Karger et al. [2011] and Parisi
et al. [2014]. Karger et al. [2011] assume a spammer-
hammer model, where each classifier is either per-
fectly correct or totally random and develop a spec-
tral method to detect which one is which. Parisi et al.
[2014] derive a spectral approach to address questions
(i) and (ii) above in the context of binary classifi-
cation. Their approach, however, has several limita-
tions. First, they do not actually estimate each clas-
sifier sensitivity and specificity, but only show how to
consistently rank them according to their balanced ac-
curacies. Second, their unsupervised learner assumes
that all classifiers have balanced accuracies close to
1/2 (random). Hence, their ensemble learner may be
suboptimal, for example, when few classifiers are sig-
nificantly more accurate than all others.

In this paper we extend and generalize the results of
Parisi et al. [2014] in several directions and make the
following contributions: In Section 3, focusing on the
binary case, we present a simple spectral method to
estimate the sensitivity and specificity of each classi-
fier, assuming the class imbalance is known. Hence,
the problem boils down to estimating a single-scalar —
the class imbalance. In Section 4 we present two dif-
ferent methods to do so. In Sec. 4.1, we prove that the
off-diagonal elements of the m x m covariance matrix
and the m X m X m joint covariance tensor of the set
of classifiers are both rank 1. Moreover the covariance
matrix and tensor share the same eigenvector but with
different eigenvalues, from which the class imbalance
can be extracted by a simple least-squares procedure.
In Sec. 4.2, we devise a second algorithm to estimate
the class imbalance by a restricted likelihood approach,
that requires optimizing a function of a single variable.
Both algorithms are computationally efficient, and un-
der the assumption that classifiers make independent
errors, are also proven to be consistent. For the first
method, we also prove it is rate optimal with asymp-
totic error Op(1/4/n), where n is the number of unla-
beled samples. Our work thus provides a simple and
elegant solution to the long-standing problem origi-
nally posed by Dawid and Skene [2], whose previous
solutions were mostly based on expectation maximiza-
tion approaches to the full likelihood function.

In Sec. 5 we consider the multiclass case. Building
upon standard reductions from multiclass to binary,
we devise a method to estimate the class probabili-
ties and the diagonal entries of the confusion matri-
ces of all classifiers. We also prove that in the mul-
ticlass case, using only the first and second moments
of these binary reductions, it is in general not possi-
ble to estimate all entries of the confusion matrices of
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all classifiers. This motivates the development of ten-
sor or higher order methods to solve the multi-class
case, as for example in Zhang et al. [2014]. In Sec. 6
we illustrate our methods on both real and artificial
data. The results on real data show that our proposed
ensemble learner achieves a competitive performance
even in practical scenarios where the assumption of
independent classifier errors does not hold precisely.

Related Work Under the assumption that all clas-
sifiers make independent errors, our problem is equiv-
alent to learning a mixture of discrete product distri-
butions. This problem was studied, among others, by
Freund and Mansour [1999] for the case of k = 2 dis-
tributions, and by Feldman et al. [2008] for k > 2.
Important observations regarding the low-rank spec-
tral structure of the second and third moments of such
distributions were made by Anandkumar et al. [2014,
2012]. Building upon these results, recently Jain and
Oh [2014] and Zhang et al. [2014], devised computa-
tionally efficient algorithms to estimate the parame-
ters of the mixture of product distributions, which are
equivalent to the confusion matrices and class proba-
bilities in our problem.

Our first method to estimate the class imbalance in
the binary case using the mean-centered 3-d tensor is
closely related to these works, with some notable dif-
ferences. One key difference is that the above works
study non-centered tensors of classifiers’ outputs, and
hence for a k-class problem, need to resolve the struc-
ture of rank-k tensors. In contrast, we work with cen-
tered matrices and tensors. In the binary case with
k = 2, we thus obtain a simpler rank-1 tensor, which
we do not even need to decompose, but only extract
a single scalar from it. A second difference is that
the above methods require stronger assumptions on
the classifiers. For example, Zhang et al. [2014] di-
vide the classifiers into groups and assume that within
each group, on average classifiers are better than ran-
dom. Due to these differences, our resulting algorithm
is significantly simpler.

Our second algorithm for estimating the class imbal-
ance, based on a restricted likelihood approach is to-
tally different from these tensor-based works, as it re-
quires only a spectral decomposition of the classifiers’
covariance matrix, and then optimizes a 1-d function
of the full likelihood of the data. On both simulated
and real data, this second approach had at least as
good as, and in some cases better accuracy compared
to the tensor based method. Finally, while we focus on
classification, our algorithms may also be of interest to
learning a mixture of discrete product distributions.
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2 Problem Setup

We consider the following binary classification prob-
lem, as also studied in several works (Dawid and
Skene [1979], Raykar et al. [2010], Parisi et al. [2014]).
Let X be an instance space with an output space
Y = {-1,1}. A labeled instance (x,y) € X x Y is
a realization of the random variable (X,Y"), which has
an unknown probability density p(x,y), and X and Y
marginals px (z) and py (y), respectively. We further
denote by b the class imbalance of Y,

b=Pr(Y =1) — Pr(Y = ~1) = py(1) - py ().

Let {fi}™, be m > 3 classifiers operating on X. In
this binary setting, the accuracy of the i-th classifier
is fully specified by its sensitivity ; and specificity n;,

Vi =Pr(fi(X)=1Y =1), n; = Pr (fi(X)

For future use, we denote by m; its balanced accuracy,

mi = (Vi +m)/2.

In this paper we consider the following totally unsu-
pervised scenario. Let Z be a m xn matrix with entries
Zi; = filz;),i =1,...,m,5 = 1,...,n, where f;(z;)
is the label predicted at instance x; by classifier f;. In
particular, we assume no prior knowledge about the
m classifiers, so their accuracies (sensitivities ¢; and
specificities 7;) are all unknown.

Given only the matrix Z of binary predictions!, we

consider the following two problems: (i) consistently
and computationally efficiently estimate the sensitiv-
ity and specificity of each classifier, and (ii) construct
a more accurate ensemble classifier. As discussed be-
low, under certain assumptions, a solution to the first
problem readily yields a solution to the second one.

To tackle these problems, we make the following three
assumptions: (i) The n instances x; are i.i.d. realiza-
tions from the marginal px (z). (ii) The m classifiers
are conditionally independent. That is, for all f;, f;
with i # j and for all labels a;,a; € {—1,1},

Pr(fi = as, fj = a;|Y =y) =

Pr(fi = a;lY = y)Pr(f; = a;|Y =y). (1)

(iii) Most classifiers are better than random, in the

sense that for more than half of all classifiers, m; > 0.5.
Note that (i)-(ii) are standard assumptions in both

'For simplicity of exposition, we assume the matrix is
fully observed. While beyond the scope of this paper, our
proposed methods and theory continue to hold if few en-
tries are missing (at random), such that accurate estimates
of various means, covariances and tensors, as detailed in
Sections 3-4 are still possible.

—1y =-1)
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the supervised and unsupervised settings, see Diet-
terich [2000], Dawid and Skene [1979], Raykar et al.
[2010], Parisi et al. [2014]. Assumption (iii) or a vari-
ant thereof is needed, given an inherent £1 sign ambi-
guity in this fully unsupervised problem.

3 Estimating ¢ and n with a known
class imbalance.

For some classification problems, the class imbalance b
is known. One example is in epidemiology, where the
overall prevalence of a certain disease in the population
is known, and the classification problem is to predict
the presence or future onset of the disease in individu-
als given their observed features (such as blood results,
height, weight, age, genetic profile, etc).

Assuming b is known, Donmez et al. [2010] presented
a simple method to estimate the error rates of all clas-
sifiers under a symmetric noise model, where 1; = n;
for all 4. They further proposed EM methods in the
general case, see also Raykar et al. [2010]. We instead
build upon the spectral approach in Parisi et al. [2014],
and present a computationally efficient method to con-
sistently estimate the sensitivities and specificities of
all m classifiers. To motivate our approach, it is in-
structive to study the limit of an infinite unlabeled set
size, n — 0o, where the mean values of the classifiers
w; = E[f;(X)], and their m x m population covari-
ance matrix R = E[(f;(x) — i) (fj(z) — py)], are all
perfectly known.

The following two lemmas show that knowing R and
{p:}, suffice to extract the specificities and sensitiv-
ities of the m classifiers. Lemma 1 appeared in Parisi
et al. [2014], and implies that given the value of b one
may compute the balanced accuracies of all classifiers.
Lemma 2, proven in the appendix, is new and shows
how to extract their sensitivities and specificities.

Lemma 1. Under assumptions (i)-(iii) of Section 2,
the off diagonal elements of the matriz R are identical
to those of a rank one matriz vv', whose vector v, up
to a £1 sign ambiguity, is equal to

v=141-0522m —1), (2)

where the vector w = (71,...,7m) contains the bal-
anced accuracies of the m classifiers.

Lemma 2. Given the class imbalance b, the mean val-
ues = (l1,...,1m) of the m classifiers and the vec-
tor v of Eq. (2), the values of ¥ = (¢1,...,%m) and
n=(n,...,0m) with the specificities and sensitivities
of the m classifiers are given by

= 3(vsaeEE) = 4w ).
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To uniquely recover v from the off-diagonal entries of
R, we further assume that at least three classifiers have
balanced accuracies different from 1/2 (so 2m; —1 # 0).
In practice, the quantities {u;}1™, R and consequently
the eigenvector v are all unknown. We thus estimate
them from the given data, and plug into Eq. (3). Let
us denote by fi and R the sample mean and covariance
matrix of all classifiers, whose entries are given by

i anl(xk)ﬂ (4)

ln
=1

n

> (filww) = i) (£(zn) = f1j).

k=1

1
n—1

rij

Estimating the vector v from the noisy matrix R can
be cast as a low-rank matrix completion problem.
Parisi et al. [2014] present several methods to construct
such an estimate v, and resolve its inherent £1 sign
ambiguity, via assumption (iii). Inserting fi and v into
(3), gives the following estimates for 1 and 7,

¥ = (1+a+vy/5h),

The following lemma, proven in the appendix, presents
some statistical properties of ¢ and 7).

n

1+b
1-b

). (5)

%(1—ﬂ+\7

Lemma 3. Under assumptions (i)-(iii) of Section 2,
Y and 1) are consistent estimators of ¥ and n. Fur-
thermore, as n — 00,

). ©

1 . 0 1
\/ﬁ), Ny =1; + P<\/ﬁ

In summary, assuming the class imbalance b is known,
Eq. (5) gives a computationally efficient way to es-
timate the sensitivities and specificities of all classi-
fiers. Lemma 3 ensures that the resulting estimates
are consistent. In the next section we show that the
assumption of explicit knowledge of b can be removed,
whereas in Section 5 we show that a similar approach
can also (partly) handle the multiclass case.

1/31—1/%4-013(

3.1 Unsupervised Ensemble Learning

We now consider the second problem discussed in Sec-
tion 2, the construction of an unsupervised ensemble
learner. To this end, note that under the stronger as-
sumption that all classifiers make independent errors,
the likelihood of a label y at an instance x with pre-
dicted labels fi(x),..., fm(x) is

L(fi(x), ..., fm(2)) [y) = HPr(fi(ﬂf) ly). (7)
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In Eq. (7), the i-th term Pr(f;(z)|y) depends on the
specificity and sensitivity v; and 7; of the i-th classi-
fier. While the likelihood is non-convex in 1);, n; and vy,
if the former are known, there is a closed form solution
for the maximume-likelihood value of the class label,

§™MY) = sign (>, filr)Ina; + Inp;) (8)

where

»in; -
(=) =) mi(1 —m;)
Parisi et al. [2014], assumed all classifiers are close to
random, and via a Taylor expansion near ¢ = n = 1/2,
showed that [ is approximately zero, and «; =~ 1+
4(2m; — 1). Plugging these into Eq. (8), they derived
the following spectral meta-learner (SML),

§MY) = sign (3, fi(2)0:) .

Their motivation was that they only had estimates of
the vector v, which according to Eq. (2) is propor-
tional to (27 — 1). Since we consistently estimate the
individual specificities and sensitivities of the m classi-
fiers, we suggest to plug in these estimates directly into
Egs. (9) and (8). Our improved spectral approach, de-
noted i-SML,; yields a more accurate ensemble learner
when few classifiers are significantly better than ran-
dom, so the linearization around ¢ = n = 1/2 is inac-
curate. We present such examples in Sec. 6. Finally,
we note that as in Parisi et al. [2014] and Zhang et al.
[2014], we may use our i-SML as a starting guess for
EM methods that maximize the full likelihood.

= B = Pi(1 — )

(9)

(10)

4 Estimation of the class imbalance

We now consider the problem of estimating 1 and n
when the class imbalance b is unknown. Our proposed
approach is to first estimate b, and then plug this esti-
mate into Eq. (5). We present two different methods
to estimate the class imbalance. The first uses the co-
variance matrix and the 3-dimensional covariance ten-
sor of all m classifiers. The second method exploits
properties of the likelihood function. As detailed be-
low, both methods are computationally efficient, but
require stronger assumptions than Eq.(1) on indepen-
dence of classifier errors to prove their consistency.

4.1 Estimation via the 3-D covariance tensor

For the method derived in this subsection, we assume
that the classifiers are conditionally independent in
triplets. That is, for every f;, f;, fi with ¢ # j # k
and for all labels a;,a;,ar € {—1,1},

Pr(f; = ai, fj = aj, fo = axly) =

Pr(fi = aily) Pr(f; = a;ly) Pr(fx = axly). (11)



Ariel Jaffe, Boaz Nadler, Yuval Kluger

Let T = (T;;x) denote the 3-dimensional covariance
tensor of the m classifiers { f; (X))},

Tije = E[(fi(X) = pa) (f5(X) = p13) (e (X) = pe)] -
(12)
The following lemma, proven in the appendix, provides
the relation between the tensor T, the class imbalance
b and the balanced accuracies of the m classifiers.

Lemma 4. Under assumption (11), the following
holds for all i # j # k,

Tijk = —2b(1 — b*)(2m; — 1)(27; — 1)(2m — 1). (13)

According to (13), the off diagonal elements of T' (with
i # j # k) correspond to a rank one tensor,

T=wWwQew, (14)

where ® denotes the outer product and the vector w €
R™ is equal to

w = (—2b(1 — bQ))% (2w —1). (15)

Note that unlike the vector v of the covariance ma-
trix R, there is no sign ambiguity in the vector w.
Moreover, comparing Egs. (2) and (15), the vectors v
of R and w of T are both proportional to (27w — 1),
where the proportionality factor depends on the class
imbalance b. Hence, w = a(b)*/? v, and

T=ab)vavev (16)

where a(b) = (—2b)/v/1 — b2. Inverting this expression
yields the following relation,

b=—a/V4i+ a2

Eq. (17) thus shows, that in our setup, as n — oo, the
first three moments of the data (u, R, T') are sufficient
to determine both the class imbalance and the sensi-
tivities and specificities of all m classifiers. In practice,
the tensor T' is unknown, though it can be estimated
from the observed data by

1

T
J n

(17)

n

D falwn) = ) (fi (@) = fig) (fro(a) = fue)-

1=1
(18)
Given an estimate v from the matrix R, the scalar «
of Eq. (16) is estimated by least squares,

. 2
(Tijk — Ozf)if)j@k) . (19)
The steps to estimate the class imbalance with the 3
dimensional tensor appear in Algorithm 1. In terms
of complexity the heaviest step is the estimation of
T which requires O(m3n) operations. The following
lemma shows that this method yields an asymptotic
error of Op(1/+/n). This error rate is optimal since it

is equal to the rate achieved when estimating b with
the ground truth labels y;.
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Algorithm 1 Estimating class imbalance with the
3dimensional covariance tensor

1: Estimate covariance matrix R by Eq. (5).

2: Estimate v from the off diagonal entries of R (see
appendix).

3: Estimate the 3 dimensional tensor T" by Eq. (18).

4: Estimate o via Eq. (19) and b via Eq. (17).

Lemma 5. Let & be given by Eq. (19) and let b, be
the plug-in estimator from Eq. (17). Then,

i)n:bJrOp (1/\/’5)

Consequently the plug-in estimators 1/31‘7771‘ in Eq. (5)
also have the same asymptotic error Op(1/y/n).

(20)

The proof of Lemma 5 appears in the appendix. Fol-
lowing it are some remarks regarding the accuracy of
various estimates as a function of the number of clas-
sifiers and their accuracies. A detailed study of this
issue is beyond the scope of this paper.

4.2 A restricted-likelihood approach

The algorithm in Section 4.1 relied only on the first
three moments of the data. We now present a sec-
ond method to estimate the class imbalance, based on
a restricted likelihood function of all the data. This
method is potentially more accurate, however it re-
quires the following stronger assumption of joint con-
ditional independence of all m classifiers,

Pr(fi=ai,..., fm=amly) = [[Pr(fi=aly). (21)
=1

It is important to note that under this assumption,
the problem at hand is equivalent to learning a mix-
ture of two product distributions, addressed in Fre-
und and Mansour [1999]. For this problem, several
recent works suggested spectral tensor decomposition
approaches, see Anandkumar et al. [2014], Jain and
Oh [2014], Zhang et al. [2014].

In contrast, we now present a totally different ap-
proach, not based on tensor decompositions. Our
starting point is Eq. (5) which provides consistent
estimates of 1 and n given the class imbalance b. In
particular, any guess b of the class imbalance, yields
corresponding guesses for the sensitivities and speci-
ficities of all m classifiers, ¥ (b) and 7(b). As described
below, our approach is to construct a suitable func-
tional G,(Z|b), that depends on both b and on_the
observed data Z, whose maxima as a function of b, as
n — oo is attained at the true class imbalance b.

To this end, let f(x) = (f1(z),..., fm(z)) denote the
vector of labels predicted by the m classifiers at an
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instance . We define the following approximate log-
likelihood, assuming class imbalance b
Gn(E(@)[B) = log Pr (£@)|$(3),7(0).0)  (22)
where 7 and 7 are given by Eq. (5), and an expression
for the above probability is given in Eq. (38) in the

appendix. Our functional Gn(Z|b) is the average of
Gn(f(2)|b) over all instances z;,

C(Z1) = % > a8 ) (23)

Note that the estimates of ¥,n in Eq. (5) become
numerically unstable for b close to 1. Hence, in what
follows we assume there is an a-priori known § > 0,
such that the true class imbalance b € [-1 + 4,1 — §].
The estimate of the class imbalance is then defined as

Ga(Z]D).

b, = b

argmax
be[~144,1-3)

(24)

To justify Eq. (24), it is again constructive to consider
the limit n — oo. First, for any b € [-1 + 6,1 — 4],
the convergence of ¥ (b) and 7(b) to (b) and n(b),
respectively, implies that at any instance =z,

lim_g,,(f(z)|b)

n—roo

Next, since the n instances x; are i.i.d, by the law of
large numbers, combined with the delta method

lim G, (Z]b) = G(

n— oo

D) =Ey) [9E6(X)D)] . (25)

The following theorem, proven in the appendix, shows

that the maxima of G(b) is obtained at the true class
imbalance b = b, and that b,, — b in probability.

Theorem 1. Assume all classifier errors are indepen-
dent, so Eq. (21) holds. Let e, 6 > 0 be a-priori known,
such that classifiers sensitivities and specificities sat-
isfy € < M < 1—e¢, and b € [-1 46,1 = §]. Then,

b= argmax E(xy, {g(f(X)\lNJ)}
be[—1+4,1-4]

(26)

and as n — oo the estimate b, of Eq. (24) converges
to b in probability.

Note that since ?)n is the maximizer of a restricted
likelihood, its convergence to b is not a direct conse-
quence of the consistency of ML estimators. Instead,
what is needed is uniform convergence in probability of
G (D) to G(b), see Newey [1991] and appendix. Also
note that even though G, (b) is not necessarily con-
cave, finding its global maxima requires optimization

of a smooth function of only one variable.

9(£(x)[b) = log Pr(£(x) (), n(b), D).
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Algorithm 2 Estimating the class imbalance using
the restricted likelihood functional

1: Estimate the mean values {/i;}",, the covariance
matrix R, and the vector V.

2: for b€ (—1+4,1—9) do

3: Estimate v(b) and 7(b) via Eq. (5).

4: Calculate G,,(Z|b) by Egs. (22) and (23).

5: end for

6: Estimate b by Eq. (24).

Algorithm 2 summarizes the method to estimate b by
the restricted-likelihood method. This algorithm scans
possible values of b, where each evaluation of G, re-
quires O(mn) operations. Since §, and consequently
G, are smooth functions of b in (=1 + 6,1 — §), the
finite grid of values of b can be of size polynomial in n
and the method is computationally efficient.

5 The multi-class case

We now consider the multi-class case, with K > 2
classes. Here we are given the predictions of m classi-
fiers, f; : X — Y, where Y = {1,..., K}. Instead of
the class imbalance b, we now have a vector of K class
probabilities pr, = Pr(Y = k). Similarly, instead of
specificity and sensitivity, now each classifier is char-
acterized by a K x K confusion matrix °

Vi = Pr(fi(X) = kY =) kK e).

In analogy to Section 2, given only an m X n matrix
of predictions, with elements f;(z;) € {1...K}, the
problem is to estimate the confusion matrices ¥* of all
classifiers and the class probabilities p.

As in the binary case, we make an assumption regard-
ing the mutual independence of errors made by differ-
ent classifiers. The precise independence assumption
(pairs, triplets or the full set of classifiers) depends on
the method employed.

By a simple reduction to the binary case, we now
present a partial solution to this problem. We develop
a method to consistently estimate the class probabil-
ities py and the diagonals of the confusion matrices,
namely the probabilities Pr(f;(X) = k|Y = k). How-
ever, we prove that even if the class probabilities are
a-priori known, estimating all entries of the m confu-
sion matrices is not possible via this binary reduction.

To this end, we build upon the methods developed
in Sections 3 and 4 for binary problems. Consider a
split of the group Y = {1...K} into two non-empty
disjoint subsets, Y = AU (Y \ A), where A C Y is
a non trivial subset of Y, with 0 < |A| < K. Next,
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define the binary classifiers {fAA}m ;:

0 ={

Using one of the algorithms described in Section 4, we
estimate the probability of the group A

1 fi(X)eA

A
Ji “1 (X)) g A

pA:Pr(YEA)Z Zpk
ke A

and the sensitivity of each classifier f* by Eq. (5).

In particular, when A = {k}, p* = p and 1/1;4
1/’111@' Hence, by considering all 1-vs.-all splits, we con-
sistently and computationally efficiently estimate all
class probabilities pg, and all diagonal entries 1%, .

The following theorem, proven in the appendix, states
a negative result, that estimating the full confusion
matrix is not possible by this binary reduction method.

Theorem 2. Let uiy = E[ff*] and let R4 be the co-
variance matriz of the classifiers {fA}™,. The in-
verse problem of estimating the m confusions matrices
V¢, from the values of {u,}7™, and R4 for all possible
subsets A of Y ={1...K}, is in general ill posed with
multiple solutions.

Theorem 2 implies that in order to completely esti-
mate the confusion matrices in a multiclass problem,
it is necessary to use higher-order dependencies such
as tensors or even the full likelihood. Indeed, both
Zhang et al. [2014] and Jain and Oh [2014] derived
such methods based on three-dimensional tensors.

While beyond the scope of this paper, we remark that
combining our simpler method with these tensor-based
approaches might produce more accurate algorithms
for the multiclass case.

6 Experiments

6.1 Artificial Data

First, we demonstrate the performance of the two class
imbalance estimators on artificial binary data. In the
following we constructed an ensemble of m = 10 classi-
fiers that make independent errors and thus satisfy Eq.
(21). Their sensitivities and specificities were chosen
uniformly at random from the interval [0.5,0.8]. Thus,
assumption (iii) on the balanced accuracies 7 holds.
The vector of true labels y € {£1}" was randomly
generated according to the class imbalance b, and the
data matrix Z was randomly generated according to

y; 9, and 7.
Fig.
deviation) of the estimates b of the class imbalance,

1 presents the accuracy (mean and standard
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Fig. 1: Mean and variance of the tensor-based and
likelihood-based class imbalance estimators vs. num-
ber of instances n, for several values of b.

achieved by the two different algorithms of Sections
4.1 and 4.2, vs. the number of unlabeled instances n,
for several values of the class imbalance, b = 0,0.3, 0.6.
As expected, the accuracy of both methods improves
with the number of instances. Fig. 2 shows the mean
squared error (MSE) E[(b—b)2] vs. the number of sam-
ples n, on a log-log scale. The linear line with slope
~ —1 shows that empirically b, = b+ Op(1/y/n), in
accordance to Lemma 5. In addition, on simulated
data, the restricted likelihood estimator is more accu-
rate than the tensor-based estimator.

6.2 Real data

We applied our algorithms on various binary and
multi-class problems using a total of 5 datasets: 4
datasets from the UCI repository Bache and Lichman
[2013] and the MNIST data. Our ensemble consisted of
m = 10 classification methods implemented in the soft-
ware package Weka Hall et al. [2009]. Due to page lim-
its, we present here results only on the 'magic’ dataset.
Further details on the different datasets, classifiers and
additional results appear in the appendix.
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Mean Square error iter= 500

—=-Tensor
——Rest. Likelihood

log,o(MSE)

3.5 4 45
log,(n)

Fig. 2: The MSE of the two class imbalance estimators
vs. number of samples on a log-log scale.

The magic data contains 19,000 instances with 11 at-
tributes. The task is to distinguish each instance as
either background or high energy gamma rays. Each
of the m = 10 classifiers was trained on its own ran-
domly chosen set of 200 instances. The classifiers were
then applied to the whole dataset, thus providing the
m X n prediction matrix. We compared the results of 4
different unsupervised ensemble methods: (i) Majority
voting; (ii) SML of Parisi et al. [2014]; (iii) i-SML as
described in section 4; and (iv) Oracle ML: the MLE
formula (8) with the values of ¥ and 7, estimated from
the full dataset with its labels.

To assess the stability of the different methods, for
each dataset we repeated the above simulation 30
times, each realization with different randomly chosen
training sets. Fig. 3a shows the mean and standard
deviation of the balanced accuracy 7 achieved by the
four methods on the 'magic’ dataset. It shows that on
average, i-SML improves upon the SML by approxi-
mately 2%, and both are significantly better than ma-
jority voting. Fig. 3b displays the error rates 1—7 ;_gur
vs. 1 — mgyy, for all 30 realizations. As all points are
below the diagonal, the improvement over SML was
consistent in all 30 simulation runs. As shown in the
appendix, similar results, and in particular the im-
provement of i-SML over SML, were observed also in
all 4 other datasets.

7 Summary and Discussion

In this paper we presented a simple spectral-based ap-
proach to estimate, in an unsupervised manner, the
accuracies of multiple classifiers, mainly in the binary
case. This, in turn, resulted in a novel unsupervised
spectral ensemble learner, denoted i-SML. The empiri-
cal results on several real data sets attest to its compet-
itive performance in practical situations where clearly
the underlying idealized assumptions that all classifiers
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Fig. 3: Comparing 4 unsupervised ensemble learning
algorithms, based on m = 10 classifiers.

make independent errors do not hold exactly.

There are several interesting directions to extend this
work. One possible direction is to relax the strict as-
sumptions of independence of classifier errors across
all instances, for example by introducing the concept
of instance difficulty. A second interesting direction
is the construction of novel semi-supervised ensemble
learners, when one is given not only the predictions of
m classifiers on a large unlabeled set of instances, but
also their predictions on a small set of labeled ones.
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