
A Supplementary Material for

“Robust Cost Sensitive Support Vector Machine”

1 Proposition 1

The supplementary material is devoted to the full version proof of Proposition 1.
The proposition is given as follows.

Proposition 1 Let Ui = {δi| ‖δi‖q ≤ γi} for i = 1, . . . ,m, and suppose the regular-

izer r(w) takes the form
∑l

k=1 ηk‖w‖dkpk where ηk ≥ 0, dk, pk ∈ N. Then the following
robust classification problem

min
w,b,ζ

r(w) +
∑m

i=1Ciζi

s.t. min
δi∈Ui

yi(w
T(xi + δi) + b) ≥ 1− ζi,

ζi ≥ 0 i = 1, · · · ,m,

(1)

is equivalent to the following regularized classification problem

min
w,b,ζ′

r′(w) +R‖w‖p +
∑m

i=1C
′
iζ
′
i

s.t. yi(w
Txi + b) ≥ 1− ζ ′i,

ζ ′i ≥ 0 i = 1, · · · ,m,
(2)

where p denotes the dual norm of q and the regularizer r′(w) takes the form
∑l

k=1 η
′
k‖w‖dkpk .

Here, parameters η′k, R and costs C ′i are assigned according to (1).

When we say the two classification problem is “equivalent”, we mean they produce
the same optimal hyperplane wTx + b = 0. This result tells us that robust classi-
fication problems where each data has different uncertainty set sizes are equivalent
to solving a regularized classification problem.

2 Proof of Proposition 1

We first observe that we can rewrite (1) into a standard (non-robust) optimization
problem, since each perturbation in the data are uncorrelated. (1) is equivalent to

1



the following problem.

min
w,b,ζ

r(w) +
∑m

i=1Ciζi

s.t. yi(w
Txi + b)− γi‖w‖p ≥ 1− ζi,

ζi ≥ 0 i = 1, · · · ,m,
(3)

where ‖ · ‖p is the dual norm of ‖ · ‖q.
To show equivalence between (2) and (3), we create an identical optimal hyper-

plane wTx + b = 0 for (2) and (3) through setting the η′k of the regularizer r′(w),
parameter R and costs C ′i appropriately.

In doing so, we take a look at the Lagrange function of the two problems and
derive the KKT conditions. The Lagrange functions Lrob and Lreg for (3) and (2)
are

Lrob(w, b, ζ,α,β) = r(w) +

m∑
i=1

Ciζi −
m∑
i=1

αi
(
yi(w

Txi + b)− γi‖w‖p − 1 + ζi
)
−

m∑
i=1

βiζi,

Lreg(w, b, ζ
′,α′,β′) = r′(w) +

m∑
i=1

C ′iζ
′
i +

m∑
i=1

α′i
(
yi(w

Txi + b)− 1 + ζ ′i
)
−

m∑
i=1

β′iζ
′
i,

where (α,β) and (α′,β′) are the dual variables associated with problem (3) and (2)
respectively. Then, we obtain the KKT conditions as follows.

(I) KKT Conditions for
the Robust Classifier (3)

• ∂r(w)
∂wj

+ (
m∑
i=1

αiγi)
|wj |p−2

‖w‖p−1
p

wj =
m∑
i=1

αiyixij

•
∑m

i=i αiyi = 0

• α + β = C

• α ≥ 0,β ≥ 0

• αi(yi(wTxi + b)− γi‖w‖p − 1 + ζi
)

= 0

• βiζi = 0

• yi(wTxi + b)− γi‖w‖p ≥ 1− ζi

• ζi ≥ 0

(II) KKT Conditions for
the Regularized Classifier (2)

• ∂r′(w)
∂wj

+R
|wj |p−2

‖w‖p−1
p

wj =
m∑
i=1

α′iyixij

•
∑m

i=1 α
′
iyi = 0

• α′ + β′ = C′

• α′ ≥ 0,β′ ≥ 0

• α′i(yi(wTxi + b)− 1 + ζ ′i) = 0

• β′iζ ′i = 0

• yi(wTxi + b) ≥ 1− ζ ′i

• ζ ′i ≥ 0

Where wj , xij denotes the j-th element of w,xi and C,C′ denotes the vector with
costs Ci, C

′
i respectively. The first four items are the stationarity conditions and
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dual feasibility. The following two items are the complementary slackness, and the
last two items are the primal feasibility.

Let (wrob, brob, ζrob,αrob,βrob) and (wreg, breg, ζ
′
reg,α

′
reg,β

′
reg) be points satisfy-

ing the above KKT conditions (I) and (II) respectively. Since both problems are
convex, any solution satisfying the KKT conditions is the optimal solution. There-
fore, to prove the proposition, we show that we can construct (2) to have an identical
optimal hyperplane as wT

robx + brob = 0 that satisfies the KKT conditions (II), by
appropriately setting the η′k of the regularizer r′(w), parameter R and costs C ′i.

Let γ = maxi γi. Then for an appropriate regularizer r′(w), parameter R and
costs C ′i, (2) will have an optimal solution satisfying (wreg, breg) = (τwrob, τbrob),
where τ is defined as τ = 1

1+γ‖wrob‖p . Since hyperplanes are invariant under scaling

of the parameters, this will be our desired solution. We explain the motivation of τ
shortly after and give a detailed proof of this statement.

We consider two cases; for data with uncertainty set size γ and data with un-
certainty set size smaller than γ. Take a look at the following figure.

Figure 1: (Left) Data with uncertainty set size γi < γ. (Right) Data with uncer-
tainty set size γi = γ. Black and red are used to illustrate the results of robust
and regularized classification respectively. The bold lines represent the optimal
hyperplanes wTx + b = 0 and the dashed lines represent the margin hyperplanes
|wTx + b| = 1 for the robust and regularized problems. Finally, the dashed grey
circles represents the uncertainty set of each data.

The reason for assigning τ in the above way was so the black dashed line gets
translated exactly by γ to the red dashed line. The description of the letters in
parenthesis is summarized in the following Table 1. Margin Errors (ME) are data
with ζ > 0, Margin Support Vectors (MSV) are data with ζ = 0 and α > 0, and
Others denotes data other than ME and MSV i.e., those data that are correctly
classified and not on the margin hyperplane.

By focusing on the different types of data depicted in Table 1, we derive a
method of constructing a pair (w, b, ζ,α′,β′) satisfying the KKT conditions (II)
where (w, b) = (τwrob, τbrob) using (wrob, brob, ζrob,αrob,βrob). The following Table
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Regularized Problem
Margin Errors Margin Support Vectors Others

R
ob

u
st

P
ro

b
le

m ME (C), (e) - -
MSV (d) (B) -

Others (c) (b) (A), (a)

Table 1: Description of different types of data in Figure 1. “Others” stands for those
data that are correctly classified and not on the margin hyperplane.

2 summarizes how we assign the costs Ci for each types of data and what the pairs
(ζ′,α′,β′) evaluate to.

Table 2: Relationship between the assigned costs and the optimal solutions.
Types Costs Regularized Problem Robust Problem

C ′i ζ ′i α′i β′i ζi αi βi

(A) Ci 0 0 Ci 0 0 Ci
(B) Ci 0 αi βi 0 αi βi
(C) Ci τζi Ci 0 ζi Ci 0

(a) Ci 0 0 Ci 0 0 Ci
(b) 0 0 0 0 0 0 Ci
(c) 0 0 0 0 0 0 Ci
(d) αi τ(γ − γi)‖wrob‖p αi 0 0 αi βi
(e) Ci τζi + τ(γ − γi)‖wrob‖p Ci 0 ζi Ci 0

We show the above {(ζ ′i, α′i, β′i)}mi=1 satisfies the KKT conditions (II). Since
{(ζi, αi, βi)}mi=1 satisfies the KKT conditions in (I), it is straightforward to see that
α′ + β′ = C′, α′ ≥ 0, β′ ≥ 0, β′iζ

′
i = 0 and ζ ′i ≥ 0 holds. Furthermore, since

α′ = α, we obtain
∑m

i=1 yiα
′
i = 0.

Next we consider the remaining complementary condition α′i(yi(w
T
regxi+ breg)−

1 + ζ ′i) = 0. Since this holds when αi = 0, we only consider the case of αi 6= 0. Then
we can write ζ ′i as τζi+τ(γ−γi)‖wrob‖p. Recalling that (wreg,breg) = (τwrob, τbrob)
and τ = 1

1+γ‖wrob‖p we obtain the following equation.

yi(w
T
robxi + brob)− γi‖wrob‖p − 1 + ζi = 0

⇔ yi(w
T
regxi + breg)− τγi‖wrob‖p − τ + τζi = 0

⇔ yi(w
T
regxi + breg)− τ(γi‖wrob‖p + 1)− τ(γ − γi)‖wrob‖p + ζ ′i = 0

⇔ yi(w
T
regxi + breg)− 1 + ζ ′i = 0.

The remaining primal feasibility condition yi(w
T
regxi + breg) ≥ 1− ζ ′i is obtained in

the same manner.
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Finally, we assign a suitable regularizer r′(w) and parameter R, so the first item
in the KKT conditions (II) holds. Since r(w) takes the form

∑l
k=1 ηk‖w‖dkpk , by

substituting wrob = wreg/τ and α = α′ into the first item in the KKT conditions
(I), we obtain

l∑
k=1

ηkτ
2−dkwreg,j

|wreg,j |pi−2‖wreg‖aipi
‖wreg‖pipi

+ (
m∑
i=1

α′iγi)
|wreg,j |p−2

‖wreg‖p−1p

wreg,j =
m∑
i=1

α′iyixij ,

where wreg,i denotes the i-th element in wreg. Observe that by assigning r′(w) =∑l
k=1 ηkτ

2−dk‖w‖dkpk and R =
∑m

i=1 αiγi, we obtain the first item in the KKT con-
ditions (II). Thus, every KKT conditions (II) has been derived from the KKT con-
ditions (I).

We showed that the values assigned according to Table 2 satisfy the KKT condi-
tions (II). Therefore, a robust classification problem (1) is equivalent to a regularized
classification problem (2) if the regularizer r′(w), parameter R and costs C ′i are as-
signed in the above manner. Hence proving the proposition. �

2.1 Comments on Proposition 1

Proposition 1 actually holds for uncertainty sets defined with a quadratic norm ‖·‖A
as well, where A is a positive semidefinite matrix. In this case, the dual norm p is
given as ‖ · ‖A−1 . The proof of this follows in the same manner. Quadratic norms
induces, ellipsoid shaped uncertainty sets.

We point out that (3) was generically constructed so that its KKT condition
would equal to that of (2).
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