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Abstract

In this paper we consider robust classifica-
tions and show equivalence between the regu-
larized classifications. In general, robust clas-
sifications are used to create a classifier ro-
bust to data by taking into account the un-
certainty of the data. Our result shows that
regularized classifications inherit robustness
and provide reason on why some regularized
classifications tend to be robust against data.
Although most robust classification problems
assume that every uncertain data lie within
an identical bounded set, this paper consid-
ers a generalized model where the sizes of
the bounded sets are different for each data.
These models can be transformed into regu-
larized classification models where the penal-
ties for each data are assigned according to
their losses. We see that considering such
models opens up for new applications. For
an example, we show that this robust clas-
sification technique can be used for Imbal-
anced Data Learning. We conducted experi-
mentation with actual data and compared it
with other IDL algorithms such as Cost Sen-
sitive SVMs. This is a novel usage for the
robust classification scheme and encourages
it to be a suitable candidate for imbalanced
data learning.

1 Introduction

Many data provided in real-life problems are not given
precisely, but instead, corrupted with some kind of er-
ror or measurement noise. In such cases, it is common
for the uncertainty of the data to be characterized by
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some bounded set which we call the uncertainty set.
Robust optimization [5] is an approach that can handle
optimization problems with prior bounds on the size
of the uncertainties of the data. Solutions obtained
from the robust optimization approach are more sta-
ble for this kind of uncertainty. Intuitively, robust op-
timization takes in account for all the points within the
uncertainty set and solves for the worst possible case,
thus creating a solution robust to the uncertainty of
the data.

In the field of machine learning, data corrupted with
uncertainties have been dealt with very often. In
recent years, many active research on incorporating
these uncertainties into formulation of the model has
been made [23, 11, 18, 13]. Among them, the field
of classification, the support vector machines (SVMs)
in particular, has adapted very well with the robust
optimization techniques.

SVMs [10, 8] have been studied in great depth and is
known to be one of the most successful algorithms for
classification. However, often time the data used for
SVM are corrupted by some noise and it is necessary
to incorporate these uncertainties into the model for-
mulation. Many researches has been made on how to
incorporate this prior knowledge into the SVM model.
Usually, some sort of uncertainty sets are assigned to
each data and a robust optimization problem is for-
mulated. For an example, Trafalis and Alwazzi [19],
Trafalis and Gilbert [20], Shivaswamy et al. [18], Bhat-
tacharyya et al. [7] considered uncertainty sets for each
data and allowed them to move within the uncertainty
sets individually. Intuitively, this allows the data to si-
multaneously take the worst case. On the other hand,
Xu et al. [24] assigned uncertainty sets for each data,
but also considered the data to have correlated noises.
In other words, they restricted the aggregated behav-
ior of the data uncertainty and limited them to not
simultaneously take the worst case, making the solu-
tion less conservative than prior methods.

However, most research on robust SVM focuses pri-
marily on the formalization of the model, and to pro-
vide numerical results on the stability of the classi-
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fier. Owing to this, although connections between the
robust and regularized classifiers has been known to
some extent [11, 2], not many works concentrating
on the explicit relationship between them have been
made. We also point out that, to the best of our knowl-
edge, in previous robust SVM models every data were
assumed to lie within an identical uncertainty set. Al-
though this is suitable for cases where each data are
equally corrupted with the same type of noises, it does
not fully capture real-life situations where the credibil-
ity of each data might differ, e.g., as when the data rep-
resent some particular person’s blood pressure, blood-
sugar level and so on.

In this paper, our main objective is to show the ex-
plicit equivalence between the robust SVM and the
non-robust regularized SVM. For the robust SVM,
we consider a generalized setting of previous models,
where different sizes of uncertainty sets are assigned
to each data. The equivalence provides reason to why
regularized classifiers tend to be robust against data
and explicitly shows that the norm-based regulariza-
tion terms are created generically from the uncertainty
sets assigned to the data. For an example, we see
the standard non-robust SVM is equivalent to a non-
regularized robust SVM with spherical (Lg-norm) un-
certainty sets on the data. This allows for an alter-
native explanation on the properties of different types
of regularized SVMs and provides for a richer under-
standing. Furthermore, although the regularizer for
the non-robust regularized SVM are usually chosen by
the user’s preference, these observations also provide
an alternative method on constructing the regularizer
that might be more applicable to the problem. For
instance, if the features of the data are independent
we can assume a box-type (Loo-norm) uncertainty set
around the data, which in return is equivalent to solv-
ing a Li-norm regularized SVM.

We also observe that considering a generalized robust
classification framework as above allows for novel ap-
plications. In particular, we propose a cost sensitive
learning paradigm for learning imbalanced data sets.
Usually in cost sensitive SVM [15, 3, 21], the class
with less data (the minority class) are assigned with
higher costs than the class with more data (the major-
ity class). This approach allows to bias the classifier
so that it pays more attention to the minority class. In
contrast, in our robust SVM model we assign larger un-
certainty sets on the minority class and assign smaller
uncertainty sets on the majority class. This is equiva-
lent to a regularized SVM where the costs are assigned
respective to the dual variables ¢, which denotes the
amount of misclassification error of a particular data.
This presents that robust SVMs can be formulated for
cost sensitive classifiers as well. We evaluate the ro-
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bust SVM model against imbalanced datasets and see
that it has an effect of oversampling the minority data.
We provide computational results to confirm that the
proposed robust SVM model is suitable for imbalanced
data learning.

1.1 Outline of the paper

In Section 2, we provide basic background information
on robust optimization. Then we show our main re-
sult, the explicit equivalence between the robust SVM
and the regularized SVM. In Section 3, we look at spe-
cific regularized SVMs, i.e., the standard non-robust
SVM and the elastic net SVM, and provide alterna-
tive explanations on the properties of each classifier
from a robust classification perspective. In Section 4,
we propose a new robust SVM model for imbalanced
data learning and provide computational results. Fi-
nally, in Section 5, we conclude the paper and look at
some open questions.

1.2 Notation

Capital letters are used to denote matrices, boldface
letters are used to denote column vectors. For a given
matrix A and a vector x, AT and xT denotes their
transpose respectively. || - ||, denotes the g-norm. Fi-
nally, for a given two sets S and T', we define S+ T as
the set {s+t| se€ S, teT}.

2 Robust Classification and
Regularization

2.1 Robust Classification

We consider a binary classification problem, where we
try to find the best linear hyperplane that separates
the data {(x;,v;)}7,. The vector x; € R™ denotes
the data and the scalar y; € {—1,1} denotes the class
data x; belongs to. This problem is solved through
the following optimization problem.

mli)n r(w)+CY " G
st yi(whx; +b) > 1 -, @)
Ci >0 i=1,---,m,

where r(w) is the regularizer and C is a positive hyper-
parameter. By substituting r(w) = 1||w||3, we obtain
the standard soft margin C-SVM.

2

However, in real life situations, the data are rarely
given precisely due to modeling errors and measure-
ment noises, and some kind of perturbation is accom-
panied with. Therefore, taking uncertainty and am-
biguity of data into consideration when formulating
an optimization problem is of significant practical im-
portance [5]. Robust optimization is one of the basic
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w'x+b<0

Figure 1: The figures on the left and right illustrates
the uncertainty set of each data represented by the
Lo-norm and the Lo,-norm respectively.

approaches taken when dealing with uncertainty in the
data. To entail the uncertainty we assume the uncer-
tain data to lie within a bounded set called the uncer-
tainty set, and using this we can rewrite (1) into the
following robust classification problem.

mgn r(w)+CY " ¢
i €U;
ClZO 7;:17"'7ma
where (d1,...,0,,) denotes the perturbations of each

data and U = U; X --- X U,, denotes the uncertainty
set for the perturbation of the data.

Usually in robust classification problems, for simplic-
ity, we assume all data share an uncorrelated identical
uncertainty set, indicating that all data are equally
corrupted and uncorrelated [16, 6]. Therefore, the
uncertainty set U is expressed as Ny X --- x Ny, or
otherwise {(d1,...,0m,)| d; € No}, where Ny denotes
the uncertainty set for each perturbations. Figure
1 illustrates two robust classification problems where
the uncertainty sets of each data Ny are given as
{8] I6]l2 < ~} and {d] ||8]|oc < 7} respectively. In
general, L..-norm shaped uncertainty sets are used
when the perturbation of the features are independent
of each other and otherwise Lo-norm are used.

We will call these uncertainty sets where the pertur-
bation of each data are uncorrelated as the constraint
wise uncertainty set, since all data can simultaneously
take the worst case perturbations. On the other hand,
in such cases as Xu et al. [24], correlated perturbations
are considered as well, motivated by the fact that all
data realizing the worst case may be too conservative.

2.2 Equivalence to Regularized Classification

In this section we show that solving the robust classi-
fication is equivalent to solving a regularized classifi-
cation. Although many works on robust classifications
have been made, their primary focus was on the ex-
perimental results they achieved, and not on the the-
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oretical equivalence to the standard regularized classi-
fication.

Xu et al. [24] were the first to explicitly establish
the equivalence between robustness and regulariza-
tion. They considered a sublinear aggregated uncer-
tainty set, where all the data share an identical uncer-
tainty set, but their aggregated behavior is controlled,
e.g., {(617 LR am)‘ 9; € NOv Z?il ”5%” < ’Y}' Roughly
speaking, this is different from the constraint wise un-
certainty set in that all the data can not take the worst
case simultaneously.

We show similar results by considering a constraint
wise uncertainty set where each data takes different
uncertainty set sizes. Our approach taken to show
equivalence between the robust and regularized clas-
sifier differs from the methods used in Xu et al. [24].
The most noticeable difference between our work and
previous works is that we extended the setting by
treating different sizes of uncertainty set for different
data. This type of robustness is conveyed in many
real life applications where the data are not equally
trusted. For example, let each data represent a pa-
tient’s health condition, e.g., blood pressures, blood-
sugar levels, where the objective is to classify whether
a patient is potentially ill or not. If the patients can be
examined multiple times and has small measurement
variances, we can trust their data. However, if the pa-
tients can be examined only for a limited number of
time or if they have large measurement variances, we
should not trust their data, but instead assume their
data belongs to some kind of uncertainty set. In sit-
uations like this, rather than assuming that all data
share an identical uncertainty set, each data should be
treated individually.

The following proposition is the main result of this sec-
tion, which shows the equivalence between the robust
classification and the regularized classification.

Proposition 1 Let U; = {&;] ||6:|lq < v} fori €
1,...,m, and suppose the regularizer r(w) takes the
form 22:1 nellwl|@s where m > 0,dy,pr € N. Then
the following robust classification problem

T(w) + 221 CiCi
A S _
Jin yi(w" (2 +6;) +b) > 1-¢,

ClZO i:17"'7m7

min
,b,

S.t.

3)

is equivalent to the following regqularized classification
problem

min/ r'(w) + R”w”p + 2211 C{C;

w,b,¢
st yi(wha +b) > 1,
C{ZO i:]_’...’m’

(4)
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where p denotes the dual norm of q and the reqularizer
r’'(w) takes the form 22:1 nllwl|d . Here, parameters
m.s R and costs C] are assigned according to (3).

When we say the two classification problem is “equiv-
alent”, we mean they produce the same optimal hy-
perplane w'x 4+ b = 0. This result tells us that robust
classification problems with different uncertainty set
sizes on each data are equivalent to solving a regular-
ized classification problem.

We give a brief overview of the proof. For the full
version of the proof see the supplementary material.

Overview of Proof. Observe that (3) can be rewrit-
ten into the following standard (non-robust) optimiza-
tion problem.

mgnc r(w) + >0, Cids
s.t. yi(wrx; +b) —yillwll, > 1= ¢, (5)
CZZO i:]-v"'uma
where || - ||, is the dual norm of || - ||,

To show equivalence between (4) and (5), we create
an identical optimal hyperplane wTx 4 b = 0 for (4)
and (5) through setting the n;, of the regularizer r’'(w),
parameter R and costs C! appropriately.

Let us first denote the KKT conditions of (5) and
(4) as (I) and () respectively (see supplementary
material). Then let (Wrop, brob, Crobs Qrobs Brob) and
(Wregs bregs Cregs Oregs Brey) be points satisfying the
KKT conditions (I) and (II) respectively, where o and
3 are the dual variables. Since both problems are con-
vex, any solution satisfying the KKT conditions is the
optimal solution. Therefore, to prove the proposition,
we show that we can construct (4) to have an identical
optimal hyperplane as W, x + b.o, = 0 that satisfies
the KKT conditions (II), by appropriately setting the
1, of the regularizer r'(w), parameter R and costs C.

Let v = max; ;. Then for appropriate parameters 1;,,
R and costs C, (4) will have an optimal solution satis-
tying (Wreg, breg) = (TWrob, Tbrop), where 7 is defined
asT = m Since hyperplanes are invariant un-
der scaling of the parameters, this will be our desired

solution.

To prove this, we consider two cases; for data with
uncertainty set size v and data with uncertainty set
size smaller than . Take a look at Figure 2. Black
and red are used to illustrate the results of robust
and regularized classification respectively. The bold
lines represent the optimal hyperplanes wix +b = 0
and the dashed lines represent the margin hyperplanes
|[wTx 4+ b| = 1 for the robust and regularized prob-
lems. Finally, the dashed grey circles represent the
uncertainty set of each data.
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Figure 2: (Left) Data with uncertainty set size v; < 7.
(Right) Data with uncertainty set size v; = .

Table 1: Description of different types of data in Fig-
ure 2. “Others” stands for those data that are cor-
rectly classified and not on the margin hyperplane.

Regularized Problem
ME [ MSV [ Others

SE] ME (O, ()] - :
25 [ MSV d) (B) -
~ & | Others (c) (b) (A), (a)

The description of the letters in parenthesis is summa-
rized in Table 1. Margin Errors (ME) are data with
¢ > 0, Margin Support Vectors (MSV) are data with
¢ =0 and a > 0, and Others denotes data other than
ME and MSV, i.e., those data that are correctly clas-
sified and not on the margin hyperplane.

By focusing on the different types of data de-
picted in Table 1, we derive a method of con-
structing a pair (w,b,(,a’,3’) satisfying the KKT
conditions (II) where (w,b) = (TWyop, Throp) using
(Wrobs broby Crobs Crobs Brob). Table 2 summarizes how
we assign the costs C/ for each types of data and what
the pairs (¢', &/, 3') evaluate to.

dy, —

Finally, by assigning 7}, = 72" %, ie., r'(w) =
Sy T2 w2 and R = 7" | ayys, we can show
that the above variables {(¢/, o}, 8/)}™, satisfy the
KKT conditions (I). Hence proving that the robust
classification problem (3) is equivalent to the regular-
ized classification problem (4) if the 7}, of the regular-
izer r’(w), parameter R and costs C! are assigned in

the above manner. [ |

To get a better understanding of Proposition 1 we pro-
vide the following corollary. It reveals that the stan-
dard C-SVM is equivalent to a non-regularized robust
classification, and provides theoretical explanation on
why C-SVMs are robust to data. By substituting
C; = 1,y = ~ for i 1,...,m and r(w) = 0 in
Proposition 1, we acquire the following corollary.
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Table 2: Relationship between the assigned costs and the optimal solutions.

[ Types | Costs |

Regularized Problem

[[ Robust Problem |

|
|

I e G [oi [ B G o] Bi]
(A) C; 0 0| 0 0| C;
(B) CZ 0 (7] Bz 0 (7] ﬁl
©) Ci 7Ci Ci |0 G C; | 0
(a) C; 0 0 C 0 0 C
() 0 0 0 0 0 0 C
(c) 0 0 0 0 0 0 C
(d) i (v = Yi)[[Wrobllp o | 0 0 ai | Bi
(e) Ci | 7G+7(y—=7)lWrosllp [ Ci | O Gi Ci | 0

Corollary 1 Let U = {6] ||]l; < v}. Then the fol-
lowing two classification problems are equivalent.

min 37 G
w,b,¢ -
. T

s.t. min yi(w" (z; + 0;) +b) > 1 =, (6)
CzZO ’L'Zl,"'7m,

min - Rljwl, + 32 ¢

st. yi(whe +b) >1-(, (7)
C{EO izl)"'ama

where p denotes the dual norm of ¢ and parameter R
is assigned according to (6).

Proof. We first show that for any robust problem
(6), there exists a regularized problem (7) that pro-
duces an identical optimal hyperplane. Since every
data has an identical uncertainty set, we only con-
sider data of Type (A), (B) and (C). Looking at Table
2, we can assign costs C| 1 for every data since
C; = 1. Therefore, by substituting R = > \" | a;7;,
where «; are the corresponding dual variables of the
robust problem, we obtain (7). The other side of the
statement is easily proven using the above result. If we
assign, v = R/ Y .~ o}, where « are the correspond-
ing dual variables of the regularized problem, (6) will
achieve the same optimal hyperplane as (7). W

By substituting ¢ = 2, we obtain the standard C-SVM.
Although the regularizer R||w/||2 is degree 1, it is easily
confirmed that it produces the same optimal hyper-
plane as the standard C-SVM where the regularizer
is 3||w||3 by setting R properly. We note the state-
ment in Corollary 1 slightly differs from Proposition
1. While in Corollary 1, strict equivalence between
the robust and regularized classification was shown, in
Proposition 1 we have not stated that any regularized
classification is equivalent to a robust classification.

Finally, we briefly explain how to handle the multi pa-
rameters C; and ; in Proposition 1 in practice, which
are too costly to tune individually using grid search.
We provide an example on how we can tune C; and
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v; appropriately from prior knowledge, using the pre-
vious example of classifying a patient as potentially ill
or not. If the classes are imbalanced, C; can be tuned
to be the imbalanced ratio of the two classes. For the
~i, we can set them as the variance of the examined
data. This allows us to convey the uncertainty or vari-
ance of each patient’s examined data, which is more
appropriate to obtain robust solutions than training
the model against the average of the examined data.
In other cases where C; and ~; are assumed to have no
significant differences between patients, we can assign
them identical values to obtain a model with smaller
number of parameters.

3 Connections To Existing
Classifications

3.1 Robust Classification of Xu et al.

In the previous section, we showed equivalence be-
tween the non-regularized robust classification and the
standard C-SVM. This was also observed by Xu et al.
[24] in a different robust setting. In this section, we
look into the connection with their results and observe
that our result can be considered as a generalization
of theirs.

While we considered a constraint wise uncertainty
set {(01,...,0m)] 0; € Np}, Xu et al. [24] con-
sidered a sublinear aggregated uncertainty set, e.g.,
{(01,...,6m)] & € No,> ", 16l < ~}. Roughly
speaking, the sublinear aggregated uncertainty set re-
stricts the data of simultaneously achieving the worst
case by controlling the aggregated behavior of the per-
turbation. Their main purpose for considering this
was to obtain a less conservative solution than the
constraint wise uncertainty set. However, our result
shows that a sublinear aggregated uncertainty set can
be replicated by a small sized constraint wise uncer-
tainty set. We also point out that while they need an
assumption of the data being non-separable, our result
holds for any type of data set.



Robust Cost Sensitive Support Vector Machine

We begin by introducing the main result of Xu et al.
[24] following their definition with minor alteration in
the notations.

Theorem 1 (Theorem 3 of Xu et al.) Let T =
{(81,.. . 8m)] Do, 18illq < 7'}, Suppose that the
training data are non-separable. Then the following
two classification problems are equivalent.

mglé Z:L Gi

s_’tj 3161171_ yi(wt (z; + 8;) +b) > 1, (8)
QZO izla"'7m7

min - 'Jwll, + 37,

w,b,¢’

s.t. yi(’mei + b) Z 1- 7{7 (9)
C{ZO i:1,~~~,m,

where p denotes the dual norm of q.

Although for simplicity we refrain ourselves from pro-
viding the definition of sublinear aggregated uncer-
tainty sets, the following argument holds for any sub-
linear aggregated uncertainty set.

It can be seen from Theorem 1 that Xu et al. [24]
considers an uncertainty set where the perturbation of
the data are correlated. Furthermore, (9) in Theorem
1 is the same form as (7) in Corolallry 1. Therefore,
by substituting R = 7/, we can conclude that (6) and
(8) are equivalent robust classification problems. In
addition, from the assumption in Theorem 1 that the
data are non-separable, at least one of the dual variable
a; in (6) equals to 1, leading to R = y> ", a; > 7.
Thus 7' > .

From the above argument, we see that the sublin-
ear aggregated uncertainty set is replicated by a con-
straint wise uncertainty set where the perturbation on
each data are smaller, i.e., v < /. This implies that
even though considering the sublinear aggregated un-
certainty set seems to be less conservative by control-
ling the perturbation through aggregate constraints,
it is actually equivalent to considering a small sized
constraint wise uncertainty set where every data can
simultaneously take the worst case.

3.2 Elastic Net SVM

The Elastic Net SVM, also known as the Doubly Reg-
ularized SVM was first proposed by Wang et al. [22],
and several efficient algorithms have been proposed
since then [25, 4]. The EN-SVM uses a mixture of
Li-norm and Ls-norm regularizer, i.e., the elastic net
regularizer, where the Li-norm promotes sparsity of
the optimal solution and Ly helps groups of correlated
variables to get selected.
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In this section we present an equivalent formulation
to the EN-SVM and give an alternative explanation
on the properties of the elastic net regularizer. Let us
observe the following corollary.

{0 16l < A'}. Then the following three classifi-
cation problems are equivalent.

Corollary 2 Let T = {6] 0]z < v} and T =

ufflgfé >t Gi

.. i i(wh (@ +6;) +0) > 1 -,

Sy w8 ED 216 g

min, Cllwi3+ X7, ¢

' . AT (. ) >1 -

st min gi(w! (@ +0) +0) =1-¢, ()
C’L/ZO izla"'7m7

wn})i?// %Hw”% + Mf|wlls + X000, ¢

st y(wla 4+b) =1 (12)
({/ZO 1:177m

Equivalence between (11) and (12) is shown in the
same manner as Corollary 1. This states that EN-
SVM (12) is equivalent to a robust C-SVM (11) where
the perturbation is given as a L,.-norm uncertainty
set. In other words, a L.,-norm uncertainty set on the
data has the effect of promoting a sparse hyperplane.
This can be understood intuitively since a Ly,-norm
uncertainty set is shaped like a box where the sides are
parallel to the axes. Therefore, by considering a L-
norm uncertainty set on the perturbation, the robust
C-SVM will learn according to the Lo-norm regularizer
but at the same time try to create a sparse hyperplane.

Furthermore, equivalence between (10) and (11) is ob-
tained directly from the result of Corollary 1. Thus,
EN-SVM is equivalent to a non-regularized SVM with
uncertainty set dgny € To + Too = {0 + 8] |02 <
Y, |6l < 4'}. This uncertainty set is shaped like a
box with circular corners as depicted in Figure 3. As ~y
becomes larger it will shape more like a circle, and as
~" becomes larger it will shape more like a box. This
figure provides an alternative explanation on the prop-
erties of the elastic net regularizer and suggests that
there might be a method of tuning the parameters Ay
and Ao through a robust optimization perspective.

4 Application: Imbalanced Data
Learning

In general, robust optimizations are used to incorpo-
rate the uncertainty and ambiguity of the data by
assigning some sort of uncertainty set around them.
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Figure 3: Uncertainty set that realizes the Elastic Net
regularization. ~« and ' denotes the size of the Lo-
norm and L..-norm uncertainty set respectively.

However, as we saw in Proposition 1, robust classifi-
cation problems can also be viewed as a cost sensitive
model. Unlike in the usual cost sensitive classification
models [15, 3, 21] where the costs are assigned accord-
ing to the classes, in the robust classification models
the costs are essentially assigned according to the dual
variables ¢ of the data, i.e., the amount of misclassifi-
cation error of a certain data.

In this section we compare the robust classification
model with other standard cost sensitive methods
against imbalanced data sets, and see that assigning
costs in the above manner provides a competitive so-
lution to other existing methods. Furthermore, we see
that considering a larger uncertainty set around the
minority class has the effect of oversampling. This is
a novel usage of the robust classification scheme and
the results show that it applies well with imbalanced
data learning.

4.1 Proposed Algorithm RCSSVM

We introduce two non-regularized robust cost sensi-
tive SVMs (RCSSVM) where the uncertainty sets are
given as the Lo-norm and the L..-norm. The objec-
tive function of RCSSVM only consists of the loss term
C* 32, ¢G+C™ 37, ¢, where the summation on the left
and right are taken respectively to the data in the mi-
nority class and majority class. Since the optimal hy-
perplane is invariant to multiplication of the objective
function, we set C~ = 1. For the constraint, we assign
two different uncertainty sets for the minority and ma-
jority class. In detail, the constraint of RCSSVM-L,
is equivalent to that of (3) where two uncertainty sets
UT and U~ are considered. UT and U~ denote the
uncertainty sets for the minority class and majority
class respectively, and are defined as {8] ||6|cc <y}
and {8 ||8||cc <~} where v is assigned larger than
~~. The intuition behind this is that since the mi-
nority class has less data compared to the majority
class, we consider the minority class to be less credible.
Figure 4 explains the effect of considering uncertainty
sets of different sizes. As it can be seen, considering
a larger uncertainty set for the minority class copes
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Figure 4: Example of RCSSVM-L,. The x and o de-
note the minority and majority classes respectively,
and the grey areas represent their uncertainty sets.

Table 3: The datasets used for experimentation. The
number after the dataset names indicates the minor-
ity class we used. Those without numbers are binary
classification.

[ Dataset | Instances [ Ratio | Features |
breast cancer 699 1:2 11
hepatitisl 155 1:4 19
glass7 214 1:6 9
segment1 2310 1:6 19
ecoli 336 1:8.6 7
arrhythmia6 452 1:11.8 279
soy beanlb 683 1:15 35
sick2 3772 1:15 29
oil spill 937 1:21.9 49
card 1728 1:25.6 6
yeastb 1433 1:27 8
hypothyroid3 3772 1:39 52
abalonel9 4145 1:130 8

for the lack of data, since the problem tries to learn
all the data inside the uncertainty sets. Alternatively,
RCSSVM can be thought as oversampling the minor-
ity class. RCSSVM-Ls is defined in the same manner
where || - ||2 is used instead of || - || co-

4.2 Dataset

To evaluate the classification performance of our pro-
posed algorithm, we used 13 datasets from the UCI
database with different degrees of imbalance. The
datasets used are listed in Table 3. The multiclass
datasets were converted into binary datasets using
the one-versus-all scheme. The imbalance ratio var-
ied from 1:2 to 1:130.

4.3 Experiment

In our experiment, we compared RCSSCVMs with
other basic methods: C-SVM, boundary movement
SVM (BMSVM) [17] and cost sensitive SVM (CSSVM)
[15, 3, 21]. Both BMSVM and CSSVM are algo-
rithms that modify C-SVM. BMSVM shifts the deci-
sion boundary by adjusting the threshold of C-SVM,
and CSSVM penalizes differently between the minority
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Table 4: Experimental results for all the methods.

Dataset C-SVM BMSVM CSSVM RCSSVM-L, RCSSVM-Lo
FM [ GM FM | GM FM | GM FM | GM FM [ GM
breast cancer | 96.69 | 96.69 | 97.95 | 97.96 | 97.97 | 97.98 | 98.18 | 98.19 | 97.83 | 97.85
hepatitisl 68.14 | 69.8 78.58 | 7858 | 79.04 | 79.14 | 81.20 | 81.22 80.4 80.45
glass7 87.21 | 87.57 | 90.91 | 91.13 | 89.96 | 90.11 | 90.15 | 90.32 | 90.91 | 91.13
segment1 99.6 99.6 99.7 99.7 | 99.87 | 99.87 | 99.85 | 99.85 | 99.75 | 99.75
ecoli 75.61 | 77.33 | 90.58 | 90.58 | 90.63 | 90.69 | 90.63 | 90.69 | 91.16 | 91.21
arrhythmia6 | 69.35 | 72.19 | 76.28 | 77.28 | 73.44 | 75.62 | 73.47 | 73.61 | 86.51 | 86.73
soy beanlh 100 100 100 100 100 100 100 100 99.92 | 99.92
sick2 78.14 | 79.93 | 90.75 | 90.88 | 89.94 | 90.11 | 90.14 | 90.29 | 90.90 | 91.01
oil spill 70.45 | 73.41 | 78.79 | 79.91 | 77.97 | 78.48 80.4 80.61 | 83.60 | 83.68
car4 90.2 | 90.37 | 92.1 92.12 | 99.06 | 99.06 | 99.12 | 99.13 | 99.12 | 99.13
yeastd 0 0 0 0 84.97 | 85.02 | 85.16 | 85.22 | 84.61 | 84.65
hypothyroid3 | 81.99 | 83.29 | 93.8 93.92 96.7 96.7 | 96.90 | 96.90 | 96.8 96.8
abalonel9 0 0 0 0 79.93 | 79.93 | 79.35 | 79.44 | 78.84 | 79.16

and majority class by assigning different costs. All ex-
periments were conducted by 10-fold cross-validation
and the training/test subsets were created by strat-
ified sampling to ensure each subset had the same
ratio of minority and majority class data. For all
methods, the parameters C,CT, v+, v~ were selected
through grid search. The range of C' was [107°,10%],
the range of CT was [1, 5 x Imbalance Ratio]. The grid
for y* and v~ were [1072,1071] satisfying the inequal-
ity v* > 7.

To evaluate the quality of the classifiers, we used f-
measure [14, 9] and g-means [12, 1], which are evalu-
ation metrics defined as % and v/ PR respectively,
where P and R denote the precision and recall. These
evaluation metrics are commonly used in imbalanced
data learning, since evaluating the performance of a
classifier by the overall accuracy is irrelevant. The re-
sult is summarized in Table 4. The table shows that
both RCSSVMs outperform the C-SVM, BMSVM and
CSSVM in most cases. It can be seen that compared
to the C-SVM, both RCSSVMs learn significantly bet-
ter on imbalanced data and the results encourage that
RCSSVMs are suitable for imbalanced data learning.
We now point out an interesting property of RCSSVM-
Ls. For the two datasets “arrhythmia6” and “oil
spill” that have high numbers of features, RCSSVM-
L, learns significantly better than the other meth-
ods. This is probably due to the fact that the datasets
include features that are unnecessary or redundant.
Since RSCSVM- L, considers box-shaped uncertainty
sets around the data, it automatically performs feature
selections, whereas the other methods try to learn all
features. Owing to this, every solution obtained by the
RCSSVM-L, created a sparse optimal hyperplane. It
should also be noted that compared to other methods,
RCSSVM-L, was computationally much lighter than
other methods, owing to the fact that it solves a linear
programing problem.
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5 Conclusions

We investigated the relationship between the robust
and regularized SVM classification. Unlike previous
robust classification models, we allowed uncertainty
sets to be of different sizes for each data, and made
it possible for the model to incorporate different un-
certainties and ambiguities of the data. The obtained
result presents that having some norm-based pertur-
bation around the data is equivalent to considering a
norm-based regularizer and gives theoretical explana-
tion on why regularized classifiers tend to be robust
against data. Furthermore, we showed that the stan-
dard (non-robust) SVM and the elastic net SVM pro-
vide solutions to robust classification problems where
the uncertainty sets are the Ly-norm and a combina-
tion of the Lo-norm and Lso-norm respectively.

In consideration of the above result, we showed that
robust classification models could be applied to cost
sensitive learning. The presented model has been in-
vestigated for some benchmark imbalanced data and
the experimental results have demonstrated that the
robust classification model provides a promising poten-
tial for imbalanced data learning. The interpretation
of this is that setting a larger uncertainty set on the
minority class has an effect of oversampling and copes
for the lack of data. For our proposed method we
used the Ls-norm and L..-norm uncertainty set and
observed that the L.,,-norm uncertainty set achieves
automatic feature selection.

In future research we will investigate how to construct
uncertainty sets that best suit the problem. Further-
more, in this paper we were only able to conduct ex-
periments on class-wise RCSSVM, since we could not
find suitable data that expressed each sample’s uncer-
tainty. Therefore, it is also a great interest for us to
find a well suited data and experiment using RCSSVM
where the costs are assigned individually.
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