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Proof of Proposition 3

We first see that there always exists a lower bound
of α such that the distance term becomes smaller (or
equivalent) after AM for an initial y0, i.e.,

dh(x∗,y∗) ≤ dh(x1,y0)

where x1 ∈ argminx Eα(x,y0) and pair (x∗,y∗) is
the output of AM with inputs (α,y0). First, it
is obvious that dh(x∗,y∗) is a non-increasing func-
tion for α (while E(x∗,y∗) is non-decreasing). If
α = 0, then x∗ ∈ argminx f(S(x)) and y∗ ∈
argminy

∑
(i,j)∈E ψij(yi, yj) and thus dh(x∗,y∗) takes

some finite value. Meanwhile, if α → ∞, then
dh(x∗,y∗) becomes 0. Therefore, the statement holds
(we denote by α̃ the lower bound). Since we can find a
small value of E for an initial with a smaller distance
term for a common α, the statement of the proposition
follows from dh(x∗1,y

∗
1) < dh(x1,y0) from the above

statement.

Proof of Proposition 4

For the given δ∗ and x∗, it is obvious that

L(δ∗) = E(x∗,x∗) + δ∗(x∗ − x∗) = E(x∗,x∗)

≥ min
x,y∈{0,1}V ,xi=yi(i∈V)

E(x,y) = min
x∈{0,1}V

E(x).

Meanwhile, since L(δ) is the Lagrangian relaxation of
the original problem, we always have

L(δ∗) ≤ min
x∈{0,1}V

E(x). (12)

Thus, taking the above two equations together, we
have the equality in Eq. (12), which shows the state-
ment of the proposition.

Proof of Lemma 5

This result directly follows from the fact that the mod-
ular upper boundmf (X) is an approximation of f such
that [15],

f(X) ≤ mf (X) ≤ |X|
1 + (|X| − 1)(1− κf (X))

f(X)

(13)

where κf (X) is the curvature of f [14]. In the worst
case, this factor is |X|. Now let x∗ be the opti-
mal solution, and S(x∗) be the corresponding set.

Denote α(X) = |X|
1+(|X|−1)(1−κf (X)) , and let x̂ be

the exact solution to the problem minxm
f (S(x)) +∑

i,j∈E ψij(xi, xj). The following chain of inequalities

hold:

f(S(x̂)) +
∑
i,j∈E

ψij(x̂i, x̂j)

≤ mf (S(x̂)) +
∑
i,j∈E

ψij(x̂i, x̂j)

≤ mf (S(x∗)) +
∑
i,j∈E

ψij(x
∗
i , x
∗
j )

≤ α(S(x∗))f(S(x∗)) +
∑
i,j∈E

ψij(x
∗
i , x
∗
j )

≤ α(S(x∗))[f(S(x∗)) +
∑
i,j∈E

ψij(x
∗
i , x
∗
j )]

Hence this provides a α(S(x∗)) ≤ |S(x∗)| approxima-
tion.

Proof of Lemma 6

In this case, we assume we are given the maximization
problem,

max
x

f(S(x)) +
∑
i,j∈E

ψij(xi, xj) (14)

where ψ is a submodular tree, and f is a supermodu-
lar function. Note that this is equivalent to the orig-
inal problem, just changing the min to a max, and
correspondingly interchanging the submodularity and
supermodularities. This is different from the origi-
nal problem in the sense that simple interchanging the
max and min (which can be done my adding a minus
sign), changes the signs of the submodular function.
In order to ensure that the functions f and ψ are pos-
itive even after changing the sign, we would need to
shift the functions.

Assuming this is done, we can provide an approx-
imation guarantee for this setup. In this case, we
use a simple surrogate for the submodular function
ψ. Since we assume ψ is monotone submodular, it
is easy to see that, ψij(xi, xj) ≤ ψij(xi) + ψij(xj) ≤
2ψij(xi, xj). The algorithm then just uses the function
ψij(xi) + ψij(xj) as a surrogate, and solves the prob-
lem maxx f(S(x)) +

∑
i,j∈E ψij(xi) + ψij(xj). Since

f is supermodular, this is submodular minimization,
which can be performed exactly. Again, let x̂ be the
solution using the surrogate function, and x∗ be the
optimal solution. Then, the following chain of inequal-
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ities hold:

f(S(x̂)) +
∑
i,j∈E

ψij(x̂i, x̂j)

≥ f(S(x̂)) +
∑
i,j∈E

1

2
[ψij(x̂i) + ψij(x̂j)]

≥ 1

2
{f(S(x̂)) +

∑
i,j∈E

[ψij(x̂i) + ψij(x̂j)]}

≥ 1

2
{f(S(x∗)) +

∑
i,j∈E

[ψij(x
∗
i ) + ψij(x

∗
j )]}

≥ 1

2
{f(S(x∗)) +

∑
i,j∈E

ψij(x
∗
i , x
∗
j )}

Hence this provides a 1/2 approximation.

Proof of Theorem 7

To prove Theorem 7, we need the following lemmas:

Lemma 8. Let f be a submodular function. For
any β ∈ R and b ∈ RV>0, t∗ is optimal for

mint∈P (f)
wi(ti)
bi

if and only if t∗ + βb is optimal for

mint∈P (f+βb)
wi(ti)
bi

, where wi : R→ R.

Lemma 9. Let f be a submodular function with
f(∅) = 0. And, let x ∈ [0, 1]V with unique values
u1 > · · · > ul, taken at sets A1, . . . ,Al. Then, for
c ∈ RV<0, s is optimal for maxs∈P (fc) x>s if and only if
s(A1∪· · ·∪Ai) = f(A1∪· · ·∪Ai) for all i = 1, . . . , l−1.

Proof of Lemma 9. It is obvious that (s+c)(A1∪· · ·∪
Ai) = (f + c)(A∪ · · · ∪ Ai) if and only if s(A1 ∪ · · · ∪
Ai) = f(A∪· · ·∪Ai) for all i = 1, . . . , l−1. Therefore,
the statement follows from Lemma 8 and, for example,
Proposition 4.2 in [2] because P ((f + c)c) = P (f +
c).

Now, we have the proof of Theorem 7 as follows.

Proof of Theorem 7. Since t∗ = 2α(a − x̃∗), we know
from Lemma 9 that the dual problem of Eq. (10) is

max
s∈P (f

2λ(a−1|V|))

−
∑
i∈V

s2
i /(4λ) + siai. (15)

Let ψi(x̃i) = λ(x̃i−ai)2 and ψ∗i (−ti) = t2i /(4λ)− tiai.
Also, for i ∈ V, let s∗i be a maximizer of −ψ∗i (−si) over
(−∞,max(t∗i , 2λ(ai − 1))]. Then, the pair (x∗, s∗) is
optimal for Eq. (10) and Eq. (15) if and only if (a)

(ηi(x
∗
i , s
∗
i ) :=) x∗i s

∗
i + ψi(x

∗
i ) + ψ∗i (−s∗i ) = 0

and (b) f(x̃∗) = (s∗)>x∗.
For i such that x̃∗i < 0 (i.e., x∗i = 0), we have t∗i =
2λ(ai− x̃i) (> 2λ(ai− 1)) and thus s∗i = 2λai. Hence,
(a) is met because ψi(0) = λa2

i . For i such that 0 ≤
x̃∗i ≤ 1, (a) is met from the optimality of Eq. (11)

because x∗i = x̃∗i and t∗i is still larger than 2α(ai − 1).
And for i such that x̃∗i > 1 (i.e., x∗i = 1), we have

ηi(x
∗
i , s
∗
i ) = s∗i + λ(1− ai)2 + (s∗i )

2/(4λ)− s∗i ai.

On the other hand, since t∗i < 2λ(ai − 1), we have
s∗i = 2λ(ai − 1). Therefore, we have ηi(1, s

∗
i ) = 0.

And, (b) follows from Lemma 9.


