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Abstract

We consider the problem of regression on
multivariate count data and present a Gibbs
sampler for a latent feature regression model
suitable for both under- and overdispersed re-
sponse variables. The model learns count-
valued latent features conditional on arbi-
trary covariates, modeling them as negative
binomial variables, and maps them into the
dependent count-valued observations using a
Dirichlet-multinomial distribution. From an-
other viewpoint, the model can be seen as
a generalization of a specific topic model for
scenarios where we are interested in gener-
ating the actual counts of observations and
not just their relative frequencies and co-
occurrences. The model is demonstrated on a
smart traffic application where the task is to
predict public transportation volume for un-
known locations based on a characterization
of the close-by services and venues.

1 INTRODUCTION

Multivariate regression refers to the problem of learn-
ing a regression model from D-dimensional covariates
x to L response variables y = [y1, ..., yL]. Corre-
lated real-valued responses can be modeled with mul-
tivariate normal and t-distributed noise, but count
responses will need L separate models since there is
no efficient closed-form multivariate distribution over
counts. Even if the learning tasks are tied together by
regularizing the regression weights of the L different
learners in a multi-task learning fashion, the predic-
tions are still independent over the dimensions.

An alternative approach to learning multivariate re-
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gression models is via latent representation, which cor-
relates also the predictions. By first learning a map-
ping from x to a set of K latent features zk and then
from those to the L observed features, we can construct
multivariate predictive distributions without needing
closed-form multivariate distributions. This kind of
a strategy is widely used in reduced-rank regression
[Izenman, 1975], where the latent features are of lower
dimensionality than the inputs or the outputs, and it
also generalizes beyond Gaussian models.

There are, however, only a few multivariate regres-
sion solutions specifically for count data. For univari-
ate count data several solutions have been presented,
but for multivariate responses there are few dedicated
tools besides vector generalized linear models [Yee and
Wild, 1996] and their reduced-rank extensions [Yee
and Hastie, 2003]. The main goal of our work is to
provide a practical Bayesian regression tool to fill this
vacuum, building on the recent advances in Bayesian
inference for negative binomial distributions [Polson
et al., 2013, Zhou et al., 2012].

Our model solves the regression problem by introduc-
ing K latent features following negative binomial (NB)
distribution. These latent features are considered as
response variables for a regression layer and as input
variables for another layer mapping the latent features
into the observed counts using a Dirichlet-multinomial
distribution. Intuitively, the model can be thought of
as generating counts for unknown processes, which in
turn distribute the counts across the observed vari-
ables. While K � min(D,L) is a natural choice for
this kind of models, we do not pose the solution as
that of reduced-rank regression since we also consid-
ers models with large K. This makes the model fam-
ily flexible enough to describe both overdispersed data
(variance larger than the mean) and underdispersed
data (variance smaller than the mean).

The proposed latent feature regression model has an-
other interesting interpretation: It is a topic model
that accepts arbitrary covariates for the topic prob-
abilities similar to the Dirichlet-multinomial regres-
sion (DMR) model by Mimno and McCallum [2008],
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but that generates the actual counts of words instead
of just their relative frequencies. In a typical set-
ting, topic models describe a set of text documents
as a collection of topics that are distributions over the
word tokens, providing an interpretable summary of
the data. However, they generate the topic counts
conditional on the total document length, which cor-
responds to assuming that the topic distribution is in-
dependent of the length. While this is a reasonable
assumption in many topic modeling applications, it
does not strictly hold even for text analysis. For ex-
ample, Doyle and Elkan [2009] discussed topic models
that take into account word burstiness, the observation
that words already appearing in a document are more
likely to occur again, which implies that the choices
are not independent. Our model, when interpreted as
a topic model, is a direct generalization of DMR with-
out this simplifying assumption. Instead, it explicitly
generates the counts of the word tokens and can hence
be applied to arbitrary count regression problems.

We apply the proposed model to data that combines
both over- and underdispersion: We model public
transportation (bus) volume conditional on covariates
describing the neighborhood of a bus stop, asking the
question of how well the number of passengers board-
ing a bus at a given time can be predicted solely based
on static demographic information and training data
collected from other stops. For high-volume stops the
data is underdispersed, whereas for low-volume stops
it is overdispersed. The model outperforms both vec-
tor generalized linear models and independently com-
puted regression models for the L dimensions.

2 BACKGROUND

2.1 Latent Feature Regression

Reduced-rank regression refers to models that solve
the multivariate regression problem from x ∈ RD to
y ∈ RL as y ≈ Wx by learning the weight matrix
W ∈ RL×D as a low-rank product of two matrices:
W = UV, where U ∈ RL×K and V ∈ RK×D. Com-
pared to directly formulating W as a L × D matrix
this representation typically has fewer parameters and
better accuracy [Izenman, 1975].

Such a model can also be interpreted as a two-stage re-
gression that has K-dimensional latent representation
for the samples. These latent variables are computed
with one regression model as z ≈ Vx, and the out-
puts are then modeled with another regression layer
as y ≈ Uz. We present our regression model using
this formulation, explicitly representing the latent fea-
tures, not only because it naturally fits the generative
modeling approach but also because we do not limit

to low-rank models but also consider over-complete so-
lutions where K can be larger than L and/or D. In
Section 4 we will show why such models can be useful
when modeling underdispersed count data.

2.2 Negative Binomial Models

We model the counts with the negative binomial dis-
tribution

NB(y|r, p) =
Γ(y + r)

y!Γ(r)
(1− p)rpy, (1)

which can alternatively be expressed as a mixture of
Poisson distributions using a gamma prior with shape
r and scale p/(1 − p) on the Poisson rate parameter.
The advantage of NB compared to Poisson is that we
can tune the mean and variance of the outcome using r
and p, instead of assuming them to be equal. However,
the variance cannot be made smaller than the mean to
model underdispersed data.

Efficient inference for NB models has previously been
challenging, but two recent results have made NB-
based count models practical. Polson et al. [2013]
presented an auxiliary variable augmentation strat-
egy that re-writes the likelihood (1) as a mixture
over Pólya-Gamma variables. By parameterizing p =
logistic(ψ) = (1 + e−ψ)−1 we get the mixture density

NB(y|r, p) ∝ (eψ)y

(1 + eψ)y+r

=
e(y−r)/2

2y+r

∫
e−ωψ

2/2PG(ω|y + r, 0)dω,

where PG(ω|b, c) is the Pólya-Gamma distribution.
With Gaussian priors on ψ, explicitly instantiating ω
leads to an auxiliary variable sampler with closed-form
Gibbs updates for both ψ and ω.

The other crucial result is by Zhou and Carin [2012],
who derived another augmentation strategy for infer-
ring the parameter r using a compound-Poisson repre-
sentation for the NB distribution. They use an auxil-
iary variable l to record the number of tables occupied
in a Chinese restaurant process with y customers and
concentration parameter r. Given a gamma prior on
r, the conditional distribution r|y, l is also gamma.

Combining these two results provides a state-of-the-art
univariate count regression model [Zhou et al., 2012],
denoted by LGNB for lognormal and gamma mixed
negative binomial regression, which we will use as one
of the baselines when evaluating the proposed model.

2.3 Topic models

Topic models are based on the simple generative pro-
cess, where every item i of an object d chooses topic zi
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and then a token wi given the topic [Blei et al., 2003].
Often the objects are called documents, the tokens are
possible words of a language, and the items are the
individual words in the document. In this work, how-
ever, we use the more general terminology since the
main application of our model is not in modeling text.

The most common choices for the distributions are
given by the Dirichlet-multinomial

zi ∼ Mult(θd), wi|zi = k ∼ Mult(φk),

θd ∼ Dir(ζ), φk ∼ Dir(γ).

Here θd is a distribution over the topics for item d and
φk is a distribution over the tokens for topic k. The
model is implicitly conditioned on the total number of
items md for each object. The early papers briefly dis-
cussed this issue and for example Blei et al. [2003] ex-
plicitly modeled the total length as md ∼ Poisson(λ).
Since this count is independent of the remaining pa-
rameters, effectively all topic models nowadays ignore
the total length.

Gibbs sampling for topic models is typically performed
by marginalizing out the parameters θ and φ, en-
abling direct sampling of individual token-to-topic as-
signments conditional on all other assignments:

p(zdi = k|−) ∝ (ζ +mdk.)
m.kw + γ

Wγ +m.k.
.

Heremdkw is the number of tokens w in item d assigned
to topic k, excluding the current sample, dots denote
summation over the corresponding index, and W is the
vocabulary size. The sampler iteratively re-samples zdi
and updates the counts accordingly.

The Dirichlet multinomial regression model by Mimno
and McCallum [2008] replaces the independent topic
probabilities θd ∼ Dir(ζ) with probabilities that are
conditional on arbitrary set of features xd:

θd ∼ Dir(ζd),

ζdk = exp(βTk xd).

The parameters of the (now non-symmetric) Dirichlet
distribution are modeled conditional on the features,
and a normal prior is given for the regression weights
βk. For inference they used generic numeric optimiza-
tion to find the maximum a posteriori estimate of the
regression weights while updating the rest of the model
parameters with Gibbs sampling. The numerical op-
timization requires computing the gradients with re-
spect to β which involves somewhat heavy evaluation
of digamma-functions.

Conditioning the topic proportions on covariates al-
lows discovering topics that correspond to, for exam-
ple, specific authors or sources by providing the author

and source information as covariates [Mimno and Mc-
Callum, 2008]. Yuan et al. [2012] used the model for
an application resembling ours, to understand (but not
to predict) mobility patterns in a city.

3 MODEL

3.1 Generative process

We build a latent feature regression model for count
data by combining the elements presented above. We
provide for each sample a latent vector z ∈ NK consist-
ing of non-negative counts. These counts are modeled
with negative-binomial regression from the covariates
x. The actual observations y are constructed by dis-
tributing the latent counts over the L observed features
by Dirichlet-multinomials. This formulation not only
naturally models overdispersed counts but also under-
dispersed counts; the observed count for yl is obtained
by summing over the subset of the K latent topics
that have non-negligible probability for generating to-
kens for that dimension, and this summation naturally
decreases the variance by a factor of the subset size.

The model, illustrated in Figure 1, is specified as

pnk =
eψnk

1 + eψnk
, ψnk = logit(pnk) = βTk xn + εnk,

εnk ∼ N(0, τ−1
k ), τk ∼ Gamma(f0, 1/g0),

znk ∼ NB(rk, pnk), ynj |tnj = k ∼ Mult(φk),

βk ∼
D∏
d=1

N(0, α−1
dk ), αdk ∼ Gamma(c0, 1/d0),

rk ∼ Gamma(a0, 1/hk), hk ∼ Gamma(b0, 1/e0),

φk ∼ Dir(γ), (2)

where a0, b0, c0, d0,e0,f0 and g0 are constant hyperpa-
rameters which we set to small values, n denotes the
sample and j indexes the items contained in each yn.
The additive Gaussian noise term εnk can be inter-
preted as lognormal noise for the NB distribution.

The crucial elements are the K NB regression models
that generate the latent counts znk from the covari-
ates, parameterized by the regression weights βk and
rates rk, and the K topic distributions that distribute
the counts over the observed dimensions yl, parame-
terized by φk. The auxiliary vectors tn ∈ [1, . . . ,K]yn

are introduced solely for inference purposes; these are
indicators telling the topic assignments of individual
tokens and the counts znk can be deterministically con-
structed as znk =

∑
I[tnj = k].

3.2 Inference

For inference we perform partially collapsed Gibbs
sampling, utilizing the auxiliary variable constructions
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Figure 1: Plate diagram of latent feature regression.
The covariates x are mapped into latent counts zk via
negative binomial regression using logistic transforma-
tion for pk = logistic(βTk x + εk), and the counts are
then distributed across the L output dimensions to
create y via token-assignment vectors t.

by Zhou and Carin [2012] for inferring βk and rk. Fol-
lowing Klami [2014], we also consider a model vari-
ant that omits the lognormal noise in (2) by setting
τk = ∞; this improves mixing since βk now directly
depends on z, but results in slightly slower updates
and different predictive distribution. The Gibbs up-
dates for both variants are provided in the Appendix.

The inference for znk is done by collapsing φk, but
conditional on rk and pnk. The variables znk are sam-
pled implicitly by re-sampling the token assignments
tnj of the current sample. We exclude one sample at
a time and pick a new token from a multinomial

p(tnj = k|ynj = w,−) ∝ rk + znk
1 + znk

pnk ·
γ +mkw

Lγ +mk.
,

where mkw is the number of tokens assigned to output
dimension w generated by topic k. The first part of
this term, including pnk, comes from arithmetic sim-
plification of ratio of NB densities, whereas the latter
corresponds to the Dirichlet-multinomial.

The computational complexity of the sampler is linear
as a function of K and N , and cubic as a function
of D due to inversion of the covariance of βk. Over-
all, the computational demand is roughly comparable
to learning K independent LGNB regression models
[Zhou et al., 2012]. For multivariate setups the model
is hence faster than LGNB when learning a reduced-
rank solution, especially for very high-dimensional out-
put spaces; our model has a running time independent
of L, whereas naive comparison methods need to be
run for each output dimensions separately. The sam-

pling of the token assignments, however, makes the
algorithm scale linearly in the total number of tokens;
in our experiments this was not a computational bot-
tleneck, but for extremely large counts the updates
could be done directly for z to improve speed.

3.3 Related Work

From the modeling perspective the work is most
closely related with the LGNB regression model by
Zhou et al. [2012], extending it to multivariate cases.
We use the core elements of LGNB for the first stage
of the model, for regressing from the covariates to the
latent variables, but additionally present inference de-
tails also for a related model that omits the lognormal
noise element. Besides extending LGNB for multivari-
ate regression, the proposed model is more accurate
also for univariate regression problems when the out-
puts are underdispersed, as will be shown in Section 4.

The existing multivariate regression models for count
data fall largely into the family of vector general-
ized linear models (VGLM) [Yee and Wild, 1996], and
their reduced-rank extensions [Yee and Hastie, 2003].
VGLMs are a very flexible family of tools, but based
on maximum likelihood estimation and lack robustness
compared to our Bayesian analysis. The same limi-
tation applies to the probabilistic multivariate count
models studied by Ghitany et al. [2012]; they learn
maximum likelihood estimate with expectation max-
imization. Ma et al. [2008] proposed also Bayesian
multivariate models, but only for two to three dimen-
sions and using inefficient generic MCMC sampling. In
the experiments we show how our model outperforms
non-regularized VGLM as well as regularized standard
GLMs applied for each output variable at a time; we
are not aware of regularized VGLMs.

The model is also an extension of Dirichlet-
multinomial regression (DMR) [Mimno and McCal-
lum, 2008]. The crucial difference is that our model
generates the actual observed counts instead of just the
relative frequencies, making it applicable for problems
where the counts themselves are required. To solve a
regression problem, DMR needs to be complemented
with a separate model for the total count, similar to
how standard topic models need a (non-informative)
model n ∼ Poisson(λ) to generate the total length.
In the experimental section we demonstrate such an
approach by combining their model with LGNB re-
gression for the total count and show that it does not
result in accurate predictions. This is, at least in part,
because of the gross simplifying assumption that the
total length is independent of the topic distribution,
but the gradient-based maximum a posterior estima-
tion for βk could also play a role. On the other hand,
DMR seems to typically result in sparser latent count
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Figure 2: The model allows the topic ratios to de-
pend on the total length of the document, so that
low-variance topics generate topics for almost all doc-
uments but never create very many of them, whereas
high-variance topics either do not generate any tokens
or generate several at once. Consequently, the latter
types dominate documents that are long. An example
of a low-variance topic would be one that generates
structural words (“keywords”, “abstract”, “citations”)
for scientific documents, whereas controversial topics
that can create length discussions could show up as
high-variance topics in analysis of online news com-
ments. For a regular topic model the ratios would be
constant lines, since they assume the topic probability
to be independent of the document length.

distributions compared to our model, which might be
beneficial in some applications.

4 MODEL PROPERTIES

Next we illustrate two basic properties of our model.
The first illustration is related to the interpretation of
the model as a topic model conditional on arbitrary
covariates. It demonstrates the difference between ex-
plicitly generating the counts of individual topics in-
stead of generating the total count of tokens (which is
usually left implicit in the topic modeling literature)
and then distributing the tokens into the topics accord-
ing to fixed topic proportions. Figure 2 shows how the
relative ratio for three topics with the same mean (each
generates on average 10 tokens) but different variance
behaves as a function of the total count. The high-
variance topic dominates for large total counts and the
low-variance one for small ones, as expected. For reg-
ular topic models the ratios would be constants of 1/3
irrespective of the total count. While that assumption
can hold in some applications, it is still a simplification
in the general case.

The second illustration shows how we can flexibly
model both under- and overdispersed count data.
While majority of the literature on modeling count
data is concentrated on proper treatment of overdis-
persed data, several practical data sources show under-

dispersion. This is the case especially when modeling
systems where an external agent balances the counts
by prior design or by actively reacting to the counts,
for example by opening new counters to reduce the
number of clients lining up for service. As another
example, the number of cars driving along a highway
during a rush hour is underdispersed; the count is high
but the variance is small because the road cannot ac-
commodate more cars than its soft capacity.

We illustrate the model on two simple artificial data
sets. Each of 100 data points is assigned to one of 4
different patterns so that the covariates for each pat-
tern are given as noise-corrupted one-hot codes and
each pattern generates observations for one output di-
mension. This implies that the output dimensions are
actually independent. We present results for two data
sets, one generating underdispersed counts using the
Conway-Maxwell-Poisson distribution, and the other
generating overdispersed data from NB distribution.
Figure 3 compares the proposed model in this task to
the alternative of learning 4 separate LGNB models,
one for each output dimension. For overdispersed data
LGNB is as accurate as our model, as is to be expected;
the problem consists of learning L independent models
and the data generating process matches the models.
For underdispersed data our model with large K out-
performs LGNB by distributing the generation process
across multiple topics.

5 MODELING PUBLIC
TRANSPORTATION VOLUME

Understanding and optimizing peoples mobility has
become a concern for cities authorities: the growing
traffic congestion and pollution has a significant im-
pact on the daily productivity and perceived quality
of life of citizens. Nowadays intelligent transportation
systems collect vast amounts of usage data, and they
routinely predict transportation demand at existing
stops and routes. However, such models are not help-
ful for estimating passenger counts on potential new
routes and/or stops, since they are ultimately based
on modeling the current mobility patterns.

In order to accurately understand the public trans-
portation demand, we need not only to know what
are the current flows but also what are the reasons
for these flows. Understanding activities that gener-
ate a demand for mobility can help build better mod-
els to predict demand at potential new routes and/or
stops; for example Gutierrez et al. [2011] predicted
metro transit counts from demographic properties of
the neighborhoods. Here, we consider service and
venue characteristics of the area surrounding the stop
and other stops that can be reached from this stop to
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Figure 3: Regression accuracy, measured by mean pre-
dictive likelihood averaged over 50 data sets for two
types of data. For overdispersed data (top) with L=4
independent dependent variables the latent feature re-
gression model reaches the accuracy of independent
LGNB models as soon as it has enough latent fea-
tures, as it should. For underdispersed data (bottom)
it outperforms LGNB already for K = 4, and the over-
complete solutions with K > L provide still higher ac-
curacy by reducing the variance of the predictions to
better match the data variance. The dashed lines indi-
cate one standard deviation in LFR accuracy relative
to LGNB.

understand it’s demand and to estimate roughly how
much information is contained in this partial view.

5.1 Data

We collected data from an undisclosed city during 21
days. We present the traffic volumes along 37 different
routes and 603 stops as 51-dimensional vectors y that
describe the number of passengers who boarded a bus
on that route at that stop during each 20-minute in-
terval between 5am and 10pm (the passenger volume
outside this window is negligible). We study the pre-
dictions at granularity of 20 minutes to make the com-
parison methods feasible; they would become compu-
tationally too heavy for smaller windows whereas our
method is independent of the window size and could
just as well make predictions on a minute scale.

For each stop we compute a 18-dimensional feature
vector that counts various places of interests within
a 200-meter radius of the stop; further tuning of the
radius might improve the overall accuracy, but would
be a side-issue for this paper. Two of the features
are based on the bus data itself, indicating the num-
ber of other bus stops and tram stops within the area

Table 1: Average counts of the Foursquare venue cat-
egories within 200 meters of each stop.
Foursquare category Average
Food 1.90
Home (private) 1.89
Shop & Service 1.77
Professional & Other Places 1.59
College & University 0.73
Nightlife Spot 0.61
Arts & Entertainment 0.48
Outdoors & Recreation 0.44
Residential Building 0.37
Bus Station 0.23
Hotel 0.19
Road 0.14
General Travel 0.02
Moving Target (food trucks etc.) 0.01
Train Station 0.01
Rental Car Location 0.01

(the tram routes are otherwise left out of the study),
while the remaining 16 features are counts of different
venue types crawled with the public Foursquare API,
listed in Table 1. We do not use any other information
about the venues besides the type and coordinates.
The raw counts were preprocessed into three levels
(“zero”, “few” and “many”), by mean thresholding of
the non-negative counts; we also tried simple logarith-
mic transformation that provided equivalent accuracy.

We want to model passenger volume for individual
bus lines at different stops, and hence we treat all
unique combinations of stops and routes (770 of them)
as individual samples. The full covariate representa-
tion for each of these is 74-dimensional and consists
of four parts: 18 dimensions to the feature vector of
the stop, 18 dimensions corresponding to the weighted
average of the feature vectors of other stops that can
be reached by entering the bus, 37 dimensions corre-
sponding to a binary encoding of the route identity,
and finally a single dimension telling how far along
the route the stop is (0=first stop, 1=the last stop).

The target features are estimated with a simple pro-
cedure that assumes people are less likely to do very
short trips. We assume that the probability of getting
out on each consecutive stop increases linearly until
saturating after 5 stops. This part could be improved
by learning the behavior from observed trips.

5.2 Experimental setup

The goal of our model is to predict transportation vol-
ume for route and stop combinations for which no
training data is available, and hence the prediction
power must come from the covariates. For this purpose
we randomly split the data into training and test data
in a stratified fashion that leaves roughly the same ra-

467



Klami, Tripathi, Sirola, Väre, Roulland

tio of stops along each route unobserved. Furthermore,
we train the model using data of different days than
what is being used for testing, to avoid using any part
of the test data for training.

We train the model using data of only one day and
test on the data of the same weekday during other
weeks, using 385 of the 770 unique stop and route com-
binations for training and the rest for testing. This
is effectively the hardest possible prediction setup for
this application; we only observe the number of pas-
sengers during a single day on half of the stop-route -
combinations and need to predict the passenger counts
for stops for which we have no training data, purely
based on the surroundings. We average results over 25
independent runs (5 random splits for each weekday)
to make sure the findings are consistent.

We compare the two alternative variants (with and
without the noise term εnk) of the proposed model
(called LFR for latent feature regression) against five
alternative strategies. The first two are univariate
strategies applied independently for each output di-
mension, whereas the remaining three are multivari-
ate solutions based on reduced-rank representation.
For the samplers we discard the first 1000 samples as
burn-in, and then sample for 1000 iterations keeping
every 10th sample. The optimization-based models are
learned until convergence.

1. LGNB regression model by Zhou et al. [2012], ran
independently for each of the L dimensions.

2. Generalized linear model with Poisson likelihood
with elastic net regularization, using the glmnet

R package. This represents a standard univariate
regression model that does not allow overdisper-
sion but is regularized to prevent overfitting.

3. Reduced-rank vector generalized linear model
(RR-VGLM) with Poisson likelihood, using the
VGAM R package [Yee and Hastie, 2003]. We re-
port the results for the best rank, which was 2;
with 3 the method already severely overfits.

4. Gaussian latent feature regression as implemented
in the CCAGFA R package using Bayesian formu-
lation for canonical correlation analysis [Klami
et al., 2013]. As pointed out by Breiman and
Friedman [1997], CCA can be interpreted as
deduced-rank regression, and its Bayesian vari-
ant is hence a fair comparison. We apply the
model with and without log-transforming the
data, rounding the predictions to get counts.

5. The DMR topic model [Mimno and McCallum,
2008] combined with LGNB regression [Zhou
et al., 2012] for the total count of passengers for

each sample. This represents one way of solving
the problem with a more conventional topic mod-
eling approach. It is worthwhile to note that the
full model combining the topic model with the
LGNB regression has not been presented before.

5.3 Results

We measure the error using two criteria. The first cri-
terion is normalized mean square error (nMSE; nor-
malized so that 1 corresponds to the variance of the
data). It measures the overall accuracy, but ignores
the uncertainty. The error is computed for the robust
mean estimate (discarding the bottom and top 10%
quantiles) of the predictive distributions.

The second criterion is predictive likelihood. To cope
with potentially large counts (for which the probability
is small for all methods), we measure the likelihoods
for re-discretized counts with bins 0, 1, 2−3, 4−7, 8−
15, and so on. Furthermore, we report the accuracy for
only the non-zero counts in the observed data, to avoid
having the zeroes dominate the error measure (73% of
the true counts are zero). For a good score in this
measure, the method needs to assign high posterior
probability for the right values and hence needs to also
account for the variance of the predictions.

Figure 4 shows that in terms of mean prediction, RR-
VGLM is the most accurate method followed by the
two LFR variants. In terms of predictive likelihood the
LRF models are by far the best, followed by CCA and
LGNB+DMR, and hence best capture the whole pre-
dictive distribution. One notable observation is that
both LFR variant are fragile for large K; even though
the best likelihood is obtained with K ≥ 128, the mean
predictions are off for many folds due to rare cases
with extremely large predictions caused by pnk ≈ 1.
In practical use this could be avoided by truncation.

The combination of LGNB and DMR is conceptually
close to LFR, but not as accurate. This is in part
because learning the total count is hard; LGNB pre-
dicting directly the daily count has nMSE of 0.45 com-
pared to 0.38 obtained by summing over the 20-minute
predictions of our LFR model (with K = 32). LFR
solves even this auxiliary problem of predicting the to-
tal daily count better than direct regression, by learn-
ing the sub-processes that explain the demand.

6 DISCUSSION

Even though count data is frequent in numerous appli-
cations and generalized linear models provide easy-to-
use tools for modeling them, there has been surpris-
ingly little work on multivariate regression on count
data; we are only aware of vector generalized linear
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Figure 4: Performance on the public transportation
data, shown as 10%, 50% and 90% quantiles over the
25 independent runs. The proposed method outper-
forms the comparisons clearly in log-likelihood (bot-
tom plot), but RR-VGLM is more accurate in terms
of the mean-square error (top plot). The lognormal
noise variant (black line) has slightly better likelihood,
but somewhat worse mean prediction compared to the
other variant (red line; τ =∞). For LGNB+DMR we
report the results for the best K; it is almost insensi-
tive to this choice due to the LGNB part dominating
the accuracy.

models by Yee and Wild [1996], their reduced-rank
extensions [Yee and Hastie, 2003], and Bayesian solu-
tions for low dimensionality [Ma et al., 2008].

To create a practical multivariate count regression
method, we proposed a latent feature model that
builds on recent Bayesian inference tools for nega-
tive binomial models [Zhou et al., 2012, Polson et al.,
2013], and showed that it outperforms alternative
solutions in modeling public transportation volume.
The model could be further improved by using zero-
inflation for the regression layer to improve sparsity
and interpretability of the latent features. Reliable
automatic method for selecting K would also be desir-
able; the priors on r and β prune out excess compo-
nents (for K = 256 roughly half of the latent features
become identically zero and the result is comparable
to K = 128), but the large-K solutions are less robust
than those with smaller K. For some folds they made
large mistakes for some individual samples.

From another perspective, the model can be inter-
preted as an extension of the topic model conditioned
on auxiliary features by Mimno and McCallum [2008].

Of particular interest is the idea of relaxing indepen-
dence between document length and topic weights,
which could be extended from the covariate-based
model presented here to topic models in more general.
Zhou and Carin [2012, 2015] touched the same issue
by presenting topic models that assume negative bino-
mial counts, but their inference strategy re-introduces
the independence by treating the NB distribution as
a mixture of Poisson distributions where the Poisson
rates are explicitly instantiated.

We managed to capture 35% of the variance in pas-
senger counts by regressing on a fairly simple static
characterization, despite several simplifying assump-
tions like ignoring the schedules of the routes. For
proper modeling of public transportation demand the
predictive elements presented here need to be coupled
with other kinds of models; the state-of-the-art in de-
mand modeling today ignores the static surroundings.
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Appendix: Gibbs updates

The conditional distributions required for updating
the regression part of (2) are provided by

(rk|−) ∼ G
(
a0 +

N∑
n=1

lnk,
1

hk +
∑N
n=1 ln(1 + eψnk)

)
,

(lnk|−) ∼ CRT(znk, rk),

(hk|−) ∼ G(a0 + b0, 1/(e0 + rk)),

(αdk|−) ∼ G(c0 + 1/2, 1/(d0 + β2
dk/2)),

(βk|−) ∼ N(mk,Vk),

(ψk|−) ∼ N(µk,Σk),

(τk|−) ∼ G
(
f0 +

N

2
,

1

g0 + ‖ψk −Xβk‖22/2

)
,

(ωnk|−) ∼ PG(znk + rk, ψnk),

where ψk = [ψ1k, ..., ψNk]T , Ωk = diag(ω1k, ..., ωNk),
Ak = diag(α1k, ..., αDk), ξk = [(z1k− rk)/2, ..., (zNk−
rk)/2]T , Vk = (τkX

TX + Ak)−1, mk = τkVkX
Tψk,

Σk = (τkI+Ωk)−1 and µk = Σk(ξk+τkXβk). Finally,
CRT(znk, rk) denotes the distribution of the number
of tables znk customers use in a Chinese restaurant
process with concentration parameter rk; see Zhou and
Carin [2012] for details. In the alternative model where
the lognormal noise element is omitted the parameters
of the conditional of βk are instead given by Vk =
(XTΩkX + Ak)−1 and mk = VkX

T ξk.
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