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Abstract

We show that a simple modification of the
1-nearest neighbor classifier yields a strongly
Bayes consistent learner. Prior to this work, the
only strongly Bayes consistent proximity-based
method was the k-nearest neighbor classifier, for
k growing appropriately with sample size. We
will argue that a margin-regularized 1-NN en-
joys considerable statistical and algorithmic ad-
vantages over the k-NN classifier. These in-
clude user-friendly finite-sample error bounds, as
well as time- and memory-efficient learning and
test-point evaluation algorithms with a principled
speed-accuracy tradeoff. Encouraging empirical
results are reported.

1 Introduction

The nearest neighbor (NN) classifier, introduced by Fix
and Hodges in 1951, continues to be a popular learning
algorithm among practitioners. Despite the numerous so-
phisticated techniques developed in recent years, this de-
ceptively simple method continues to “yield[] competitive
results” (Weinberger and Saul, 2009) and inspire papers
in “defense of nearest-neighbor based [. . . ] classification”
(Boiman et al., 2008).

In the sixty years since the introduction of the nearest
neighbor paradigm, a large amount of theory has been de-
veloped for analyzing this surprisingly effective classifica-
tion method. The first such analysis is due to Cover and
Hart (1967), who showed that as the sample size grows,
the 1-NN classifier almost surely approaches an error rate
R ∈ [R∗, 2R∗(1 − R∗)], where R∗ is the Bayes-optimal
risk. Although the 1-NN classifier is not in general Bayes
consistent, taking a majority vote among the k nearest
neighbors does guarantee strong Bayes consistency, pro-
vided that k increases appropriately in sample size (Stone,
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1977; Devroye and Györfi, 1985; Zhao, 1987).

The k-NN classifier in some sense addresses the Bayes
consistency problem, but presents issues of its own. A
naive implementation involves storing the entire sample,
over which a linear-time search is performed when answer-
ing queries on test points. For large samples sizes, this ap-
proach is prohibitively expensive in terms of storage mem-
ory and computational runtime. To mitigate the memory
concern, various condensing heuristics have been proposed
(Hart, 1968; Gates, 1972; Ritter et al., 1975; Wilson and
Martinez, 2000; Gottlieb et al., 2014b) — of which only
the one in Gottlieb et al. (2014b) comes with any rigorous
compression guarantees, and only for k = 1; moreover, it
is shown therein that the condensing problem is ill-posed
for k > 1. Query evaluation on test points may be signifi-
cantly sped up via an approximate nearest neighbor search
(Krauthgamer and Lee, 2004; Beygelzimer et al., 2006; An-
doni and Indyk, 2008; Gottlieb et al., 2010). The price one
pays for the fast approximate search is a degraded classifi-
cation accuracy, and of the works cited, only Gottlieb et al.
(2010) quantifies this tradeoff — and again, only for 1-NN.

On the statistical front, one desires a classifier that provides
an easily computable usable finite-sample generalization
bound — one that the learner can evaluate based only on
the observed sample so as to obtain a high-confidence er-
ror estimate. As we argue below, existing k-NN bounds fall
short of this desideratum, and the few known usable bounds
given in von Luxburg and Bousquet (2004); Gottlieb et al.
(2010, 2014b) are all for k = 1.

Motivated by the computational and statistical advantages
that 1-NN seems to enjoy over k-NN, this paper presents a
strongly Bayes consistent 1-NN classifier.

Main results. Our results build on the work of Gottlieb
et al. (2010) and, more recently, Gottlieb et al. (2014b).
Suppose we are given an iid training sample S consisting of
n labeled points (Xi, Yi), with Xi residing in some metric
space X and Yi ∈ {−1, 1}. For ε, γ > 0, let us say that S
is (ε, γ)-separable if there is a sub-sample S̃ ⊂ S such that

(i) the 1-NN classifier induced by S̃ mislabels at most εn
points in S and

(ii) every pair of opposite-labeled points in S̃ is at least γ
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apart in distance.

Obviously, a given sample S cannot be (ε, γ)-separable for
ε arbitrarily small and γ arbitrarily large. Every γ > 0 de-
termines some minimum feasible ε∗ = ε∗(γ) and a corre-
sponding ε∗-consistent, γ-separable sub-sample S∗(γ) ⊂
S.

Margin-based generalization bounds were presented in
Gottlieb et al. (2010, 2014b), with ε corresponding to em-
pirical error and γ to the margin. Schematically, these
bounds are of the form

gen-errn(ε, γ) ≤ empiricaln(ε, γ) + complexityn(γ), (1)

where gen-err is the generalization error of the 1-NN clas-
sifier induced by an ε-consistent, γ-separable S̃ ⊂ S, and
the two terms on the right-hand side correspond roughly
to sample error and hypothesis complexity. The approach
proposed in Gottlieb et al. (2010, 2014b) suggests comput-
ing ε∗(γ) for each γ > 0 and minimizing the right-hand
side of (1) over γ to obtain γ∗n. Indeed, the chief techni-
cal contribution of those works consisted of providing ef-
ficient algorithms for computing ε∗(γ), S∗(γ), and γ∗n. In
contrast, the present paper deals with the statistical aspects
of this procedure. Our main contribution is Theorem 2,
which shows that the 1-NN classifier induced by S∗(γ∗n) is
strongly Bayes consistent. Denoting this classifier by hn,
our main result is formally stated as follows:

P (hn(X) 6= Y | (X1, Y1), . . . , (Xn, Yn))
a.s.−→
n→∞

R∗,

where
R∗ = inf

h:X→{−1,1}
P(h(X) 6= Y )

is the Bayes-optimal error. This is the first consistency re-
sult (strong or otherwise) for an algorithmically efficient
1-NN classifier.

Related work. Following the pioneering work of Cover
and Hart (1967), it was shown by Devroye and Györfi
(1985); Zhao (1987) that the k-NN classifier is strongly
Bayes consistent. A representative result for the Euclidean
space X = Rd states that if k →∞ and k/n→ 0, then for
all ε > 0 and n > n0(ε, k),

P(R(hk-NN) > R∗ + ε) ≤ 2 exp

(
− nε2

5184κ2d

)
, (2)

where κd <
(

1 + 2/
√

2−
√

3
)d

is the minimum num-

ber of origin-centered cones of angle π/6 that cover Rd
(this result, among many others, is proved in Devroye et al.
(1996)). Given the inherently Euclidean nature of κd, (2)
does not seem to readily extend to more general metric
spaces. It was (essentially) shown in Shalev-Shwartz and
Ben-David (2014) that

E[R(hk-NN)] ≤
(

1 +
√

8/k
)
R∗ + (6L+ k)n−1/(d+1) (3)

for metric spaces X with unit diameter and doubling di-
mension d (defined below), where L is the Lipschitz con-
stant of η : X → [0, 1] defined by η(x) = P(Y = 1 |X =
x). Recently, some of the classic results on k-NN risk de-
cay rates were refined by Chaudhuri and Dasgupta (2014)
in an analysis that captures the interplay between the metric
and the sampling distribution.

Although (2,3) are both finite-sample bounds, they do not
enable a practitioner to compute a numerical generaliza-
tion error estimate for a given training sample. Both are
stated in terms of the unknown Bayes-optimal rate R∗, and
(3) additionally depends on L, a property of the unknown
distribution. In particular, (2) and (3) do not allow for a
data-dependent selection of k, which must be tuned via
cross-validation. The asymptotic expansions in Snapp and
Venkatesh (1998); Psaltis et al. (1994) likewise do not pro-
vide a computable finite-sample bound.

An entire chapter in Devroye et al. (1996) is devoted to
condensed and edited NN rules. In the terminology of this
paper, this amounts to extracting a sub-sample S̃ and pre-
dicting via the 1-NN classifier induced by that S̃. Assum-
ing a certain sample compression rate and an oracle for
choosing an optimal fixed-size S̃, this scheme is shown
to be weakly Bayes consistent. The generalizing power
of sample compression was independently discovered by
Littlestone and Warmuth (1986), and later elaborated upon
by Graepel et al. (2005). In the context of NN classifica-
tion, Devroye et al. (1996) list various condensing heuris-
tics (which have no known performance guarantees) and
also leaves open the algorithmic question how to minimize
the empirical loss over all subsets of a given size.

The first substantial departure from the k-NN paradigm
was proposed by von Luxburg and Bousquet (2004), with
the straightforward but far-reaching observation that the 1-
NN classifier is, in some sense, equivalent to interpreting
the labeled sample {(Xi, Yi) : i ∈ [n]} as n evaluations of
a real-valued target function f , computing its Lipschitz ex-
tension f∗ from the sample points to all of X , and then
classifying test points by sign(f∗(·)). Following up, Got-
tlieb et al. (2010) obtained bounds on the fat-shattering
dimension of Lipschitz functions in doubling spaces and
gave margin-based risk bounds decaying as Õ(n−1/2) as
opposed to n−1/d. More recently, the existence of a mar-
gin was leveraged to give nearly optimal sample compres-
sion bounds, with corresponding generalization guaran-
tees (Gottlieb et al., 2014b).

2 Preliminaries

Metric spaces. Throughout this paper, our instance space
X will be endowed with a bounded metric ρ, which we will
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normalize to have unit diameter1:

diam(X ) := sup
x,x′∈X

ρ(x, x′) = 1.

A function f : X → R is said to be L-Lipschitz if
|f(x)− f(x′)| ≤ Lρ(x, x′) for all x, x′ ∈ X . The Lip-
schitz constant of f , denoted ‖f‖Lip, is the smallest L for
which f is L-Lipschitz. The collection of all L-Lipschitz
f : X → [−1, 1] will be denoted by FL. The distance
between two sets A,B ⊂ X is defined by ρ(A,B) =
infx∈A,x′∈B ρ(x, x′).

For a metric space (X , ρ), let λ be the smallest value such
that every ball in X can be covered by λ balls of half the ra-
dius. The doubling dimension of X is ddim(X ) := log2 λ.
A metric is doubling when its doubling dimension is finite.
We will denote d := ddim(X ) <∞.

Learning model. We work in the standard agnostic
learning model (Mohri et al., 2012; Shalev-Shwartz and
Ben-David, 2014), whereby the learner receives a sample S
consisting of n labeled examples (Xi, Yi), drawn iid from
an unknown distribution over X ×{−1, 1}. All subsequent
probabilities and expectations will be with respect to this
distribution. Based on the training sample S, the learner
produces a hypothesis h : X → {−1, 1}, whose empir-
ical error is defined by R̂n(h) = n−1

∑n
i=1 1{h(Xi) 6=Yi}

and whose generalization error is defined by R(h) =
P(h(X) 6= Y ). The Bayes-optimal classifier, h∗, is defined
by

h∗(x) = argmax
y∈{−1,1}

P(Y = y |X = x)

and
R∗ := R(h∗) = inf {R(h)} ,

where the infimum is over all measurable hypotheses. A
learning algorithm mapping a sample S of size n to a
hypothesis hn is said to be strongly Bayes consistent if
R(hn) −→

n→∞
R∗ almost surely.

Sub-sample, margin, and induced 1-NN. In a slight
abuse of notation, we will blur the distinction between
S ⊂ X as a collection of points in a metric space and
S ∈ (X × {−1, 1})n as a sequence of labeled examples.
Thus, the notion of a sub-sample S̃ ⊂ S partitioned into its
positively and negatively labeled subsets as S̃ = S̃+ ∪ S̃−
is well-defined. The margin of S̃, defined by

marg(S̃) = ρ(S̃+, S̃−),

is the minimum distance between a pair of opposite-labeled
points (see Fig. 1). A sub-sample S̃ naturally induces the

1This assumption is not really restrictive, as any finite sam-
ple will be contained in some ball. The situation is analogous to
margin-based analysis of Euclidean hyperplanes, where the quan-
tity of interest is the ratio between data diameter and geometric
margin.

+

−

+

−

+
+

−

−

−

marg(S) marg(S̃)

Figure 1: In this example, the sub-sample S̃ ⊂ S is
indicated by double circles. It is always the case that
marg(S̃) ≥ marg(S).

1-NN classifier hS̃ , via

hS̃(x) = sign(ρ(x, S̃−)− ρ(x, S̃+)).

Margin risk. For a given sample S of size n, any γ > 0
and measurable f : X → R, we define the margin risk

Rγ(f) = P(Y f(X) < γ)

and its empirical version

R̂n,γ(f) =
1

n

n∑
i=1

1{Yif(Xi)<γ}.

When γ = 0, we omit it from the subscript; thus, e.g.,
R(f) = P(Y f(X) < 0), which agrees with our previous
definitions of R(h) and R̂n(h) for binary-valued h.

3 Learning Algorithm: Regularized 1-NN

This section is provided to cast known results (or their mi-
nor modifications) in the terminology of this paper. As
the main contribution of this paper is a Bayes-consistency
analysis of a particular learning algorithm, we must first
provide the details of the latter. The learning algorithm
in question is essentially the one given in Gottlieb et al.
(2010). Our point of departure is the connection made by
von Luxburg and Bousquet (2004) between Lipschitz func-
tions and 1-NN classifiers.

Theorem 1 (von Luxburg and Bousquet (2004)). If S̃ is a
sub-sample with marg(S̃) ≥ γ, then there is an f ∈ F2

such that
hS̃(x) = sign(f(x))

for all x ∈ X . More explicitly, f ∈ F2 is a Lipschitz
extension of S̃, satisfying

f(x) = fS̃(x) =

{
+γ, if x ∈ S̃+

−γ, if x ∈ S̃−.
(4)

We will only consider members of F2 that are Lipschitz-
extensions of γ-separable sub-samples and will never need
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to actually calculate these explicitly; their only purpose
is to facilitate the analysis. In line with the Structural
Risk Minimization (SRM) paradigm, our learning algo-
rithm consists of minimizing the penalized margin risk,

R̂PEN
n,γ(f) = R̂n,γ(f) + rPEN(n, γ), (5)

where

rPEN(n, γ) =
4

γ

(cd
n

) 1
2(d+1)

(6)

+

√
c1
d+1 log (n/cd) + 2c1 log log 2e

γ

n

and c1, cd are explicitly computable constants, the latter
depending only on d. The form of the penalty term (which
is different from the penalty term in Gottlieb et al. (2010))
will be motivated by the analysis in the sequel.

This optimization is performed via two nested routines: the
inner one minimizes R̂PEN

n,γ(f) over f ∈ F2 for a fixed γ,
while the outer one minimizes over γ > 0. Since this is
a very slight modification of the SRM procedure proposed
and analyzed in Gottlieb et al. (2010), we will give a high-
level sketch.

Inner routine: optimizing over f ∈ F2. By Theorem 1,
minimizing R̂PEN

n,γ(f) over f ∈ F2 for a fixed γ is equiva-
lent to seeking a γ-separable S̃ ⊂ S whose induced 1-NN
classifier hS̃ makes the fewest mistakes on S (see Algo-
rithm 1). The algorithm invokes a minimum vertex cover
routine, which by König’s theorem is equivalent to max-
imum matching for bipartite graphs, and is computable in
randomized timeO(n2.376) (Mucha and Sankowski, 2004).

Algorithm 1 minimizing R̂PEN
n,γ(f) over f ∈F2 for fixed γ

1: function INNER(S,γ)
2: construct bipartite graph G = (S+, S−, E) with

E = {(x, x′) : x ∈ S+, x
′ ∈ S−, ρ(x, x′) < γ}

3: compute minimum vertex cover C for G
4: return S̃ = S \ C
5: end function

Outer loop: minimizing over γ > 0. Although γ takes
on a continuum of values, we need only consider those in-
duced by distances between opposite-labeled points in S,
of which there are O(n2). For each candidate γ, Algo-
rithm 1 computes the optimal f∗n,γ ∈ F2. Let γ∗n be a min-
imizer of R̂PEN

n,γ(f∗n,γ), with corresponding f∗n := f∗n,γ∗n :

R̂PEN
n,∗ := inf

γ>0
inf
f∈F2

R̂PEN
n,γ(f)

= inf
γ>0

R̂PEN
n,γ(f∗n,γ)

= R̂PEN
n,γ∗n

(f∗n).

(7)

γ

1

γ(1−ξ)
u

Φγ,ξ(u)

Figure 2: The surrogate loss function.

The total runtime for computing γ∗n and f∗n is O(n4.376),
which may be considerably sped up if one is willing to tol-
erate a small approximation factor (Gottlieb et al., 2010,
2014a).

4 Consistency proof

We now prove the main technical result of the paper:

Theorem 2. With probability one over the random sample
S of size n,

lim
n→∞

R(f∗n) = R∗.

We will break it up into high-level steps. The basic plan is
standard: decompose the excess risk into two terms,

R(f∗n)−R∗ =
(
R(f∗n)− R̂PEN

n,∗

)
+
(
R̂PEN
n,∗ −R∗

)
= (I) + (II), (8)

and show that each decays to 0 almost surely. For con-
venience, the notation used in the proof is summarized in
Table 1. All omitted proofs are given in the Appendix.

4.1 The term (I)

In order to connect R̂PEN
n,∗ andR(f∗n) we first need a concen-

tration bound. More specifically, since R̂PEN
n,∗ involves the

optimal margin γ∗n (which is a priori unknown), we would
like to prove for each γ > 0 a deviation estimate on

|Rγ(f)− R̂n,γ(f)|,

uniformly over all f ∈ F2. We find it most convenient to
do this using Rademacher complexities2, but these require
a loss that is Lipschitz-continuous in γ — and R̂n,γ(f) is
not even continuous (it is lower-semicontinuous in γ for a
fixed f ). We overcome this technical hurdle by introducing
a surrogate loss Φγ,ξ and corresponding surrogate risk Lγ,ξ
as follows.

2An alternative, though somewhat messier route, would be to
use fat-shattering dimension, as in Gottlieb et al. (2010).
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symbol meaning formally Eq.
Rγ(f) γ-margin risk P(Y f(X) < γ)

R̂n,γ(f) empirical γ-margin risk 1
n

∑n
i=1 1{Yif(Xi)<γ}

R̂PEN
n,γ(f) penalized empirical γ-margin risk R̂n,γ(f) + rPEN(n, γ) (5,6)

R̂PEN
n,∗ optimal penalized empirical risk infγ>0 inff∈F2

R̂PEN
n,γ(f) (7)

f∗n,γ optimal f ∈ F2 for a fixed γ R̂PEN
n,γ(f∗n,γ) = inff∈F2 R̂

PEN
n,γ(f) (7)

γ∗n, f∗n optimal margin and optimal f ∈ F2 R̂PEN
n,∗ = R̂PEN

n,γ∗n
(f∗n) (7)

Lγ,ξ(f) surrogate risk E
[
Φγ,ξ(Y f(X))

]
(10)

L̂n,γ,ξ(f) empirical surrogate risk 1
n

∑n
i=1 Φγ,ξ(Yif(Xi)) (10)

Table 1: A summary of the notation.

Surrogate loss. For 0 < γ, ξ ≤ 1 define the surrogate
loss function Φγ,ξ(u) : R→ [0, 1]

Φγ,ξ(u) =

 1 if u ≤ γ(1− ξ),
0 if u ≥ γ,
(γ − u)/(γξ) otherwise,

(9)

illustrated in Figure 2, and its associated expected and em-
pirical surrogate risks,

Lγ,ξ(f) = E
[
Φγ,ξ(Y f(X))

]
,

L̂n,γ,ξ(f) =
1

n

n∑
i=1

Φγ,ξ(Yif(Xi)).
(10)

At this point, it appears as though we have two free param-
eters: γ and ξ. However, we will tie them together via a
common (double) stratification scheme. For n, l ∈ N put

γn,l = (1− ξn)
l−1

, ξn = 1/nd (11)

εn,l =
2

γn,lξnn2d
+

√√√√2c1 log
(

1
ξn

log e
γn,l

)
n

, (12)

where

nd =

(
n

cd

) 1
2(d+1)

. (13)

This enables us to obtain a uniform deviation estimate:

Lemma 3. For all n ∈ N and ε > 0,

P
(
∃l ∈ N : sup

f∈F2

∣∣∣Lγn,l,ξn(f)− L̂n,γn,l,ξn(f)
∣∣∣ > ε+ εn,l

)
≤ π2

6
exp

(
−nε

2

c1

)
.

Armed with this uniform deviation bound, we proceed with
the proof that the term (I) decays to zero almost surely. By
Theorem 1 we may assume that f∗n ∈ F2 is in the form

of (4) with γ = γ∗n being the optimal margin. Given γ∗n,
let l−n , l

+
n ∈ N be the consecutive margin indexes in the

stratification grid (11) such that

∀n ∈ N, γ∗n ∈ [γn,l−n , γn,l+n ), l−n = l+n + 1

and abbreviate γ+n = γn,l+n and γ−n = γn,l−n .We now relate
the margin risks to the surrogate risks. Note that since 0 ≤
γ−n ≤ γ∗n ≤ γ+n , we have

R(f∗n) ≤ Lγ−n ,ξn(f∗n),

R̂n,γ∗n(f∗n) ≥ L̂n,γ−n ,ξn(f∗n),

rPEN(n, γ∗n) ≥ rPEN(n, γ+n ).

Thus,

(*) := P
(
R(f∗n)− R̂PEN

n,∗ > ε
)

= P
(
R(f∗n)− R̂n,γ∗n(f∗n)− rPEN(n, γ∗n) > ε

)
.

≤ P
(
Lγ−n ,ξn(f∗n)− L̂n,γ−n ,ξn(f∗n)

> ε+ rPEN(n, γ+n )
)
,

and since f∗n ∈ F2, we have

(*) ≤ P
(

sup
f∈F2

∣∣∣Lγ−n ,ξn(f)− L̂n,γ−n ,ξn(f)
∣∣∣

> ε+ rPEN(n, γ+n )
)

≤ P
(
∃l ≥ 2 : sup

f∈F2

∣∣∣Lγn,l,ξn(f)− L̂n,γn,l,ξn(f)
∣∣∣

> ε+ rPEN(n, γn,l−1)
)
.

Next, we make a connection between rPEN(n, γn,l−1) and
εn,l, justifying the form of the penalty term in (6):

Lemma 4. For all l ≥ 2 and all n sufficiently large,

rPEN(n, γn,l−1) ≥ εn,l.
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An application of Lemma 4 yields

(*) ≤ P
(
∃l ≥ 2 : sup

f∈F2

∣∣∣Lγn,l,ξn(f)− L̂n,γn,l,ξn(f)
∣∣∣

> ε+ εn,l

)
≤ π2

6
exp

(
−nε

2

c1

)
,

where the last inequality follows from Lemma 3.

4.2 The term (II)

We begin by approximating the Bayes optimal risk by the
margin risk:

Lemma 5. For every ε > 0 there is a γ > 0 such that

inf
f∈F2

Rγ(f)−R∗ < ε.

In particular,

R∗ = lim
γ→0

inf
f∈F2

Rγ(f). (14)

Since (14) holds for any sequence γn −→
n→∞

0, it is true in
particular of subsequences of the stratification grid (11).
Hence, for all ε > 0, there is a γ̃+ with a corresponding
f̃+ ∈ F2 such that

inf
f∈F2

Rγ̃+(f) ≤ R∗ + ε/8,

Rγ̃+(f̃+) ≤ inf
f∈F2

Rγ̃+(f) + ε/8.

Fix such a γ̃+ and let γ̃− be the “next” margin in the strati-
fication (11). Now by (7), Algorithm 1 provides an optimal
f∗n such that

R̂PEN
n,∗ = R̂PEN

n,γ∗n
(f∗n) ≤ R̂PEN

n,γ̃−(f∗n,γ̃−) ≤ R̂PEN
n,γ̃−(f̃+).

Hence, for the term (II) we have

(**) := P
(
R̂PEN
n,∗ −R∗ > ε

)
≤ P

(
R̂PEN
n,∗ −Rγ̃+(f̃+) > 3ε/4

)
≤ P

(
R̂n,γ̃−(f̃+)−Rγ̃+(f̃+)

> 3ε/4− rPEN(n, γ̃−)
)
.

Next, note that the margin loss Rγ̃+(·) is well-
approximated by surrogate losses:

Lemma 6. For every γ > 0 and f ∈ F2

lim
n→∞

|Lγ,ξn(f)−Rγ(f)| = 0. (15)

−2 −1 0 1 2
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2
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Figure 3: The distribution for A = 5 and ω = 3.

Hence, we may take n sufficiently large so that∣∣∣Lγ̃+,ξn(f̃+)−Rγ̃+(f̃+)
∣∣∣ ≤ ε/4.

Since by construction,

γn,l+1

γn,l
= 1− ξn, ∀l ∈ N,

it follows that γ̃− = γ̃+(1− ξn) and thus

R̂n,γ̃−(f̃+) ≤ L̂n,γ̃+,ξn(f̃+).

Taking n sufficiently large to ensure rPEN(n, γ̃−) ≤ ε/4
and combining these estimates yields

(**) ≤ P
(
L̂n,γ̃+,ξn(f̃+)− Lγ̃+,ξn(f̃+) > ε/4

)
≤ P

(
sup
f∈F2

∣∣∣L̂n,γ̃+,ξn(f)− Lγ̃+,ξn(f)
∣∣∣ > ε/4

)
≤ ce−

nε2

16c1 ,

analogously to the bound on term (I).

5 Experiments

We ran simulations with a twofold purpose: (a) to ascertain
the convergence of various classifier risks to the Bayes opti-
mal risk and to compare their rates of convergence and (b)
to compare the actual runtimes of the various algorithms.
To this end, we took X = R2 endowed with the Euclidean
metric ρ(x, x′) = ‖x − x′‖2, and defined a joint distribu-
tion over X ×{−1, 1} as follows. A point (x1, x2) ∈ R2 is
sampled by drawing T ∈ [0, 2π] uniformly at random and
putting

x1(T ) = A
√
T cos(ωT ),

x2(T ) = A
√
T sin(ωT )
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Figure 4: Generalization error vs. number of samples. CV-
1-NN is uniformly dominant, but for large sample sizes
SRM-1-NN catches up. Unregularized 1-NN is included
for reference; it is clearly not Bayes consistent.

for some specified parameters A and ω. The label Y ∈
{−1, 1} is drawn according to the conditional distribution

η(T ) = P(Y = 1 |T ) =
1 + cos(ωT )

2
,

as illustrated in Figure 3.

We compared four classifiers: k∗-NN (the k-NN classi-
fier with k optimized by cross-validation), SVM (support
vector machine with the RBF kernel whose bandwidth and
regularization penalty were optimized by cross-validation),
CV-1-NN (margin-regularized 1-NN with γ tuned by cross-
validation), and SRM-1-NN (the 1-NN classifier described
in Section 3 using a greedy vertex cover heuristic rather
than the exact matching algorithm while searching for the
optimal margin). Their runtime and generalization perfor-
mance, averaged over 100 independent runs, are summa-
rized in Figures 4 and 5.

Our proposed algorithm, SRM-1-NN, emerges competitive
by both criteria.

A Appendix

A.1 Proof of Lemma 3

We first need the following uniform convergence lemma.
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Figure 5: Running time vs. number of samples. SRM-1-
NN enjoys a clear time advantage over the other methods
involving cross-validation.

Lemma 7. For any 0 < ε, 0 < ξ < 1 and 0 < γ,

P
(

sup
f∈F2

∣∣∣Lγ,ξ(f)− L̂n,γ,ξ(f)
∣∣∣ (16)

> 2Rn(Lγ,ξ ◦ F2) + ε
)
≤ exp

(
−nε2/c1

)
,

where the Rademacher complexityRn(Lγ,ξ ◦ F2) satisfies

Rn(Lγ,ξ ◦ F2) ≤ 2

γξ

(cd
n

) 1
d+1

=: Rn,γ,ξ. (17)

Proof of Lemma 7. Equation (16) is restatement of Mohri
et al. (2012, Theorem 3.1). Note that Φγ,ξ : R → [0, 1] is
1/(γξ)-Lipschitz. Thus, by Talagrand’s contraction lemma
(Ledoux and Talagrand, 1991),

Rn(Lγ,ξ ◦ F2) ≤ 2

γξ
Rn(F1).

The upper estimate on Rn(F1) implicit in (17) is essen-
tially contained in Equation (10) of Kontorovich and Weiss
(2014).

Proof of Lemma 3. Following proof idea in Devroye et al.
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(1996, Theorem 18.2), a union bound yields

(***) := P
(
∃l ∈ N : sup

f∈F2

∣∣∣Lγn,l,ξn(f)− L̂n,γn,l,ξn(f)
∣∣∣

> ε+ εn,l

)
≤
∞∑
l=1

P
(

sup
f∈F2

∣∣∣Lγn,l,ξn(f)− L̂n,γn,l,ξn(f)
∣∣∣

> ε+ εn,l

)
.

Note that by construction

εn,l = 2Rn,γn,l,ξn +

√√√√2c1 log
(

1
ξn

log e
γn,l

)
n

.

Thus, writing

rn,l =

√√√√2c1 log
(

1
ξn

log e
γn,l

)
n

and bounding each term in the sum by Lemma 7, we have

(***) ≤
∞∑
l=1

exp

(
−n(ε+ rn,l)

2

c1

)

≤ exp

(
−nε

2

c1

) ∞∑
l=1

exp

(
−
nr2n,l
c1

)
.

Next note that by the definition of γn,l we have

γn,l = (1− ξn)l−1 ≤ exp (−ξn(l − 1)) .

Solving for l yields

1

ξn
log

e

γn,l
≥ l.

Thus,

exp

(
−
nr2n,l
c1

)
≤ 1

l2

and summing over l yields the claim.

A.2 Proof of Lemma 4

Let us first write εn,l in terms of γn,l−1. Since γn,l =
γn,l−1(1− ξn) by definition, we have

εn,l =
2

γn,l−1(1− ξn)ξnn2d

+

√√√√2c1 log
(

1
ξn

log e
γn,l−1(1−ξn)

)
n

.

Taking n sufficiently large to ensure that 1− ξn ≥ 1/2 we
have that for all l ≥ 2,

εn,l ≤
4

γn,l−1ξnn2d
+

√√√√2c1 log
(

1
ξn

log 2e
γn,l−1

)
n

,

which is exactly rPEN(n, γn,l−1).

A.3 Proof of Lemma 5

Recall that R∗ = R(h∗), where3

h∗(x) = sign(P(Y = 1 |X = x)− 1/2).

For n ≥ 3, define

An = {x ∈ X : P(Y = 1 |X = x) ≥ 1/2 + 1/n} ,
Bn = {x ∈ X : P(Y = 1 |X = x) ≤ 1/2− 1/n} ,
C = {x ∈ X : P(Y = 1 |X = x) = 1/2} .

The doubling property and finite diameter of X imply that
it is totally bounded (i.e., for all α > 0, X can be cov-
ered by finitely many balls of diameter α, (Krauthgamer
and Lee, 2004)), and hence compact. Thus, Urysohn’s
lemma (Rudin, 1987) implies that for each n ≥ 3, there
is a continuous fn : X → R such that fn(An) = {1},
fn(Bn) = {−1} and fn(C) = {0}. Since continuous
functions on compact sets can be uniformly approximated
by Lipschitz functions, there is no loss of generality in as-
suming that each fn is a Lipschitz function. Normaliz-
ing by ‖fn‖Lip, we have that for each n ≥ 3, there is a
γn > 0 and a 1-Lipschitz fn such that fn(An) = {γn}
and fn(Bn) = {−γn}. Since fn −→

n→∞
h∗ pointwise,

Lebesgue’s dominated convergence theorem implies that
limn→∞R(fn) = R∗. Another application of this theorem
yields that limγ→0Rγ(f) = R(f) holds for all measurable
f : X → R.

Choosing n sufficiently large so that |R(fn) − R∗| < ε/2
and then γ sufficiently small so that |Rγ(fn) − R(fn)| <
ε/2 proves the claim.

A.4 Proof of Lemma 6

Rescaling f ∈ F2 to g = 2f/γ, Eq. (15) is equivalent to
claiming the existence of an n0(ε) ∈ N such that for all
n ≥ n0(ε),

|L1,ξn(g)−R1(g)| ≤ ε/4.

Since ξn = n−1d decays to zero with increasing n, it
follows that L1,n−1

d
(g) −→

n→∞
R1(g) pointwise, and so by

Lebesgue’s dominated convergence theorem, we have that

lim
n→∞

L1,n−1
d

(g) = R1(g),

proving the claim.
3sign(0) ∈ {−1, 1}may be defined arbitrarily without affect-

ing the value of R∗.
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