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2 Divergence

A Proof of Theorems 3 and 4

We analyze the two estimators separately and Theorem 3 follows immediately from Theorems 10 and 11 below.
For the estimator without data splitting, the result follows from below and the inequality:
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Plugging in the bounds from Theorems 10 and 11 immediately establish the rate of convergence for the estimator
without data splitting.

For the quadratic term estimators, we make a slight modification to a theorem from Gine and Nickl [5]. The only
di↵erence between our proof and theirs is in controlling the bias, where we use the bounded-variation assumption
while they use a Sobolev assumption. However this has little bearing, as the bias is still of the same order, and
we have the following theorem characterizing the behavior of the quadratic estimator:

Theorem 10 (Adapted from [5]). Under Assumption 2, we have:
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and when � > d/4:
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While we are not aware of any analyses of the bilinear term, it is not particularly di↵erent from the quadratic
term, and we have the following theorem:

Theorem 11. Under Assumption 2, we have:
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and when � > d/4:
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Proof of Theorem 10. We reproduce the proof of Gine and Nickl for completeness. The bias can be bounded by:
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1 (C2) and

can take a Taylor expansion of order 2� � 1. When we take such an expansion, by the properties of the kernel,
all but the remainder term is annihilated and we are left with:
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where we used the fact the function is integrable by the fact that ⇠ 2 L1, which in turn follows from the fact
that p0 ? p 2 W2�

1 (C2) and by Taylor’s remainder theorem. We are also using the compactness of K here so that
we only have to integrate over (�1, 1)d in which case all polynomial functions are also L1 integrable. This shows
that the bias is O(h2�).
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Note that the main di↵erence between our proof and that of Gine and Nickl is in the smoothness assumption,
which comes into play here. Under the bounded variation assumption, we were able to argue that smoothness is
additive under convolution. The same is true under the Sobolev assumption, and this property is exploited by
Gine and Nickl in exactly the same way as we do here. Unfortunately, Hölder smoothness is not additive under
convolution, so the more standard assumption does not provide the semiparametric rate of convergence.

As for the variance, we may write:
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which we can split into three cases. When i 6= j 6= s 6= t, each term in the sum is exactly (E✓̂)2, and this happens
for n(n� 1)(n� 2)(n� 3) terms in the sum. When one of the first indices is equal to one of the second indices
we get:
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where we performed a substitution to annihilate the dependence on h. There are 4n(n � 1)(n � 2) expressions
of this form, so in total, these terms contribute:
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Adding together these terms, establishes the variance bound in the theorem. The rate of convergence in The-
orem 3 follows from plugging the definition of h, which was selected to optimize the tradeo↵ between bias and
variance.

As for asymptotic normality, we decompose the proof into several steps.

1. Control the bias.
2. Apply Hoe↵ding’s decomposition.
3. Control the second order term, which will be lower order.
4. Show that the first order term is close to P

n
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As is common in the analysis of U-statistics, we apply Hoe↵ding’s decomposition before proceeding. That is, we
write:
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It is easy to very that our estimator can be decomposed in this manner. Moreover, since everything is centered,
the two terms also have zero covariance. Also notice that E
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The first equality follows from the fact that each term is conditionally centered, so all cross terms are zero, while
the inequality is the result of performing a substitution as we have seen before. Thus
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which concludes the proof of the theorem.

We now prove Theorem 11, although the arguments are fairly similar.

Proof of Theorem 11. The bias is:
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where, as before, p0(x) = p(�x) and ? denotes convolution. So we can proceed as in the quadratic setting.
Specifically, by Lemma 14, we can take a Taylor expansion of order 2� + 1, annihilate all but the remainder
term, which we know is bounded by the fact that p0 ? q 2 W2�
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where we used the fact the function is integrable by the fact that ⇠ 2 L1, since p0 ? q 2 W2�
1 (C2). Thus the bias
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The variance can be bounded in a similar way to the quadratic estimator:
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Whenever i 6= s and j 6= t all of the terms are independent so they cancel out with the E[✓̂
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happens for n2(n� 1)2 terms.
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Therefore, the total variance is O(n�1 + n�2h�d) as in the theorem statement.

The proof of asymptotic normality of the bilinear estimator is not too di↵erent from the proof for the quadratic
estimator. We can start by ignoring the bias, as when b � d/4, we know that
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As before, the goal is to show that the V -process term is lower order and then to apply the Lindeberg-Levy CLT
to the other two terms. Since each term is conditionally centered:
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and since x and y are independent, both of these central limit theorems hold jointly. Since in our estimate for D̂
we have a term of the form 2✓̂

pq

, the contribution of this term to the total variance is 4Var(✓̂
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). This concludes
the proof.

B Proof of Theorem 6

In this section we fill in the missing details in the proof of Theorem 6. We will apply the Berry-Esséen inequality
for multi-sample U-statistics from Chen, Goldstein and Shao [4], which we reproduce below.

In order to state the theorem we need to make several definitions. We make some simplifications to their result
for ease of notation. Consider k independent sequences X
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As we did in our estimator, we split the data into four groups, two samples of size n from each distribution,

which we will denote with superscripts, i.e. X(1)
i

will be the ith sample from the first group of the data from p.
We can write D̂�ED̂ as a zero-mean multi-sample U-statistic with four groups where the first X and Y groups
are used for ✓̂

p

� ✓
p

and ✓̂
q

� ✓
q

respectively, while the second two groups are used for the cross term ✓̂
pq

� ✓
pq

.

In other words, ! will be a function that takes 6 variables, two from the X(1) group, two from the Y (1) group
and one each from the X(2) and Y (2) groups. Formally, we define:
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With this definition, it is clear that U
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To apply Theorem 12 on the appropriate term in the proof, we just have to bound a number of quantities
involving !. As we will see, we will not achieve the n�1/2 rate because the function ! depends on the bandwidth
h, which is decreasing, so the variance � is increasing. Specifically:
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The last thing we need is the third moments of the linearizations E[|!
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This gives the bound in Equation 15.

C Proof of Theorem 7

For completeness we introduce the construction used by Krishnamurthy et al [9]. For the remainder of the
proof, we will work of [0, 1]d and assume that p is pointwise lower bounded by 1/

l

, noting that a lower bound
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here applies to the more general setting. For the construction, suppose we have a disjoint collection of subset
A1, . . . , Am

⇢ [0, 1]d for some parameter m with associated functions u
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that are compactly supported on A
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.
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The first condition ensure that the u
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s are orthogonal to each other, while the second and third will ensure
separation in terms of L2

2 divergence. The last condition holds for all derivative operators with r  � and it
will ensure that the densities we construct belong to the bounded variation class. The only di↵erence between
these requirements and those from [9] are the orthogonality to p, q, and the bounded-variation condition, which
replaces a point-wise analog.

Deferring the question of existence of these functions, we can proceed to construct p
�

. Let the index set
⇤ = {�1,+1}m and define the functions p

�

= p0 + K
P

m

j=1 �j

u
j

, where K will be defined subsequently. A
simple computation then reveals that:

T (p0, q0)� T (p
�

, q0) =

Z
p20 � p2

�

+ 2

Z
p
�

q0 �
Z

p0q0

�

=

Z
(p0 � p

�

)(p0 + p
�

) + 2

Z
p
�

q0 �
Z

p0q0

�

= K2
mX

j=1

ku
j

k22 = ⇥(K2)

where we expand p
�

and use the orthogonality properties extensively. This gives us the desired separation.

To bound the hellinger distance, we use Theorem 1 of Birge and Massart [3] and the argument following Theorem
12 of Krishnamurthy et al [9].

Theorem 13. [3] Consider a set of densities p0 and p
�

= p[1+
P

j

�
j

v
j

(x)] for � 2 ⇤ = {�1, 1}m with partition

A1, . . . , Am

⇢ [0, 1]d. Suppose that (i) kv
j

k1  1, (ii) k1
A

C
j
v
j

k1 = 0, (iii)
R
v
j

p0 = 0 and (iv)

R
v2
j

p0 = ↵
j

> 0

all hold with:

↵ = sup
j

kv
j

k1, s = n↵2 sup
j

P0(Aj

), c = n sup
j

↵
j

Define Pn = 1
|⇤|

P
�2⇤ Pn

�

. Then:

h2(Pn

0 , P
n)  C(↵, s, c)n2

mX

j=1

↵2
j

(26)

where C < 1/3 is continuous and non-decreasing with respect to each argument and C(0, 0, 0) = 1/16.

The exact same bound on the hellinger distances holds for the measures Pn

0 ⇥ Qn

0 against Pn ⇥ Qn. Defining
v
j

= Ku
j

/p0 then the densities we used in our construction meet the specification in the above theorem. We
immediately satisfy the first three requirements and we have

R
v2
j

p = K2
R
u2
j

/p  K2
l

/m , ↵
j

. Thus we have
the hellinger bound of:

h2(Pn

0 ⇥Qn

0 , P
n ⇥Qn)  (1/3)n2

mX

j=1

↵2
j

 Cn2K4

m

We lastly have to make sure that the p
�

functions satisfy the bounded variation assumption. This follows from
an application of the triangle inequality provided that kDru

j

k1  O(mr/d�1).

kDrp
�

k1 = kDrp+K

mX

j=1

�
j

Dru
j

k1  kDrpk+K

mX

j=1

kDru
j

k1  kDrpk+K

mX

j=1

kDru
j

k1  kDrpk+O(Kmr/d)
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So as long as K ⇣ m�r/d and there is some wiggle room around the bounded variation assumption for p, p
�

will
meet the bounded variation assumption.

Before we construct the u
j

s, we put everything together. We must select K ⇣ m��/d so that p
�

2 W�

1 (C), and

then to make the hellinger distance O(1), we must set m ⇣ n
2d

4�+d . This makes K2 ⇣ n
�4�
4�+d which is precisely

the lower bound on the convergence rate in absolute error.

Lastly we present the construction of the u
j

functions. The construction is identical to the one used by Krishna-
murthy et al [9], but we must make some modifications to ensure that bounded variation condition is satisfied.
We reproduce the details here for completeness.

Let {�
j

}q
j=1 be an orthonormal collection of functions for L2([0, 1]d) with q � 4. We can choose �

j

to satisfy (i)

�1 = 1, (ii) �
j

(x) = 0 for x|B(x, ✏) 6⇢ [0, 1]d and (iii) kDr�
j

k1   < 1 for all j. Certainly we can find such an
orthonormal system.

Now for any pair of function f, g 2 L2([0, 1]d), we can find a unit-normed function in w̃ 2 span(�
j

) such that
w̃ ? �1, w̃ ? f, w̃ ? g. If we write w̃ =

P
j

c
j

�
j

, we have Drw̃ =
P

j

c
i

Dr�
j

so that kDrw̃k1  
P

|c
i

|  
p
q

since w̃ is unit normed. Thus the vector w = w̃/(K
p
q) has `2 norm equal to (K

p
q)�1 while have kDrwk1  1

for all tuples r.

For the u
j

functions, we use the partition A
j

=
Q

d

i=1[jim
�1/d, (j

i

+ 1)m�1/d] where j = (j1, . . . , jd) and
j
i

2 [m1/d] for each i. Map A
j

to [0, 1]d and appropriately map the densities p, q from A
j

to [0, 1]d. We construct
u
j

by using the construction for w above on the segment of the density corresponding to A
j

. In particular, let
w

j

be the function from above and let u
j

= w
j

(m1/d(x � (j1, . . . , jd))). With this rescaling and shift, u
j

2 A
j

,
supp(u

j

) ⇢ {x|B(x, ✏) 2 A
j

}, and
R
u2
j

(x) = m�1
R
w2

j

(x) = ⇥(1/m). For the last property, by a change of
variables and Hólder’s inequality, we have:

kDru
j

k1 =

Z
|Drw

j

(m1/d(x� (j1, . . . , jd)))|dµ(x) =
1

m

Z
kmr/dDrw

j

(y)kdA
j

(y)  mr/d�1.

Thus these function u
j

meet all of the requirements.

D Proof of Lemma 8

Recall that the asymptotic variance of the estimator is:

�2 = 4

✓
Var
X⇠p

(p(X)) + Var
Y⇠q

(q(Y )) + Var
X⇠p

(q(X)) + Var
Y⇠q

(p(X)

◆
,

and our estimator �̂2 is formed by simply plugging in kernel density estimates p̂, q̂ for all occurences of the
densities. We will first bound:

E
X

n
1 ,Y

n
1

⇥
|�2 � �̂2|

⇤
= O(n

��
2�+d ),

and our high probability bound will follow from Markov’s inequality. We will show the following bounds, and
the expected `1 bound will follow by application of the triangle inequality. Below, let f, g 2 W�

1 (C) be any two
densities; we will interchangeably substitute p, q for f, g.

E
����
Z

f̂3 �
Z

f3

����

�
 O

✓
h� +

1

(nhd)1/2

◆
(27)

E
"�����

✓Z
f̂2

◆2

�
✓Z

f2

◆2
�����

#
 O

✓
h2� +

1p
n
+

1

nhd/2

◆
(28)

E
����
Z

f̂2ĝ �
Z

f2g

����

�
 O

✓
h� +

1p
nhd

◆
(29)

E
"�����

✓Z
f̂ ĝ

◆2

�
✓Z

fg

◆2
�����

#
 O

✓
h2� +

1p
n
+

1

nhd/2

◆
(30)
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2 Divergence

Before establishing the above inequalities, let us conclude the proof. The overall rate of convergence in absolute

loss is O(h� + 1p
nh

d
). TBy choosing h ⇣ n

�1
2�+d , the rate of convergence is O(n

��
2�+d ). Finally we wrap up with

an application of Markov’s Inequality.

Now we turn to establishing the bounds. For Equation 27, we can write:

E
����
Z

f̂3 �
Z

f3

����

�
 Ekf̂ � fk33 + 3E

Z
|f(x)f̂(x)(f(x)� f̂(x))|dµ(x)

�

 Ekf � f̂k33 + 3Ekf � f̂k1kff̂k1

 O

✓
h3� +

1

(nhd)3/2
+ h� +

1

(nhd)1/2

◆
.

The first step is a fairly straightforward expansion followed by the triangle inequality while in the second step
we apply Hölder’s inequality. The last step follows from well known analysis on the rate of convergence of the
kernel density estimator.

For Equation 28 we should actually use the U -statistic estimator for ✓
p

that we have been analyzing all along.
The bound above follows from Theorem 10 and the following chain of inequalities:

E
"�����

✓Z
f̂2

◆2

�
✓Z

f2

◆2
�����

#
 E

"✓Z
f̂2 � f2

◆2
#
+ 2kfk22E

����
Z

f̂2 � f2

����

�

 E
"✓Z

f̂2 � f2

◆2
#
+ C

vuutE
"✓Z

f̂2 � f2

◆2
#

 O

✓
h4� +

1

n
+

1

n2hd

+ h2� +
1p
n
+

1

nhd/2

◆
.

The first inequality is a result of some simple manipulations followed by the triangle inequality and the second
step is Jensen’s inequality. We already have a bound on the MSE of the estimator ✓̂

p

� ✓
p

which gives us the
inequality in Equation 28. Applying that bound leads to the last inequality.

The bound for Equation 30 follows from exactly the same argument with an application Theorem 11 instead of
Theorem 10 in the last step. So we simply need to establish Equation 29.

E
����
Z

f̂2ĝ �
Z

f2g

����

�
= E

����
Z

(f̂2 � f2)ĝ

����

�
+ E

����
Z

f2(ĝ � g)

����

�

 Ekf̂2 � f2k2kĝk2 + kf2k2kĝ � gk2
 Ekf̂2 � f2k2(kĝ � gk2 + kgk2) + kf2k2kĝ � gk2

 O

✓
h2� +

1

nhd/2
+

1p
n
+ h� +

1p
nhd

◆
.

Here we use that kĝk1 = 1 and that kf2k2 and kgk2 are both bounded. We use the standard rate of convergence
analysis of the kernel density estimator to bound Ekĝ � gk2  O(h� + (nhd)�1). We finally use Theorem 10
to bound kf̂2 � f2k2. Note that we are exploiting independence between the samples for f̂ and ĝ to push the
expectation inside of the product in the first term. In the last line we omitted the term Ekf̂2 � f2k2kĝ � gk2
since it converges much faster than the other two terms.

To prove the second bound, we show that �̄2 is close to �2. We just have to look at two forms:

T1 =

Z
p̄2(x)p(x)�

Z
p3(x) T2 =

✓Z
p̄(x)p(x)

◆2

�
✓Z

p2(x)

◆2

.

For T1 we can write:

T1 =

Z
(p̄2(x)� p2(x))p(x) =

Z
(p̄(x)� p(x))(p̄(x)� p(x) + 2p(x))p(x)



Krishnamurthy, Kandasamy, Poczos, Wasserman

=

Z
(p̄(x)� p(x))2p(x) + 2

Z
p2(x)(p̄(x)� p(x))


✓
sup
x

|p̄(x)� p(x)|
◆2

+ 2kpk22 sup
x

|p̄(x)� p(x)|  O(h2� + h�),

since p is L2-integrable and the kernel density estimator has point-wise bias O(h�).

For T2 we have:

T2 =

✓Z
(p̄(x)� p(x))p(x)

◆2

+ 2

✓Z
p2(x)

◆2 ✓Z
(p̄(x)� p(x))p(x)

◆


✓
sup
x

|p̄(x)� p(x)|
◆2

+ 2kpk42 sup
x

kp̄(x)� p(x)k  O(h2� + h�).

Wwith h ⇣ n
�1

2�+d the additional bias incurred is:

E
���̂2 � �̄2

��  E
���̂2 � �2

��+
���2 � �̄2

��  O(n
��

2�+d ).

and so �̂2 is an equally good estimator of �2 and �̄2 (up to constants).

E A Convolution Lemma

In this section we show that bounded-variation smoothness is additive under convolution.

Lemma 14. If f, g 2 W�

1 (Rd, C), then h = f ? g 2 W2�
1 (Rd, C2).

Proof. The proof uses the fact that:
@h(x)

@x
=

✓
@f

@x
? g

◆
(x)

which follows by pushing the derivative operator inside of the integral and continuity of f, g and their derivatives.
Using the above identity, we have:

@2�h(x)

@x2�
=

✓
@�f

@x�

?
@�g

@x�

◆
(x),

or more concisely:
kh(2�)k1 = kf (�) ? g(�)k1  kf (�)k1kg(�)k1  C2.

The first inequality is Young’s inequality. This implies that L1 is closed under convolution.

It is clear, by the fact that derivatives can be distributed across the convolution that for k < 2�, Dkh 2 L1.
This proof strategy extends mutatis mutandis to higher dimension.


