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Abstract

We give a comprehensive theoretical charac-
terization of a nonparametric estimator for
the L2 divergence between two continuous
distributions. We first bound the rate of con-
vergence of our estimator, showing that it
is y/n-consistent provided the densities are
sufficiently smooth. In this smooth regime,
we then show that our estimator is asymp-
totically normal, construct asymptotic confi-
dence intervals, and establish a Berry-Esséen
style inequality characterizing the rate of con-
vergence to normality. We also show that this
estimator is minimax optimal.

1 INTRODUCTION

One of the most natural ways to quantify the dis-
similarity between two continuous distributions is with
the Lo-distance between their densities. This distance
— which we typically call a divergence — allows us to
translate intuition from Euclidean geometry and con-
sequently makes the Lo-divergence particularly inter-
pretable. Despite this appeal, we know of very few
methods for estimating the Ls-divergence from data.
For the estimators that do exist, we have only a limited
understanding of their properties, which limits their
applicability. This paper addresses this lack of under-
standing with a comprehensive theoretical study of an
estimator for the L3-divergence.
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Our analysis of the L2-divergence is motivated by both
practical and theoretical considerations. On the prac-
tical side, this divergence is used for discrete distri-
butions in a variety of applications in information re-
trieval [14], ecology [11], and elsewhere. It therefore
seems natural to consider the continuous analog, which
can be used in neuroscience and astronomy applica-
tions. The L2-divergence has also been used in two
sample testing [1] and tasks involving machine learn-
ing on distributions [19, 20], where in particular, it
has been shown to outperform several other divergence
measures in anomalous image detection tasks [19]. On
the theoretical front, while it is not clear a prior: which
divergence is best for a particular problem, the L2 di-
vergence contrasts with other popular divergences such
as the Kullback-Leibler and the Renyi-a divergences in
that it is symmetric, and this property is desirable in
many applications.

Our estimator is the same kernel multi-sample U-
statistic that has appeared numerous times in the lit-
erature [1, 5], but has lacked a complete theoretical
development. Under a standard smoothness assump-
tion, parameterized by S (formalized in the sequel),
and given n samples from two densities supported over
R?, we establish the following properties.

1. We analyze the rate of convergence in squared er-
—88
ror, showing an n#+7 rate if 5 < d/4 and the
parametric n~! rate if 3 > d/4 (Theorem 3).

When 8 > d/4, we prove that the estimator is
asymptotically normal (Theorem 4).

We derive a principled method for constructing
a confidence interval that we justify with asymp-
totic arguments (Theorem 5).
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4. We also prove a Berry-Esséen style inequality in
the S > d/4 regime, characterizing the distance
of the appropriately normalized estimator to the
N(0,1) limit (Theorem 6).

. Lastly, we modify an existing proof to establish
a matching lower bound on the rate of conver-
gence (Theorem 7). This shows that our estima-
tor achieves the minimax rate.

We are not aware of such a characterization of an esti-
mator for this divergence. Indeed, we are not aware of
such a precise characterization for any nonparametric
divergence estimators.

The most novel technical ingredient of our work is the
proof of Theorem 6, where we upper bound the dis-
tance to the N'(0,1) limit of our estimator. The chal-
lenges in this upper bound involve carefully controlling
the bias in both our estimator and our estimator for its
asymptotic variance so that we can appeal to classical
Berry-Esséen bounds. This technical obstacle arises in
many nonparametric settings, but we are not aware of
any related results.

The remainder of this paper is organized as follows.
After mentioning some related ideas in Section 2, we
specify the estimator of interest in Section 3. In Sec-
tion 4, we present the main theoretical results, defer-
ring proofs to Section 5 and the appendix. We present
some simulations confirming our results in Section 6
and conclude in Section 7 with some future directions.

2 RELATED WORK

A few other works have considered estimation of the
Lo-divergence under non-parametric assumptions [1,
9, 18]. Anderson et al. propose essentially the same
estimator that we analyze in this paper [1].When used
for two-sample testing, they argue that one should not
shrink the bandwidth with n, as it does not lend ad-
ditional power to the test, while only increasing the
variance. Unfortunately, this choice of bandwidth does
not produce a consistent estimator. When used for
estimation, they remark that one should use a band-
width that is smaller than for density estimation, but
do not pursue this idea further. By formalizing this
undersmoothing argument, we achieve the parametric
n~! squared error rate.

Poczos et al. establish consistency of a nearest neigh-
bor based Lo divergence estimator, but do not address
the rate of convergence or other properties [18]. Kr-
ishnamurthy et al. propose an estimator based on a
truncated Fourier expansion of the densities [9]. They
establish a rate of convergence that we match, but
do not develop any additional properties. Similarly,
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Kallberg and Seleznjev propose an estimator based on
nearest neighbors and prove similar asymptotic results
to ours, but they do not establish Berry-Esseén or min-
imax lower bounds [7]. In contrast to these works, our
estimator and our analysis are considerably simpler,
which facilitates both applicability and theoretical de-
velopment.

As will become clear in the sequel, our estimator
is closely related to the maximum mean discrepancy
(MMD) for which we have a fairly deep understand-
ing [6]. While the estimators are strikingly similar,
they are motivated from vastly different lines of rea-
soning and the analysis reflects this difference. The
most notable difference is that with MMD), the popula-
tion quantity is defined by the kernel and bandwidth.
That is, the choice of kernel influences not only the
estimator but also the population quantity. We be-
lieve that our estimand is more interpretable as it is
independent of the practioner’s choices. Nevertheless,
some of our results, notably the Berry-Esséen bound,
can be ported to an estimate of the MMD.

There is a growing body of literature on estimation of
various divergences under nonparametric assumptions.
This line of work has primarily focused on Kullback-
Leibler, Renyi-a, and Csiszar f-divergences [12, 16,
17]. As just one example, Nguyen et al. develop a
convex program to estimate f-divergences under the
assumption that the density ratio belongs to a repro-
ducing kernel Hilbert space. Unfortunately, we have
very little understanding as to which divergence is best
suited to a particular problem, so it is important to
have an array of estimators at our disposal.

Moreover, apart from a few examples, we do not have
a complete understanding of the majority of these esti-
mators. In particular, except for the MMD [6], we are
unaware of principled methods for building confidence
intervals for any of these divergences, and this renders
the theoretical results somewhat irrelevant for testing
and other inference problems.

Our estimator is based on a line of work studying
the estimation of integral functionals of a density in
the nonparametric setting [2, 3, 5, 8, 10]. These
papers consider estimation of quantities of the form
0 = ff(p7p(1),...7p(k))du, where f is some known
functional and p® is the ith derivative of the density
p, given a sample from p. Giné and Nickl specifically
study estimation of [ p(z)*du and our work general-
izes their results to the L3-divergence functional [5].

Turning to lower bounds, while we are not aware of a
lower bound for L3-divergence estimation under non-
parametric assumptions, there are many closely re-
lated results. For example, Birge and Massart [3] es-
tablish lower bounds on estimating integral functionals
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of a single density, while Krishnamurthy et al. extend
their proof to a class of divergences [9]. Our lower
bound is based on some modifications to the proof of
Krishnamurthy et al.

3 THE ESTIMATOR

Let P and Q be two distributions supported over
R? with Radon-Nikodym derivatives (densities) p =
dP/du,q £ dQ/dp with respect to a measure pu. The
L2 divergence between these two distributions, de-
noted throughout this paper as D(p, ¢) is defined as:

D(p.q) 2 / (p(z) — q(x))*du(z)
/pQ(x)dqu/qQ(x)du —Q/p(x)q(x)du-

0p

0‘1 6131‘1
Estimation of the first two terms in the decomposi-
tion has been extensively studied in the nonparametric
statistics community [2, 3, 5, 10]. For these terms, we
use the kernel-based U-statistic of Gine and Nickl [5].
For the bilinear term, 6, ,, we use a natural adapta-
tion of their U-statistic to the multi-sample setting.
Specifically, given samples {X;}?%, ~ p,{V;}3", ~ q,
we estimate 6, with 6, and 6, , with 6, ,, given by:

n

A 1 1 X, —X;
e LS Lk(B05) g
1 d
n(n —1) ol h h
2n
A 1 1 X, Y,
Op.q = ) E jK L ) (2)
. h h
1,j=n+1
where K : R4 — R> is a kernel function and h € Rx

is a bandwidth parameter. In Assumption 2 below, we
prescibe some standard restrictions on the kernel and
a scaling of the bandwidth.

The squared term involving g, 64, is estimated analo-
gously to 0, and we denote the estimator éq. The final
L3-divergence estimator is simply ﬁ(p, q) = ép + éq —
Qép,q. Notice that we have split the data so that each
point X; (respectively Y;) is used in exactly one term.
Forcing this independence will simplify our theoretical
analysis without compromising the properties.

Our estimator involves data splitting, as we are us-
ing half of the sample for each of the terms in the
estimand. Data splitting is a very common technique
in these types of nonparametric problems (See for ex-
ample [3, 15]). As we will show, data-splitting only
affects the convergence rate in constant factors, but it
plays a much larger role in our other results. In par-
ticular, asymptotic normality, the confidence interval
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and the Berry-Esséen bound do not hold for the esti-
mator without data-splitting [6], so it is necessary to
split the sample for most inference problems. We de-
fer a more detailed discussion of this fact to after the
statement of Theorem 4. However, applications such
as machine learning on distributions [20] that do not
leverage these theoretical properties may not require
splitting the sample.

We also remark that the estimator can naively be com-
puted in quadratic time. However, with a compact
kernel, a number of data structures are available that
lead to more efficient implementations. In particular,
the dual tree algorithm of Ram et al. can be used to
compute D in linear time [21].

4 THEORETICAL PROPERTIES

In this section, we highlight some of the theoretical
properties enjoyed by the divergence estimator D. We
begin by stating the main assumptions, regarding the
smoothness of the densities, properties of the kernel,
and the choice of bandwidth h.

Definition 1. We call Wlﬁ(C), for B €N and C >0,
the Bounded Variation class of order 5 which is
the set of B-times differentiable funtions whose [Bth
deriwatives have bounded L1 norm. Formally, a func-
tion f : RY — R belongs to Wlﬁ(C’) if for all tuples of
natural numbers v = (r1,...,rq) with 3, r; < B we

have |D" f||1 < C, where D" gt

tive operator.

is a deriva-

= 5771 Td
Ox'...0x,

Assumption 2. Assume p,q, K, and h satisfy:

. Smoothness: The densities p,q belong to the
bounded variation class Wlﬁ ().

Kernel Properties: K is bounded, symmetric,
supported on (—1,1)¢, and has [ K(u)du(u)
1. [Tl 2]'K(x)dz = 0 for all (r1,...,7q) with
Zj Tj < Qﬁ.

Kernel Bandwidth: We choose h < nﬁ.

The smoothness assumption is similar in spirit to both
the Holder and Sobolev assumptions which are more
standard in the nonparametric literature. Specifically,
the bounded variation assumption is the integrated
analog of the Hdlder assumption, which is a point-
wise characterization of the function. It is also the L
analog of the Sobolev assumption, which requires that
[|D" f||3 is bounded.

One difference is that the class Wf can not be de-
fined for non-integral smoothness, 5, while both the
Holder and Sobolev classes can. While our results can
be shown for the Sobolev class, working with bounded



On Estimating L% Divergence

variation class considerably simplifies the proofs as we
avoid the need for any Fourier analysis. The Holderian
assumption is insufficient as Hélder smoothness is not
additive under convolution, which is critical for estab-
lishing the low order bias of our estimator.

The kernel properties are now fairly standard in the
literature. Notice that we require the kernel to be of
order 24, instead of order [ as is required in density
estimation. This will allow us to exploit additional
smoothness provided by the convolution implicit in our
estimators. Of course one can construct such kernels
for any 8 using the Legendre polynomials [22]. We
remark that the scaling of the kernel bandwidth is not
the usual scaling used in density estimation.

We now turn to characterizing the rate of convergence
of the estimator D. While we build off of the analysis
of Giné and Nickl, who analyze the estimator ép (5],
our proof has two main differences. First, since we
work with a different smoothness assumption, we use a
different technique to control the bias. Second, we gen-
eralize to the bilinear term épﬂ, which involves some
modifications. We have the following theorem:

Theorem 3. Under Assumption 2 we have:

03n[ﬁ7§fd if B<d/4

E[(D(p,q) — D(p,q))"] < { can”if B> d/4

This bounds holds both with and without data splitting.

Notice that the rate of convergence is substantially
faster than the rate of convergence for estimation of
[B-smooth densities. In particular, the parametric rate
is achievable provided sufficient smoothness!. This
agrees with the results on estimation of integral func-
tionals in the statistics community [3, 5]. It also
matches the rate of the orthogonal series estimator
studied by Krishnamurthy et al. [9].

One takeaway from the theorem is that one should not
use the optimal density estimation bandwidth of nzeta
here. As we mentioned, this choice was analyzed by
Anderson et al. and results in a slower convergence
rate [1]. Indeed our choice of bandwidth h =< N i
always smaller, so we are undersmoothing the density
estimate. This allows us to exploit additional smooth-
ness provided by implicit convolution in our estimator,
while the additional variance induced by undersmooth-
ing is mitigated by integration in the estimand.

Interestingly, there seem to be two distinct approaches
to estimating integral functionals. On one hand, one
could plug in an undersmoothed density estimator di-
rectly into the functional. This is the approach we take

!The parametric rate is n~! in squared error which im-
plies an n~'/2 rate in absolute error.
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here and it has also been used for other divergence es-
timation problems [18]. Another approach is to plug
in a minimax optimal density estimator and then ap-
ply some post-hoc correction. This latter approach
can be shown to achieve similar rates for divergence
estimation problems [9].

The advantage of the post-hoc correction approach
is that one can use cross validation on the density
estimate to select the bandwith h. Cross-validating
the density estimate does not work for our estima-
tor, since our bandwidth is not optimal for density
estimation. Instead, we advocate setting the band-
width based on the median pairwise distance between
the samples, which is a heuristic used in similar prob-
lems [6]. The disadvantage of the post-hoc correction
approach is computational; the estimator involves nu-
meric integration, which becomes intractable even in
moderate dimension. In contrast, our estimator can
be computed in quadratic time.

The next theorem establishes asymptotic normality in
the smooth regime:

Theorem 4. When > d/4:

Vit (D) = D(p,0)) ~ N(0,0?),
where ~ denotes convergence in distribution and:
4 Var(p(z)) + 4 Var(q(y))

(4)
+4 Var(q(z)) + 4 Var(p(y)

Note that this theorem does not hold without data
splitting. Indeed, Gretton et al. [6] show that for the
MMD, when p = ¢, the limiting distribution of the U-
statistic estimator without data splitting is an infinite
weighted sum of terms involving the squared difference
of Gaussian random variables. Their argument carries
through to our setting, as the only difference between
their estimator and ours is that we let the bandwidth
h shrink with the number of samples. For this reason,
the remainder of our theoretical analysis applies only
to the data-split estimator.

With this characterization of the limiting distribution,
we can now turn to construction of an asymptotic con-
fidence interval.

The most straightforward approach is to estimate the
asymptotic variance and appeal to Slutsky’s Theo-
rem. We simply use a plugin estimator for the vari-
ance, which amounts to replacing all instances of
p,q in Equation 4 with estimates p,q of the densi-
ties. For example, we replace the first term with
J p(x)3—=([ p(z)?)%. We denote the resulting estimator
by &2, and mention that one should use a bandwidth

-1
h < n?F+d for estimating this quantity.
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In Section 5 (specifically Lemma 8), we bound the rate
of convergence of this estimator, and its consistency
immediately gives an asymptotic confidence interval:
Theorem 5. Let zo /o = @1 (1—/2) be the 1—a/2th
quantile of the standard normal distribution. Then,

V(D(p,q) — D(p,q))

g

~ N(0,1),

(5)

whenever B > d/4. Consequently,

A Za/Qa— A Zoc/26
P(De|D— D - 6
(pelp-2pe 2 ])o1ma
which means that [D — IELEY Z“/Q&] is an asymp-

Vn Vvn

totic 1 — a confidence interval for D.

While the theorem does lead to a confidence interval, it
is worth asking how quickly the distribution of the self-
normalizing estimator converges to a standard normal,
so that one has a sense for the quality of the interval
in finite sample. We therefore turn to establishing a
more precise guarantee. To simplify the presentation,
we assume that we have a fresh set of n samples per
distribution to compute 62. Thus we are given 3n
samples per distribution in total, and we use 2n of
them to compute D and the last set for 62. As before,
in computing 62, we set h = nTa,

Theorem 6. Let ®(z) denote the CDF of the standard
normal. Under Assumption 2, there exists a constant
¢ > 0 such that:

p (ﬁ(ﬁm 9) = D(p.))

G
This bound is o(1) as soon as B > d/4.

sup
z

< z) — ®(2)

d—4p —B/2
Cy (n8ﬁ+d + n2B+d

As an immediate consequence of the theorem, we ob-
tain an error bound on the quality of approximation
of the confidence interval in Theorem 5. We remark
that one can explicitly track all of the constants in
the theorem and leave the result in terms of the band-
width h and problem dependent constants, although
this is somewhat tedious. For ease of exposition we
have chosen to present the asymptotic version of the
theorem, focusing instead on the rate of convergence
to the limiting N(0, 1) distribution.

It is not surprising that the rate of convergence to
Gaussianity is not the typical n='/2 rate, as it depends
on the third moment of the U-statistic, which is de-
creasing with n. It also depends on the non-negligible
bias of the estimator. However, as soon as § > d/4, it
is easily verified that the bound is o(1). This matches
our asymptotic guarantee in Theorem 4. Of course,
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for smoother densities, the rate of convergence in the
theorem is polynomially faster.

In addition to the practical consequences, we believe
the techniques used in the proof of the theorem are
fairly novel. While establishing Berry-Esséen bounds
for linear and other parameteric estimators is fairly
straightforward [4], this type of result is uncommon in
the nonparametric literature. The main challenge is
dealing with the bias and additional error introduced
by estimating the variance.

Finally, let us address the question of optimality. The
following theorem lower bounds the rate of conver-
gence of any estimator for the L2 divergence, when
the densities belong to the bounded variation class.

Theorem 7. With v, = min{88/(46 + d), 1} and for
any € > 0, we have:

inf sup P}, [(f)n —D?>en | >c>0 (9)
P p.gew? (0)

The result shows that n~"* lower bounds the mini-
max rate of convergence in squared error. Of course
v« = 1 when 8 > d/4, so the rate of convergence can
be no better than the parametric rate. Comparing
with Theorem 3, we see that our estimator achieves
the minimax rate.

5 PROOFS

The proofs of Theorems 3 and 4 are based on modifi-
cations to the analysis of Giné and Nickl [5] so we will
only sketch the ideas here. The majority of this section
is devoted to proving the Berry-Esséen bound in The-
orem 6, proving Theorem 5 along the way. We close
the section with a sketch of the proof of Theorem 7.

5.1 Proof Sketch of Theorem 3 and 4

Theorem 3 follows from bounding the bias and the
variance of the terms 6,,0,, and 6,,. The terms are

quite similar and we demonstrate the ideas with épq.

We show that the bias can be written in terms of a con-
volution and then use the fact that bounded-variation
smoothness is additive under convolution. By a sub-
stitution, we see that the bias for épq is:

Bldp) — 0y = [ [ K(w)ip(o — uh) — p(o)lg(a)duds
= [ K)o = a)uh) ~ (9o » )0

where po(x) = p(—2z) and * denotes convolution. Next,
we use Young’s inequality to show that if two functions
f, g belong to Wlﬁ(C), then fxg € Wf’B(CQ). Using
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this inequality, we can take a Taylor expansion of order
28 — 1 and use the kernel properties to annihilate all
but the remainder term, which is of order h27.

To bound the variance, we expand:

E[é,%]:E 5 Y Kn(X:,Y;), Kn(X,,Yh)

175] s#t

By analyzing each of the different scenarios (i.e. the
terms where all indices are different, there is one equal-
ity, or there are two equalities), it is not hard to show
that the variance is:

Equipped with these bounds, the rate of convergence
follows from the bias-variance decomposition and our
choice of bandwidth. For the estimator without data
splitting, we first used the Cauchy-Schwarz inequality
to separate the terms in the expansion of the mean-
squared error and then apply the above bounds.

1
hdn2

var(é)<o(1

The proof of normality is quite technical and we just
briefly comment on the steps, deferring all calculations
to the appendix. We apply Hoeffding’s decomposi-
tion, writing the centered estimator as the sum of a
U-process and two empirical processes, one for p and
one for gq. The U-process converges in quadratic mean
to 0 at faster than 1//n rate, so it can be ignored. For
the empirical processes, we show that they are close (in
quadratic mean) to v/n(Pnq—=0pq) and /n(Qnp—0pg),
where P,,,(Q, are the empirical measures. From here,
we apply the Lindberg-Levy central limit theorem to
these empirical processes.

5.2 Proof of Theorem 6

The Berry-Esséen theorem can be applied to an un-
biased multi-sample U-statistic, normalized by a term
involving the conditional variances. Specifically, we
will be able to apply the theorem to:

V(D ~ED)

o

; (10)

where:
AVar(p(z)) + 4 Var(q(y))

+ 4 Var(q(z)) + 4 Var(p(y))

z~p y~q

Qi

The appropriate normalization is similar to the asymp-
totic variance o2 (Equation 4) except that the densi-
ties are replaced With the mean of their kernel density
estimates, i.e. p(x) = [ Kn(x,y)p(y).
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We would like to establish a Berry-Esséen bound for
Vno—Y(D — D), but must first make several transla-
tions to arrive at Equation 10. We achieve this with
several applications of the triangle inequality and some
Gaussian anti-concentration properties. We must also
analyze the rate of convergence of the variance estima-
tor 62 to &2 for this bound and to ¢ for Theorem 5.

Let Fj be the distribution of 6/, induced by the sec-
ond half of the sample. Then we may write:

P(\f([)z)) §z>

/IP (\f(b -D)< tz> dF5(t),

so that we can decompose the proximity to the stan-
dard normal CDF as:

sup ‘1@ ({f(f) -D)< z) — B(2)

om0

+S121p‘/<1>(tz)dF;,(t) —3(2)].

D) < tz) — ®(tz)|dF5(t)

For the first term it is quite easy to eliminate the in-
tegral by pushing the supremum inside and replacing
tz with the variable being maximized. This leads to:

£ (5
(%

<bup]
+Slz1p‘<1> ( — 7(1E15 — D)) — ®(z)

sup
z

q»\a

D—Ef))gz> —®(2)

b

which follows by adding and subtracting Eﬁ, adding
and subtracting a term involving the Gaussian CDF
and the bias and redefining z in the first term. The
first term on the right hand side involves the expression
in Equation 10 and we will apply Theorem 10.4 from

Chen et al. to control it [4]. The second term can
be bounded since ED — D < h?? ¢ = ©(1) and the
Gaussian density is at most (27)~1/2. This gives:

< cp/nh*’,
(11)

sup
z

’@ (z — ?(]ED — D)) — ®B(2)

Returning to the term involving the variance estima-
tor, we will need the following lemma, which bounds
the error in the variance estimate:

Lemma 8. Under Assumption 2, but with h =< n2Fta ,
we have that for any € > 0:

P[|6% — 0?| > €] < Cle_lnﬁ7 (12)



Krishnamurthy, Kandasamy, Poczos, Wasserman

62— 5% > ¢ < C’ge_ln2§fd.

Pl (13)
The first part of Lemma 8 immediately gives the
asymptotic confidence interval in Theorem 5, as we
have a consistent estimator of the asymptotic variance.

The second part is used in the Berry-Esséen bound.

6.2

Notice that since &, O(1) and since 6% > 0, we

also have that:
Pll6 —a] > ¢ < Ce_lnﬁ,

where the constant has changed slightly. Since Fj is
the CDF for /0 and since the difference between two
Gaussian CDF's is bounded by two, we therefore have,

1—e

/

So we only have to consider the situation where 1 —e <
t <1+ e. The difference between the Gaussian CDF
at z and (1 — €)z is small, since while the width of in-
tegration is growing linearly, the height of the integral
is decaying exponentially. This term is maximized at
+1 and it is O(e), so that the entire term depending
on the variance estimate is:

‘ / B(t2)dF5(t) — B(2)

oo

B(t2) — B(2)dFs (t) + / B(t2) — B(2)dFs (1)

) 1+e€

-8
< Ce tp2ata,

<0 (e+n%/e) . (14)
o . —8/2

Optimizing over ¢ gives a rate of O(n?F+d).

The Berry-Esséen inequality applied to the term

Vo~ YD —ED) reveals that:

sup ‘IP’ (\f(b —ED) < z) —®(2)

1

) .

<O (nl/ 2y
where all of the constants can be tracked explicitly,
although they depend on the unknown densities p, g.
The application of the theorem from Chen et al. re-
quires bounding various quantities related to the mo-
ments of the U-statistic. All of these terms can be
bounded using straightforward techniques and we de-
fer these details along with some more careful book-
keeping to the appendix.

Theorem 6 follows from the application of Berry-
Esséen in Equation 15, the variance bound in Equa-
tion 14, the bias bound in Equation 11 and our choice
of bandwidth in Assumption 2.

5.3 Proof of Theorem 7

The proof is a modification of Theorem 2 of [9]. The
idea is to reduce the estimation problem to a simple
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hypothesis test, and then lower bound the probability
of error by appealing to the Neyman-Pearson Lemma.
If the null and alternative hypotheses, which will con-
sist of pairs of distributions, are well separated, in the
sense that the L3 divergence of the null hypothesis
is far from the divergence of the alternative, then a
lower bound on the probability of error immediately
lower bounds the estimation error. This argument is
formalized in the following Lemma (from [9]), which is
a consequence of Theorem 2.2 of Tsybakov [22].

Lemma 9 ([9]). Let A be an index set and let
D0, G0, PAVA € A be densities (with corresponding dis-
tribution functions Py, Qo, Px) belonging to a func-
tion space ©. Let T be a bivariate functional defined
on some subset of © x © which contains (po,qo) and

(p>\; C]o)VA c A Deﬁne ﬁ = |T1‘ Z)\QA P;l If

W (P x Qf, P™ x Qp) < <2
T(po,q0) > 28+ T (px,q)VA € A

Then,

n

inf sup P},

Tn p,q€O

where ¢y, = 3[1 —\/v(1 —~/4)].

Equipped with the above lemma, we can lower bound
the rate of convergence by constructing densities py
satisfying the bounded variation assumption, check-
ing that they are well separated in the L3 divergence
sense, and bounding the Hellinger distance. We use
the same construction as Krishnamurthy et al. and can
therefore apply their Hellinger distance bound (which
is originally from Birge and Massart [3]).

1T, ~T.q) > 8] 2, (16)

We defer verifying the bounded variation assumption
and the separation in L3 divergence to the appendix as
the arguments are a fairly technical and require several
new definitions. There, we show that the functions pj
can be chosen to belong to Wlﬁ (C), have separation
8= n~ T (in absolute error), with v = O(1), result-
ing in the desired lower bound. The n~! term in the
lower bound follows from a standard application of Le
Cam’s method (See Krishnamurthy et al. [9]).

6 EXPERIMENTS

The results of our simulations are in Figure 1.
For the first two plots, we trained our estimator
on data generated from two Gaussian with means
(0,...,0) € R? and (1,...,1) € R% Note that the
true L2 distance can be analytically computed and is
(2% (1 — e‘d/4). We use a Gaussian kernel with

bandwidth 0.5n5¢ which is the appropriate scaling if
B = d. We use the Gaussian kernel because it is the
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Figure 1: Simulation results showing the convergence rate of the error, rescaled convergence rate, and performance

of the confidence interval (from left to right).

standard choice in practice, but notice that it does not
meet all of our kernel requirements.

In the first plot, we record the relative error lDBD‘ of

the estimator as a function of the number of samples
for three different problem dimensions. We use rela-
tive error in this plot to ensure that the curves are on
the same scale, as the Lo-divergence between Gaus-
sians decreases exponentially with dimension. In the
second plot, we rescale the relative error by /n. As
a comparison, we also include the estimator computed
without data splitting for d = 5 in both of these plots.

The first plot shows that the error is indeed converg-
ing to zero and that the relative error increases with
dimension. In the second plot, we see that the rescaled
error curves all flatten out, confirming the n~=/2 con-
vergence rate in the ¢; metric. However, notice that
both the asymptote and the sample size at which the
curves flatten out is increasing with dimension. The
latter suggests that, in high dimension, one needs a
large number of samples before the \/n-rate comes into
effect. Comparing the estimators with and without
data splitting, we see that data-splitting leads to only
a slight degradation in performance.

In the third plot, we explore the empirical properties of
our confidence interval. As before, we generate data
from two Gaussian distributions, compute the confi-
dence interval and record whether the interval traps
the true parameter or not. In the figure, we plot the
empirical probability that the 90% confidence interval
traps the true parameter as a function of the number
of samples. In low dimension, the confidence interval
seems to be quite accurate as the empirical probability
approaches 90%. However, even in moderate dimen-
sion, the confidence interval is less effective, as the
sample size is too small for the asymptotic approxima-
tion to be accurate. This is confirmed by the previous
figure, as the sample size must be quite large for the
\/n-asymptotics to take effect.
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7 DISCUSSION

In this paper, we studied a simple estimator for the L2
divergence in the nonparametric setting. We showed
that the estimator achieves the parametric /n rate of
convergence as soon as the densities have d/4-orders of
smoothness, which we showed to be optimal. We also
established asymptotic normality, derived an asymp-
totic confidence interval, and characterized the quality
of the asymptotic approximation with a Berry-Esséen
style inequality. This gives a thorough characteriza-
tion of the theoretical properties of this estimator.

It is worth exploring how the L3 divergence estima-
tor and other nonparametric functionals can be used
algorithmically in learning problems. Omne challeng-
ing problem involves optimizing a nonparametric func-
tional over a finite family of distributions in an active
learning setting (for example, finding the closest distri-
bution to a target). Here the so-called Hoeffding racing
algorithm, which carefully constructs confidence inter-
vals and focuses samples on promising distributions,
has been used in the discrete setting with consider-
able success [13]. This algorithm relies on finite-sample
confidence intervals that are absent from the nonpara-
metrics literature, so extension to continuous distribu-
tions would require new theoretical developments.

Regarding two sample testing, an important open
question is to identify which test statistic is best for a
particular problem. To our knowledge, little progress
has been made in this direction.
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