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Abstract

Kulesza et al. [2014] recently observed that
low-rank spectral learning algorithms, which
discard the smallest singular values of a mo-
ment matrix during training, can behave in
unexpected ways, producing large errors even
when the discarded singular values are arbi-
trarily small. In this paper we prove that
when learning predictive state representations
those problematic cases disappear if we intro-
duce a particular weighted loss function and
learn using sufficiently large sets of statistics;
our main result is a bound on the loss of the
learned low-rank model in terms of the sin-
gular values that are discarded. Practically
speaking, this suggests that regardless of the
model rank we should use the largest possible
sets of statistics, and we show empirically that
this is true on both synthetic and real-world
domains.

1 INTRODUCTION

Predictive state representations (PSRs) are compact
models of dynamical systems that represent state as
a vector of predictions about future observable events.
More general than hidden Markov models (HMMs),
PSRs are appealing because they can be learned directly
from data without inferring hidden variables or apply-
ing iterative methods like expectation-maximization
(EM). In particular, Boots et al. [2010] proposed a
spectral learning algorithm for PSRs, based closely on
an HMM learning algorithm by Hsu et al. [2012] and
related to a variety of spectral learning methods that
have been proposed in other settings [Balle et al., 2013,
Anandkumar et al., 2012, Cohen et al., 2014, Parikh
et al., 2011], that is closed-form, fast, and, under ap-
propriate conditions, consistent.
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Despite these advantages, Kulesza et al. [2014] ob-
served recently that the full-rank assumption required
for consistency in such spectral algorithms can be quite
unrealistic, and when it is violated the results can
be unpredictable. For the full-rank assumption to be
met, the rank parameter used to control PSR complex-
ity must exactly match the underlying system to be
learned; when this is true, the singular value decom-
position used during learning does not discard any in-
formation. When the assumption holds approximately,
that is, when the PSR rank is less than the true rank
but the singular values discarded are small—Kulesza
et al. [2014] call this low-rank spectral learning—we
might expect intuitively that learning should be ap-
proximately correct. It turns out that this is not true.
In fact, Kulesza et al. [2014] found that in some cases
discarding an arbitrarily small singular value can lead
to maximally large errors.

Unfortunately, statistical considerations generally make
it difficult to estimate the correct rank. More impor-
tantly, even if we knew it, the rank of any realistic
system would likely be so large that we could not col-
lect enough data or afford a powerful enough computer
to learn a full-rank PSR. While Kulesza et al. [2014]
identified certain assumptions under which low-rank
spectral learning provably succeeds, those assumptions
are themselves strong and difficult-to-verify constraints
on the systems that can be learned. Currently, then, we
have some worrying examples but no general-purpose
guarantees on the performance of low-rank spectral
learning, even though in practice this is the setting in
which we almost always find ourselves.

In this paper we aim to address this situation by proving
the first error bound for low-rank spectral learning that
does not depend on assumptions about the underlying
system. We rely instead on two main methodologi-
cal considerations. First, we assume that the practi-
tioner provides a weighting function over observation
sequences that is used to define a loss function; we ar-
gue that this is conceptually fundamental, since an ap-
proximate learning algorithm must be able to quantify
tradeoffs between different types of prediction errors.
Second, we assume that the sets of test and history se-
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quences used by the learning algorithm are sufficiently
large; in general, we assume they are infinite.

This second assumption is what allows us to avoid the
problematic examples of Kulesza et al. [2014], but we
cannot work with infinite sets in practice. Instead,
the method we analyze can be viewed as a limiting
case of increasingly large but finite sets; thus, for any
target PSR rank, our theory supports using the largest
manageable sets of tests and histories. We evaluate
this advice empirically on a variety of synthetic do-
mains as well as a real-world text prediction problem,
finding that the error of a rank-k PSR generally drops
monotonically as the sets used to learn it grow.

In the next section we provide some necessary back-
ground on spectral learning for PSRs. We then discuss
low-rank learning and the need for a weighting function
in Section 3 before proceeding to our main result in
Section 4 and empirical evaluations in Section 5.

2 BACKGROUND

We begin by reviewing PSRs and the spectral learning
algorithm proposed by Boots et al. [2010]. At a high
level, the goal is to model the output of a dynamical
system producing observations from a finite set O at
discrete time steps. (For simplicity we do not consider
the controlled setting, in which an agent also chooses an
action at each time step; however, it is straightforward
to extend our analysis.)

We will assume the system has a reference condition
from which we can sample observation sequences. Typ-
ically, this will be either the reset condition (in applica-
tions with reset), or the long-term stationary distribu-
tion of the system, in which case samples can be drawn
from a single long trajectory.

A test or history is an observation sequence in O∗. For
any such sequence x, Pr(x) denotes the probability that
the system produces x in the first |x| time steps after
starting from the reference condition. Note that the
function Pr(·) completely specifies the system. Given
a set of tests T and a set of histories H, PT ,H is the
|T | × |H| matrix indexed by elements T and H with
[PT ,H]t,h = Pr(ht), where ht is the concatenation of h
and t.

When T = H = O∗, PT ,H is a special bi-infinite matrix
known as the system-dynamics matrix, which we will
denote by M . The rank of the system-dynamics matrix
is called the linear dimension of the system [Singh
et al., 2004], and sets of tests T and histories H are
called core if the rank of PT ,H is equal to the linear
dimension. (Note that any PT ,H is a submatrix of M ,
and therefore can never have rank greater than the
linear dimension.)

2.1 Predictive State Representations

A PSR of rank k represents state using vectors in Rk;
it is parameterized by a triple B = (b∗, {Bo}, b∞),
where b∗ ∈ Rk is a reference condition state vector,
Bo ∈ Rk×k is an update matrix for each o ∈ O, and
b∞ ∈ Rk is a normalization vector. Let b(h) denote the
PSR state after observing history h from the reference
condition (so b(ε) = b∗, where ε is the empty string);
the update rule after observing o is given by

b(ho) =
Bob(h)

b>∞Bob(h)
. (1)

From state b(h), the probability of observing the se-
quence o1o2 . . . on in the next n time steps is predicted
by

b>∞Bon · · ·Bo2Bo1b(h) , (2)

and, in particular, the PSR approximates the system
function Pr(·) as

PrB(o1o2 · · · on) = b>∞Bon · · ·Bo2Bo1b∗ . (3)

The goal of learning is to choose parameters B so that
PrB ≈ Pr.

Suppose that T and H are core sets of tests and histo-
ries, so the rank of PT ,H is equal to d, the linear dimen-
sion of the system. Let oT denote the set {ot | t ∈ T },
and let U ∈ R|T |×d be a matrix containing the left
singular vectors of the matrix PT ,H. Boots et al. [2010]
showed that if the PSR parameters are chosen to be

b∗ = U>PT ,{ε}

Bo = U>PoT ,H
(
U>PT ,H

)+ ∀o ∈ O (4)

b>∞ = P{ε},H
(
U>PT ,H

)+
,

where A+ is the pseudoinverse of A, then PrB = Pr.
That is, a system of linear dimension d can be modeled
exactly by a rank d PSR, and one such PSR is recov-
ered by the so-called spectral learning algorithm in
Equation (4). Note that this algorithm is statistically
consistent: if the P -statistics are estimated from data,
then the derived parameters converge to an exact PSR
as the amount of data goes to infinity.

3 LOW-RANK SPECTRAL
LEARNING

While the spectral algorithm of Boots et al. [2010],
along with the closely related work of Hsu et al. [2012],
has many nice properties, it requires knowing and using
the linear dimension d to compute U . In principle we
can obtain d from the rank of PT ,H, but in practice
the statistics are only estimates, and as pointed out by
Kulesza et al. [2014] accurately estimating rank in this
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setting is quite difficult [Benaych-Georges and Nadaku-
diti, 2012]. Moreover, even if known, the rank is likely
to be prohibitively large from a computational and
statistical standpoint for any interesting real-world sys-
tem. Here, our theoretical interest is in understanding
the consequences of violating the full-rank assumption,
so we follow Kulesza et al. [2014] and assume for now
that we have access to exact P -statistics but that d is
unknown or very large. (In Section 5, we will study the
empirical behavior of learning with finite data sets.)

For settings where we cannot use the true d, Kulesza
et al. [2014] proposed the idea of low-rank spectral learn-
ing, where U ∈ R|T |×k contains only the k principal
left singular vectors of PT ,H for some hyperparameter
k < d; the PSR parameters can then be computed
using Equation (4) as before. While this approach is
intuitive and was in fact proposed informally by Boots
et al. [2010], Kulesza et al. [2014] showed that it leads
to surprising problems. In particular, even omitting
from U a single singular vector with an arbitrarily small
(but nonzero) corresponding singular value can produce
an uninformative model with maximum error.

Our aim is to show that these problems can be amelio-
rated by (a) introducing a convergent weighting func-
tion on observation sequences and (b) choosing suffi-
ciently large sets T and H. We will prove that in the
limit, when T = H = O∗ (but k remains constant),
low-rank spectral learning behaves in a predictable way,
with weighted loss bounded by the omitted singular val-
ues. We first discuss the need for a weighting function
before proceeding to our main theorem in Section 4.

3.1 Weighted Loss

Existing theoretical guarantees for spectral learning
generally apply uniformly across all sequences [Hsu
et al., 2012]; that is, they show that PrB(x) approaches
Pr(x) regardless of x. In the low-rank setting, where
we cannot hope to recover the underlying system ex-
actly, this uniform performance is not generally possi-
ble. We argue that a low-rank model must trade off
(for instance) short sequence prediction against longer
sequence prediction, and cannot be optimal for both.

To see why, consider the system that (from the reset
condition) yields the observation “a” for the first ten
time steps and the observation “b” at all remaining
time steps. That is, the observation sequence from reset
is “aaaaaaaaaabbbbbbb . . . ”. The linear dimension of
this process is 11, so we could learn it exactly with a
rank 11 PSR, but suppose that due to computational
constraints we wish to learn a model B of rank one.
We will examine, for various choices of B, the types of
errors that result when we use PrB to predict Pr on
observation sequences of different lengths.

First, let b∗ = b∞ = 1 and set Ba = 1, Bb = 0. It is
clear from Equation (3) that PrB assigns a probability
of one to any sequence consisting solely of “a”s, and
therefore matches Pr for the first 10 time steps. Thus,
a simple rank-one model achieves zero error for predic-
tions up to length 10. However, for predictions of length
11 and beyond, this model is maximally inaccurate—it
assigns a probability of one to a sequence (“aaa . . . ”)
that is never observed, and predicts zero probability
for the sequence that is, in fact, always observed.

On the other hand, consider the rank-one PSR given
by b∗ = b∞ = 1 and Ba = Bb = 0.5. Now PrB
predicts that all sequences of observations are equally
likely. It is a poor predictor of Pr in general; the real
system is completely deterministic, while this PSR is
the maximum-entropy rank-one model. However, it is
still better than our first model for lengths greater than
10, since it at least assigns some nonzero probability
to the observed sequence.

So we have described two models. The first achieves
zero error for predictions of length at most 10, but
maximal error (under any reasonable metric) for longer
predictions. The second achieves error somewhere be-
tween zero and the maximum at all lengths. Which
of these two is preferable? We argue that the answer
fundamentally depends on how the practitioner values
the accuracy of different kinds of predictions. There
is no globally dominating model—it is not possible to
achieve uniformly zero error with a rank one model—
therefore we need some additional information to tell
us which choice is better.

In this paper, we assume that the information comes
in the form of a weighting function w : O∗ → R, which
we use to define a loss function for measuring the
performance of a PSR:

L(B) =
∑
x∈O∗

w2(x) [Pr(x)− PrB(x)]
2
. (5)

We require that w satisfies the technical condition

∞∑
n=0

(n+ 1) max
|x|=n

w2(x) <∞ . (6)

In general, a bi-infinite system-dynamics matrix may
not have a valid singular value decomposition, but this
condition ensures that the weighted system-dynamics
matrix we define in Section 4 does; it also ensures that
the loss is finite.

As suggested by the form of Equation (6), it can be
convenient to choose a weighting function that depends
only on the length of x. For example, we could choose

w(x) =
1

2|x|
; (7)
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then the infinite sum in Equation (6) is equal to 16/9.
Alternatively, we could choose w(x) = I(|x| ≤ n) for
any finite length n, or w(x) = 1/(|x|+ 1)p for p > 1.

Our goal will be to find a PSR B of rank k to minimize
L(B). Since the weighting function defines the loss, it
is a fundamental component of this learning problem;
as we will see later, the choice of weight function can
affect the difficulty of learning a given system, as well
as the behavior of the spectral algorithm.

4 ANALYSIS

In this section we will establish an upper bound (The-
orem 1) on the loss of a modified low-rank spectral
learning algorithm that uses the full system-dynamics
matrix M . Of course, we are never truly in this situa-
tion since M is infinite (and our computers are not),
but later we will discuss how the result informs the use
of spectral methods in realistic settings.

We begin by defining the weighted system dynamics
matrix

M̂t,h = w(ht)Mt,h . (8)

Under this definition, Equation (6) ensures that the
squared sum of the entries of M̂ is bounded:∑

t,h∈O∗

|M̂th|2 =
∑

t,h∈O∗

w2(ht)M2
th (9)

=
∑
x∈O∗

(|x|+ 1)w2(x)Pr2(x) (10)

=

∞∑
n=0

(n+ 1)
∑
|x|=n

w2(x)Pr2(x) (11)

≤
∞∑
n=0

(n+ 1) max
|x|=n

w2(x) (12)

<∞ , (13)

where we use the fact that each sequence x can be split
into a history h and a test t in exactly |x| + 1 ways,
and

∑
|x|=n Pr(x) = 1. (Note that for some systems

the unweighted M may already have this property,
but by introducing a weighting function we guarantee
it in every case.) The bi-infinite matrix M̂ therefore
describes a Hilbert-Schmidt operator and has a singular
value decomposition (SVD) given by

M̂ = UΣV > , (14)

where U and V are infinite orthogonal matrices and Σ
is a bi-infinite diagonal matrix whose diagonal entries
are the singular values σ1 ≥ σ2 ≥ σ3 ≥ . . . [Kennedy
and Sadeghi, 2013, Smithies and Varga, 2006]. Below,
we denote by Uk the ∞× k matrix containing the first
k columns of U (similarly for Vk) and by Σk the k × k
upper-left submatrix of Σ.

In order to learn a PSR we will need several quantities,
analogous to those in Equation (4), that are derived
from M̂ . Let P∗ denote the column of M̂ corresponding
to ε; that is, P∗ = M̂1ε, where 1ε is an infinite binary
vector with a single one in the position indexed by
ε. Likewise, let P∞ = 1>ε M̂ denote the row of M̂
corresponding to ε. Finally, let Po for any o ∈ O
denote the bi-infinite matrix whose t, h entry is given
by M̂t,ho. Po contains only the columns of M̂ that are
indexed by a history ending in o, and we can write it as
Po = M̂Ro, where Ro is the bi-infinite binary matrix
with [Ro]h1h2

= 1 if and only if h1 = h2o.

Finally, since we will be learning from M̂ instead of
M , our prediction function must “undo” the weighting
function; for any sequence x = o1o2 · · · on we redefine

PrB(x) =
1

w(x)
b>∞Bon · · ·Bo1b∗ . (15)

With these definitions we will prove the following theo-
rem.

Theorem 1. Assume that the weighted system-
dynamics matrix M̂ has rank k or greater. Let M̂ =
UΣV > be a singular value decomposition with singular
values σ1 ≥ σ2 ≥ σ3 ≥ . . . , and let B be the rank k
weighted PSR given by

b∗ = U>k P∗

Bo = U>k Po

(
U>k M̂

)+
(16)

b>∞ = P>∞

(
U>k M̂

)+
.

Then L(B) ≤
∑∞
i=k+1 σ

2
i .

Kulesza et al. [2014] showed that serious problems
can arise when applying low-rank spectral learning
to an unweighted finite submatrix of M . In contrast,
Theorem 1 guarantees that, given access to the infinite
weighted system-dynamics matrix M̂ , the low-rank
spectral learning algorithm in Equation (16) behaves
in a predictable way, with loss bounded directly by the
omitted singular values.

Of course, working with an infinite system-dynamics
matrix is impossible in practice, but the result is still
informative in several ways. First, if we choose a weight-
ing function that is nonzero on only a finite set of se-
quences X, then M̂ has only a finite number of nonzero
entries. In particular, if T and H contain (respectively)
all the suffixes and prefixes of sequences in X, then
low-rank spectral learning on a weighted version of
PT ,H is equivalent to Equation (16). (Alternatively, we
can think of T and H as defining a particular harsh
weighting function that only cares about predictions on
sequences that appear in those sets.) So in some cases
we actually can implement the algorithm in Theorem 1.
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Second, even in the general case, the convergence prop-
erties of the weighting function guarantee that M̂ can
be described as a limit of finite-rank matrices [Riesz
and Sz.-Nagy, 1990]. In particular, given a data set,
the maximum likelihood estimate of M̂ will contain
only a finite number of nonzeros, and therefore we can
effectively implement Equation (16) by choosing T and
H to contain just the sequences observed in the data.
If the data set grows such that every sequence with
nonzero probability is eventually observed, then the
maximum likelihood estimate approaches M̂ (and the
estimated singular values approach {σi}). Thus we can
implement an algorithm that converges, in the limit of
data, to the behavior in the theorem.

Still, a data set may contain a very large number of se-
quences, making this technique expensive. Instead, the
most practical approach is usually to simply choose sets
T and H that are as large as is manageable. Indeed, as
T and H grow to include longer and longer sequences,
the zero-padded bi-infinite extension of PT ,H converges

to M̂ as well. While in practice it may seem statisti-
cally problematic to accurately estimate a very large
PT ,H matrix, Denis et al. [2014] showed that the con-
centration of the empirical PT ,H around its mean is
essentially independent of dimension, and argued that
statistical considerations should therefore not prevent
us from using large T and H. Thus, we can hope that
as the sets of tests and histories that we use get larger,
the empirical performance of low-rank spectral learning
will transition from the problematic regime of Kulesza
et al. [2014] to the well-behaved regime of Theorem 1.
We show experimentally that this is true in Section 5.

An interesting consequence of Theorem 1 is that the
weight function, which is chosen by the practitioner and
used to derive M̂ , has the potential to make learning
easier (in the sense of reducing singular values of M̂ , for
instance, by having many zeros) or harder (in the sense
of increasing the bound in Theorem 1; we will show
an example in Section 4.1). We argue that this is of
fundamental importance: a system is not by itself easy
or hard to learn; the difficulty of the learning problem
depends on the loss function we aim to optimize.

To prove Theorem 1 we will use the following lemma,
whose proof is straightforward but omitted for space.

Lemma 1.

1ε1
>
ε = I −

∑
o∈O

RoR
>
o . (17)

Proof of Theorem 1. Since M̂ = UΣV > is a singular
value decomposition, we have U>k M̂ = ΣkV

>
k and

M̂VkΣ−1k = Uk. Using these facts, we can rewrite
Equation (16):

b∗ = U>k M̂1ε = ΣkV
>
k 1ε (18)

Bo = U>k M̂RoVkΣ−1k = ΣkV
>
k RoVkΣ−1k (19)

b>∞ = 1>ε M̂VkΣ−1k = 1>ε Uk , (20)

where (U>k M̂)+ = (ΣkV
>
k )+ = VkΣ−1k because V >k has

orthonormal rows.

Now, for any sequence x = o1o2 . . . on we have

w(x)PrB(x)

= b>∞Bon · · ·Bo1b∗ (21)

=
(
1>ε Uk

) (
ΣkV

>
k RonVkΣ−1k

)
· · ·
(
ΣkV

>
k Ro1VkΣ−1k

) (
ΣkV

>
k 1ε

)
(22)

= 1>ε M̂VkV
>
k RonVkV

>
k · · ·Ro1VkV >k 1ε . (23)

Thus, prediction is effectively a series of alternating
projection (VkV

>
k ) and shift (Ro) operations on the row

P∞ = 1>ε M̂ , until finally the element corresponding to
the empty string is extracted. Note that, if we omit
the low-rank projections, we obtain exact predictions:

1>ε M̂Ron · · ·Ro11ε = M̂x,ε = w(x)Pr(x) . (24)

Let W ≡ VkV
T
k denote the orthonormal projection

matrix, which is symmetric and satisfies W 2 = W and
(I −W )2 = I −W . Let RWx ≡ RonW · · ·Ro1W , so
that Equation (23) can be abbreviated as

PrB(x) =
1

w(x)
1>ε M̂WRWx1ε , (25)

and similarly let Rx ≡ Ron · · ·Ro1 .

Using this notation, we can put the weighted PSR loss
(Equation (5)) into a quadratic form in 1>ε M̂ :

L(B) =
∑
x∈O∗

w2(x)

[
Mx,ε −

1

w(x)
1>ε M̂WRWx1ε

]2
=
∑
x∈O∗

[
M̂x,ε − 1>ε M̂WRWx1ε

]2
(26)

=
∑
x∈O∗

[
1>ε M̂Rx1ε − 1>ε M̂WRWx1ε

]2
(27)

=
∑
x∈O∗

(1>ε M̂) (WRWx −Rx)1ε

· 1>ε (WRWx −Rx)
>

(1>ε M̂)> . (28)

We can also rewrite the bound
∑∞
i=k+1 σ

2
i as a

quadratic form in 1>ε M̂ . Since W is a projection onto
the top k singular vectors of M̂ , we have

∑∞
i=k+1 σ

2
i =

‖M̂−M̂W‖2F , where ‖·‖F denotes the Frobenius norm.
On the other hand, we can write the squared Frobenius
norm as the sum of the squared L2-norms of the rows;
if Ax,· denotes the x row of matrix A, we have

∞∑
i=k+1

σ2
i = ‖M̂ − M̂W‖2F (29)
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=
∑
x∈O∗

‖[M̂(I −W )]x,·‖22 (30)

=
∑
x∈O∗

‖M̂x,·(I −W )‖22 (31)

=
∑
x∈O∗

‖1>ε M̂Rx(I −W )‖22 (32)

=
∑
x∈O∗

(1>ε M̂)Rx(I −W )R>x (1>ε M̂)> .

With
∑∞
i=k+1 σ

2
i and L(B) (and thus their difference)

in the same quadratic form, it suffices to show that∑
x∈O∗

[
Rx(I −W )R>x

−(WRWx −Rx)1ε1
>
ε (WRWx −Rx)>

]
(33)

is a positive semidefinite matrix. To simplify notation,
define the following operator for any matrix A:

A2> ≡ AA> . (34)

Then, applying Lemma 1, Equation 33 is equal to∑
x∈O∗

[
(Rx(I −W ))2> (35)

− (WRWx −Rx)

(
I −

∑
o∈O

R2>
o

)
(WRWx −Rx)>

]
=
∑
x∈O∗

[
(Rx(I −W ))2> − (WRWx −Rx)2>

]
+
∑
x∈O∗

∑
o∈O

(WRWxRo −RxRo)2> . (36)

Since RWε = Rε = I, the first term of the first sum
disappears:

(Rε(I −W ))2> − (WRWε −Rε)2>

= (I −W )2 − (W − I)2 = 0 . (37)

Therefore, letting WRx ≡WRonW · · ·Ro1 , the above is
equal to∑

|x|≥1

[
(Rx(I −W ))2> − (WRWx −Rx)2>

]
+
∑
x∈O∗

∑
o∈O

(WRox −Rox)2> (38)

=
∑
|x|≥1

[
(Rx(I −W ))2> − (WRxW −Rx)2>

+ (WRx −Rx)2>
]
. (39)

Note that we replaced the double sum
∑
x∈O∗

∑
o∈O

with
∑
|x|≥1 since the set generated by prepending

every observation to every sequence is just the set of all

sequences with length at least one. The final step is to
show that each term in the remaining sum is positive
semidefinite. Manipulating the second inner term,

(WRxW −Rx)2>

= (WRx −Rx −WRx(I −W ))2> (40)

= (WRx −Rx)2> + (WRx(I −W ))2>

−WRx(I −W )(WRx −Rx)>

− (WRx −Rx)(I −W )(WRx)> (41)

= (WRx −Rx)2> + (WRx(I −W ))2>

− (WRx(I −W ))2> + WRx(I −W )R>x

− (WRx(I −W ))2> +Rx(I −W )(WRx)> (42)

= (WRx −Rx)2> − (WRx(I −W ))2>

+ WRx(I −W )R>x +Rx(I −W )(WRx)> . (43)

Combining with the remaining two inner terms, each
full term of the summation in Equation 39 is equal to

(Rx(I −W ))2> + (WRx(I −W ))2>

−WRx(I −W )R>x −Rx(I −W )(WRx)>

= (Rx(I −W )−WRx(I −W ))2> , (44)

which is positive semidefinite. Therefore L(B) ≤∑∞
i=k+1 σ

2
i for any M̂ .

4.1 Non-monotonicity

We previously argued that Theorem 1 supports choos-
ing the largest manageable sets of tests and histories,
and in the next section we will empirically validate
that claim. However, we first pause to note that it is
not strictly guaranteed that larger sets are always bet-
ter; it is possible to add tests and histories but reduce
prediction accuracy. Intuitively, this can happen when
some “unexpected” property of the problem, which
cannot be easily modeled with low rank, appears in the
added sequences. We will create such a situation by
manipulating the weighting function, emphasizing the
important role it can play. (Of course, the system itself
can also cause non-monotonic behavior, even when the
weight function is “normal.”)

Consider a system with a single observation, so that
the system-dynamics matrix M consists of all ones. Let
the weighting function be w(x) = r|x| for some |r| < 1.
When the rows and columns are ordered by sequence
length, the weighted system-dynamics matrix M̂ is a
Hankel matrix: it has constant skew-diagonals equal
to 1, r, r2, etc. (See Figure 1a.)

Since any row of M̂ is a geometric sequence with ratio
r, M̂ has rank one, and thus any nonempty sets of tests
and histories will produce a perfect rank-one spectral
model. Now suppose that we modify the weighting

522



Alex Kulesza, Nan Jiang, Satinder Singh

1 r

r

r2

r2

r2

r3
r3

r3
r3

...

(a)

PT ,H PoT ,H

+c

+c

+c

+c

...

(b)

PT ,H PoT ,H

+c

+c

+c

+c

...

(c)

Figure 1: (a) M̂ has constant skew-diagonals. (b)
Only the shaded entries change under the modified
weights, but when T = H = {ε}, the P -statistics do
not depend on them. (c) When T and H are expanded,
the modified weights affect learning.

function slightly, setting w(x) = r|x| + c when |x| = 3,
and leaving it otherwise unchanged. The new M̂ is
depicted in Figure 1b, and (in general) has rank five.

If we now perform rank-one spectral learning with
T = H = {ε}, PT ,H and PoT ,H do not depend on c
since they involve no sequences of length three (see Fig-
ure 1b). The learned model, therefore, will make the
same predictions as before. These predictions are cor-
rect for all sequences except the one with the modified
weight—the sequence of length three—and therefore
have a finite loss of c2.

If we now expand T and H to include the sequence
of length one (see Figure 1c), but continue to perform
rank-one learning, we have

PT ,H =

[
1 r
r r2

]
PoT ,H =

[
r r2

r2 r3 + c

]
. (45)

The first left singular vector of P is proportional to
[1 r]>, and so (it is straightforward to verify) the

learned parameter is B = r + cr2

r4+2r2+1 . If c = 0,
we recover the unaltered weight function and B is the
true ratio. However, if c is sufficiently large, then B
will be greater than one, the model’s predictions will
diverge, and its loss will be infinite. This leads to the
following claim.

Claim 1. Let B(T ,H, k) denote the PSR obtained from
rank-k spectral learning using tests T and histories H.
There exist systems M , ranks k, and sets of observation
sequences T , T ′,H,H′ such that T ⊆ T ′ and H ⊆ H′,
but L(B(T ,H, k)) < L(B(T ′,H′, k)).

Nonetheless, we will show in Section 5 that using large
T and H is usually beneficial in practice.

5 EXPERIMENTS

We aim to show (a) that the loss of a low (fixed) rank
PSR model tends to decrease monotonically as the T

and H used to learn it grow, (b) that this phenomenon
persists when the statistics in PT ,H are estimated from
data (and hence are inexact), and finally (c) that this
phenomenon holds in a real-world data set.

5.1 Learning Synthetic HMMs

Domains We generate HMMs with 100 states and 4
observations as follows. The observation probabilities
in a given state are chosen uniformly at random from
[0, 1] and then normalized. Transition probabilities are
chosen to reflect three different hidden-state topologies:

• Random: Each state has 5 possible next states,
selected uniformly at random.

• Ring: The states form a ring, and each state can
only transition to itself or one of its 2 neighbors.

• Grid: The states form a 10 × 10 toric grid, and
each state can only transition to itself or one of
its 4 neighbors.

For each topology, the non-zero entries of the transition
matrix are chosen uniformly at random from [0, 1] and
then normalized; the initial state distribution is built in
the same way. The system-dynamics matrices for these
HMMs generally have rank 100 [Singh et al., 2004].

PSR Learning We use a weighting function that is
constant up to length 10 and zero thereafter: w(x) =
I(|x| ≤ 10). Histories and tests indexing M̂ are sorted
by length, and within length lexicographically. We
then let PT ,H be the |T | × |H| top-left corner of M̂ .
(Kulesza et al. [2015] showed that, given target sizes |T |
and |H|, it is usually possible to improve performance
by choosing T and H in a more sophisticated way; here,
we use the top-left corner of M̂ in order to isolate the
effect of size.) For our experiments we fix |T | = |H|.
Given M̂ , |H|, and model rank k, we learn a PSR using
Equation (16) with the finite PT ,H in place of M̂ .

Evaluation Since our weighting function is 0 for se-
quences of length > 10, the loss (Equation (5)) can be
computed without performing an infinite sum. Still,
there are too many sequences to tractably compute the
exact loss. Instead, we estimate Equation (5) using 100
uniformly sampled sequences of each length, which is
sufficient to achieve low variance. Because an inexact
PSR may predict negative probabilities, we clamp the
predicted probabilities to [0,∞) and normalize them.

Results In Figure 2 we vary |H| from 10 to 100, plot-
ting the loss of the learned PSR vs. |H| for fixed model
ranks of 10, 30, and 50. In all three domain topologies,
for each rank the loss monotonically decreases as |H|
increases. This satisfies objective (a): providing larger
T and H for a (fixed) low-rank yields better PSRs. In

523



Low-Rank Spectral Learning with Weighted Loss Functions

0 50 100
10−5

100

|H|

Lo
ss

random

0 50 100
10−5

100

|H|

ring

0 50 100
10−5

100

|H|

grid

Figure 2: Average loss of low-rank PSRs on synthetic
HMMs of three different topologies, using exact statis-
tics. The solid curve is rank 10, the dashed curve is
rank 30, and the dotted curve is rank 50.
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Figure 3: Average loss of low-rank PSRs on synthetic
HMMs using statistics estimated from data. The curves
correspond to rank as in Figure 2.

Figure 3, we show that this phenomenon persists when
PT ,H is estimated from data (objective (b)). We use
100 or 10,000 sample trajectories (sufficiently long to
populate PT ,H) to estimate the statistics, and then
repeat the experiment in Figure 2. Figure 3 shows that
loss continues to decrease with increasing |H|.

5.2 Wikipedia Text Prediction

To address objective (c), we turn to a large corpus of
real-world Wikipedia text treated as a time series where
each character is an observation. Following Sutskever
et al. [2011], we take 1GB of text as training data
(treated as a single long sequence), and leave the rest
for testing. The entries of the system-dynamics matrix
are estimated as follows: given a training character
sequence, for any history h and any test t, the estimated
joint probability is the probability of observing ht at a
randomly selected position in the sequence.

We evaluate a PSR on the test set by making pre-
dictions incrementally: at any position in the test
sequence, the model predicts the immediate next ob-
servation based on the current state vector, sees the
true next observation, makes a state update, moves to
the next position, and repeats this procedure. Follow-
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Figure 4: Performance of low-rank PSRs on Wikipedia
data. Left: Test likelihood vs. |H| for three different
model ranks and a baseline. Right: Test likelihood vs.
model rank for two different values of |H|.

ing Sutskever et al. [2011], we reset the state vector
to b∗ after every 250 observations, and in computing
the model’s quality we ignore the predictions made on
the first 50 observations out of each 250 (though these
observations are still used for state updates). Finally,
the average likelihood of the predictions is calculated
as the performance of the model.

Results The left plot of Figure 4 shows low-rank PSR
performance curves for three different choices of rank
(10, 30 and 50) over a range of |H|. The key empirical
phenomenon, that for each fixed rank the performance
improves monotonically with |H|, is also observed here.
As a baseline we include the performance of a first-
order Markov model of the training data (which has an
implicit rank of 86 [Singh et al., 2004]). In the right plot,
the x-axis is model rank and the two curves correspond
to T and H containing all strings up to length 1 (|H| =
86; solid line) and 2 (|H| = 7482; dashed line). Again,
for any fixed model rank a larger |H| helps (i.e., the
dashed curve dominates the solid curve). Additionally,
for |H| = 86, performance increases with rank up to
a point and then decreases; this is consistent with
overfitting to the noise in PT ,H.

6 CONCLUSION

In contrast to the undesirable behavior found by
Kulesza et al. [2014], we proved that the introduction
of a weighting function and the use of sufficient num-
bers of tests and histories is enough to guarantee that
low-rank spectral learning for PSRs is well-behaved.
Empirical evaluations support the use of the largest
manageable sets T and H for any fixed model rank.
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