Symmetric Iterative Proportional Fitting

— Supplementary Material —

This supplement consists of several parts that refer directly to specific topics in the paper:

[A] - Proof of Equation (2)

Bl - Proof of Lemma 3.1 (Symmetric biproportional fit)

- Technical details on why ”local affinity” is sufficient in Section 4.1
- Proof of Theorem 4.2 (Convergence of PSIPF)

[El - Proof of Lemma 4.4 (L;-monotony)

[E] - Proof of Lemma 4.5 (Volume bounds)

- Proof of Lemma 4.6 (Limit points)

H - Proof of Lemma 4.7 (Strong convergence)

M - Proof (sketch) of Proposition 5.2 (Strictly positive feasibility)

A Proof of Equation (2)

Equation (2) claims that for all A, W € Q with E(A) C E(W), r € RZ;, and R := Q(r,-, W), it holds that
Pr(A) = diag(r) -diag(A1)~1- A. In order to keep notation simple, we first prove the following weaker statement
(by assuming A = W) and finally generalize the result to any A with E(A) C E(W)

For W e Q, r € R and R := Q(r,, W) ={X e R[" | X1 =r, E(X) C E(W)} it holds that

Pr(W) = diag(r)diag(W1)™' - W

Proof. From w;; = 0= z;; =0 and 0 - log(0/w;;) := 0 it follows by definition of RE that

o(X) == RE(X|W) = > aylog(wij/wiy) —wy+wy = Y @ijlog(wi;/wiy) — iy + wyy

=L, ijEE(W)

From the definitions we get that
Pr(W) = argminXeRz,Um{ oX) | X1=r, E(X)CEW)}

. (%)
= argminycgmn { Yijenow) Tijlog(@ij/wij) —zy; | X1=r, E(X)C E(W) }

It follows from strict convexity of ¢ and convexity of the constraints that the minimizer is unique, if existing ().

Comment: Note that (x) describes a non-smooth optimization problem because the partial derivative
“Vx,;p(X) = log(xi;/w;;)”, does not exist whenever ij € E(W)\ E(X). A general strategy to avoid this
problem is by first determining E(Pr (W)) separately and then skipping all summands with ij ¢ E(Pg(W))
from (%), before finally taking the Lagrangian approach. For the projection to R we show in the following
that E(Pr(W)) = E(W).




We re-state (x) as the minimization over 21¥(")| many individual minimization problems, one for each E C E(W),
and each providing a unique (if existing) “inner minimizer” R*(E) that achieves its respective minimum o*(E):

Pr(W) = R*(E*) for E* := argmin{o"(E)}
ECE(W)

min {o(X)| X1=r, E(X)=FE} with unique minimizer R*(E)
00 if not existing

If Pr(W) exists, then E* is well-defined because at least one inner minimizer exists: for E = E(Pr(W)) there
trivially exists R*(E) = Pr(W). We now show that further E* is maximal in the sense that E(Pr(W)) 2 E
for all E C E(W) for which R*(E) exists.

For any E;,Ey C E(W) for which R*(F;) and R*(Es) exist let R, := aR*(E;) + (1 — a)R*(FE>) denote their
convex combination for a € (0,1). Then E(R,) = E1UF5 =: E15. In particular Eq5 # (), thus R*(F12) exists. By
continuity of p we get that lim, 0 0(Ro) = o(R*(E1)) = 0*(E1) and similarly that lim,_,1 0(Re) = o(R*(E2)) =
0*(E3). Since further o*(E12) < o(R,) we get that o*(E12) < min{o*(E1), 0*(E2)}. Thus ¢* cannot increase
when considering the union of any two sets. This implies that with { := {E C E(W) | o*(F) < oo} and E* :=
Upee E that 0" (E) < o*(E) for all E C E(W). Hence R*(E*) must be some global minimizer. It is further
unique over all subsets E C E(W) by the separate uniqueness argument (%) above. Hence Pr (W) = R*(E*).

Here, we even get that E* = E(WW) because there exists the feasible solution
W* .= diag(r) diag(W1)~"- W

of maximum possible non-zeros E(W*) = E(W). It remains to show that Pr (W) indeed equals W*.
With the knowledge that E(Pr(W)) = E(W) we can re-state the minimization problem (%) as

Pr(X) = argminXGRgom{ Yijerw) Tijlog(zij/wij) — x| X1=r, E(X)=EW) } .

Now we can take the standard Lagrangian approach, that is to find a global minimum of the Lagrangian function

A(X, p) = o(X) - HT(Xl —r)= Z wijlog(wij /wij) — xij — Zui ( Z Tij) — T

ijeE(W) j st. ijeE(W)

over X € REBW), by which we handle x;; := 0 for all ij ¢ E(W) as constants. From w;; # 0 & x;; # 0 we get
that Vo, A(X, u) = log(z;/wi;) — ps for all ij € E(W). Setting all derivatives to zero gives after entry-wise
exponentiation that
- {exp(ui) ~w;;  for ij € E(W)
Y00 for ij ¢ E(W)’

that is in matrix notation X = diag(exp(u))-W. Multiplying 1 from the right gives that r = X1 = diag(exp(u))-
W1, hence diag(exp(p)) = diag(r) diag(W1)~!. Thus X = W* is indeed the (only) critical point. Further, the
Hessian matrix is the diagonal matrix with the all-positive diagonal V.,V A(X, u) = 1/x;;, which is positive
definite. Thus W* is the (unique global) minimum. -

O

The proof easily generalizes to Pr(A) for any A € Q with E(A) = E(W) just by flipping the notation from
W = [w;;] to A = [a;;] whenever W appears as the argument of Pr(-). Further, it generalizes to any A € Q
with E(A) € E(W) by the convention z;; - log(z;;/0) := oo for x;; > 0, which immediately implies that
E(Pr(A)) C E(A), hence by maximality F(Pg(A)) = E(A).

The proof for Pe (W) is fully analogous.



B Proof of Lemma 3.1

Lemma 3.1 (Symmetric biproportional fits). Let B denote the biproportional fit of W € S to row
and column marginals £ € RY,. Then
(i) B = BT is symmetric
(i) B =limy_, oo Wy for a sequence of Wy, € (W)
(ii) B € (W) if and only if B is direct

Proof. (i) Let B = limy 0 R®WS®) denote the biproportional fit of W to f. Then B = limj_,ooc RO WTSH)
is the same biproportional fit of WT = W to f. Hence BT = limj,_ o S®W R is another biproportional fit of
W to f, so by uniqueness, B” = B.

(ii) Now define T®) := v R(M S(*) by its diagonal elements ¢; := (r, (k) Ek))l/Q For all i, j with w;; = wj; # 0, we

get from limy o0 w;j 7 gk) gk) =b;j = bj; = limp_y0 wij 7 ( ) (k) that limy_y o0 (7; (k) (k))1/2 = limk_>oo(r§k)s§k))1/2.
Hence,
(k) (k) _ (B) (k) (k) (k)\1/2 _ ; (k) (k)\2 (k) (k) _
kl;r{:owlj it kl;rgowzj (r; 8; T8, ) / = w;; - (klggo TS, ) kl;n;oij sy = bij.

For b;; # 0 this implies with b;; # 0 = w;; # 0 that limg_, o wy; tFpk) bij. If b;; = 0, then either w;; # 0,

i 7y
Ek)t(k) = by;, or wy; = 0, in which case limp_, 0 wy; B (k) limg_ o0 Otz(- k) — g = bi;

thus again limy_,o w;; t He >

Thus, limg 0o T®WT®) = B, which proves (ii) for Wy, := T®WT®) € U (W).

(iii) The implication “=" follows from the definitions, so it remains to show “<”. In case of direct B = RW S,
we get from (i) with T(*) := T':= VRS that B =TWT € ¥(W). O

C Technical details on why ”local affinity” is sufficient in Section 4.1

In this section we refer to the recursion (4) as the non-reflected sequence (%) defined for some Zy € RV by

.f?k = 'P[k](.fk_1) 5

and to the recursion (5) as the sequence () defined for xg = Zg by

ap = (Plhyo VA ) (Vh(zg—1) + ri—e)

and 1, = Vh(axg_1)+ 16— — Vh(zg)

We say that a function h : RN — R is “suitable”, if it is Legendre, co-finite, and very strictly convex. Please
refer to B&L (Bauschke and Lewis, 2000) for detailed definitions. Beside others, orthogonal projections and
RE-projections are induced by a suitable function h as a Bregman divergence, so all results hold for both of
them.

In the following, (-,-) denotes an inner product on RY. For any A C RY let Ba(wg,€) := {x € A | ||z —x0]]2 < €}
denote the ball of radius € around xg in A. For any subset C of an affine subspace A we denote ¢ € C as being
locally affine if there exists € > 0 such that Ba(c,e) C C. The sequence (4) is locally affine if all its points for
k > 1 are locally affine.

All that we need, and which is implied by local affinity, is sloppy spoken that there “exists a basis of A and its
negate within a small neighborhood in C around the point ¢”. Let us give some intuition on what this means
and why this can be helpful: if for a linear subspace £ C RY and some ¢ € R" it holds that (z,q) < 0 for all
x € L then it follows that (x,q) = 0. This is easy to see from (b,q) < 0 and (—b,q) < 0 for every basis vector
b of L. It is already sufficient if the inequality holds everywhere within an arbitrary small ball around 0, since
it already contains a smaller-scaled basis of £. This insight is stated in the following lemma more general by
taking £ as the difference space of an affine subspace A C RY.



Lemma C.1. Let A C RY denote an affine subspace. Then it holds for all ¢ € RN and a € A:
Vee A : (x—a,q) =0 & de > 0:Vz € Ba(a,e) : (x—a,q) <0.

The same holds true for > instead of <.

Proof. The direction ”=" is trivial, so we only have to prove ”<=": let £ denote the linear subspace that underlies
A, thus, Vo € A:a—x € L. Let by,...,b. denote a basis of L. With b, := € - b;/(max;{||b;||}) for i =1,...,¢
we get that bj,...,b. is also a basis of £, and that a b, € B(a,€). Thus, (b},q) <0 and (—b.,q) < 0, which
implies that (b}, q) = 0 for all i. Thus, we get for all z € A from the representation © = a + > ;_, a;b} for some
at,...,a. € R that (x —a,q) =Y ;_, a; (b}, q) = 0. O

Note that this lemma does not state that ¢ L x for z € A. The orthogonality refers to the difference space,
that is ¢ L (z —a) € £. Lemma C.1 is the tool that we need in order to generalize B&L (Theorem 4.3) to local
affinity, as formulated in the following theorem.

Theorem C.2 (Convergence of locally affine sequences). Let F = C; N...NCy be the non-empty
intersection of £ closed convex sets C; C RN, where each C; is a subset of an affine subspace A; C RN. For
Fo € RN consider the recursion

:f?k = 'P[}]Z] (i'k—l)

for k > 1. If the sequence (Zo,31,...) is locally affine, then limg_,o0 T = PR(Z0).

Proof. The proof shows by induction that zp = Ty for all £ > 0. Then limg_ o T = P]}E-(fco) follows from
the fact that it is also the limit of (x). For all k¥ < ¢ it holds that z; = %y because r_y = 0 by definition,
and Vh* o Vh = id. Now fix k& > ¢ with by induction z; = Z; for all i < k. Note that Cyj = Cp_gq and
Apx) = Ajg—g. Now we incorporate our local affinity assumption. Hence there exists some €, > 0 such that
BA[k] (Th—r,€x—e) € Cpi). Because of xx_¢ = Tr—¢ we have that BA[k] (Tr—¢,€x—e) € Cpi). From B&L (Equation
1 in Theorem 3.2) we get that for all ¢ € C) it holds that (¢ — x_¢,7x—¢) < 0. So we can apply Lemma C.1
in order to get that (a — xr_¢,7x) = 0 for all a € Ap,). For the underlying difference space Ly = Ay — 2r—¢
we are free to choose any other element z € Ay for its representation, that is Ay — x1—¢ = A — 2. Choosing
z = xy, gives that (a — a2y, ) = 0 for all a € Ay 2 C). The remaining part follows the ideas of the original
proof, but we also fix a small flaw in it. We have that x;_1 = Zr_1, and we claim that

B =Ply(@r-1) = (Plyo V") (Vh(zi_1) + re_¢) = 5. (%)
Applying the characterization
a = P[’}f] (a) & Veely : (¢c—d,Vh(a) = Vh(a')) <0 (%)

for a := VhA*(Vh(zr—1)+1K—¢) and correspondingﬂ a' = xy, in the direction of “=" to the right side in (x) gives:

0 = (e ak VA(VA* (Vh(zy_1) + o)) — Vh(z))
= (¢—xp, Vh(xk—_1) +rp—¢ — Vh(xg)) VhoVh* =id
= {c—xk, Vh(Tr_1) — Vh(zp)) + (¢ — Tk, T _p) Thel = Th1
= (c—xk, Vh(Zr—1) — Vh(xg)) (¢ —xp,rK—e) =0

From () again, now for a := Z;_; and o’ = x, in direction “<", we get that xy = P[}ch] (Zx—1), hence Ty = xy.

Thus, we can simply drop all reflection terms without affecting the sequence at all, nor its limit. Hence in this
case the sequence generated by (5) coincides with (4). O

Note that this theorem can be formulated in more generality by allowing to drop the reflection terms for individual
Cy’s: for any i € {1,...,£} such that zj is locally affine for all [k] = i, we can drop all reflection terms ry for
[k] = i, while keeping all other required reflection terms. This does not affect the sequence at all.

here is a small flaw in B&L: they apply a together with ¢’ = &, and later refer to (¢ — &k, m—¢) = 0. However, it
must be a’ = z; and the orthogonality must be shifted to (¢ — zk,TK—2) = 0.



D Proof of Theorem 4.2

Theorem 4.2 (Convergence of PSIPF). Let W €S and f € RY, such that S(f,W) # 0. Then the
PSIPF-sequence (W) converges to Psw(W). Further, W% € U(W) for all k > 0.

Proof. Let B = limy_, W = limy_, o YW Z® denote the limit of the IPF-sequence. Lemma 3.1 gives

that B = BT. We have to show that limy_, w<§k>> = b;; for all 7,5. Whenever w;; = wj; # 0, we get from

limpg_s o wi; y(k> ](k> _ b] — b i = = limp_s o0 Wi y<k> (k) that hmk—)oo( (k) <k>)1/2 (y;k>2§k>)1/2-

19 gy (028 172

bij # 0 = w;; # 0 that hm;CHOO w< k) — = b;;. Otherwise (i.e., b;; = 0) it either holds that w;; # 0, thus again

limp o0 wfg.k» = b;j, or wy; = 0, in which case limy_, o wfg.k» =limy_ o0 O(yfk> (k >yj< ) fk>)1/2 =0=b;j. O

Hence limg_, o w = limg_ 0 w”y<k> (k) _ bi;. For b;; # 0 this implies with

E Proof of Lemma 4.4 (L;-monotony)

Lemma 4.4 (Li-monotony). For any W € S and any mean function m, the m-sequence of W implies
that |f — d®||; is monotonously decreasing.

Proof. For k > 0 we get with s; := fi/dl(-k) that
I —d® Dy = 3 1f - dtY)
= 2|2w£§> i = X wyg msi 55)]
< N Yl ” P (Isi = m(si,55)| + Is; — ms;, 1))
*) Z'Zj>i \ |5i75j|

k
< Bl of 3 (i =10+ 1s; - !
< Zi|8i_1|'di = Zi'fi_ i ‘ = [[f—d®|,
where equality (%) holds true because of m(s;, s;) = m(s;, s;) € [min(s;, s;), max(s;, s;)]. O

F Proof of Lemma 4.5 (Volume bounds)

Lemma 4.5 (Volume bounds). For any W € S and any mean function m, the m-sequence of W
satisfies for all k > 1 that

() [d®|y < |IfllL if m is sub-arithmetic
(it) ([d®| = [fllL if m=ma
(iii) [[d®y > ||f|l1 if m is super-arithmetic

If m is strict in (i) or (i), then equality holds if and only if fl/d(k) fj/d(k) for all w;; # 0.

Proof. (i) For k > 0 we get with s; := fi/dgk) that

1]l = [dFHD ]y = 30,5, wilsi — 35wl m(sq, 57)

=22 i wz(]k) (8i —m(si,s5) + 85 — m(s, si))
>0

where non-negativity of each summand follows from z +y —2m(z,y) >+ y—2(x+y)/2=0 (%) for sub-
arithmetic m. If m is strict, then the inequality in (x) holds with equality iff + = y. This implies that



[£]l: — [d®+D]]; > 0 holds with equality iff s; = s; whenever ngk) # 0, that is w;; # 0. (ii) follows from (i) and
the fact that (x) always holds with equality for m = m 4. (iii) equals (i) with all inequalities flipped. O

G Proof of Lemma 4.6 (Limit points)

Lemma 4.6 (Limit points).  Every m-sequence is bounded and has at least one limit point W*. If
|f —d®)||; — 0, then every limit point W* satisfies W*1 = £. If further m = mq, then W* is the (unique)
biproportional fit of W to row and column marginals £, and it holds that W) — W*.

Proof. Lemma 4.4 implies that there exists L > 0 such that wgc) < L for all i, j, k. Hence (W*)) is bounded and

thus has at least one limit point W* in compact [0, L]"*". We now show that if [|f — d®)||; — 0, then any limit
point W* of the m-sequence satisfies W*1 = f. Let (W(kf‘)) denote any subsequence that converges to W*. Then
If —W*1ll; < [|f —d®)|| 4 [[(WE) —W*)1|; — 0. Now assume that m = mg. Then W*) = TR k)
for some T*) ¢ diag(R%,), which gives that any limit point W* is a biproportional scaling of W, that is
W* = lim;_ oo T*IWT*) for a subsequence (W(’“i))izo. Because of W*1 = f we get that W* is unique by the
uniqueness of biproportional fits. Finally, any bounded sequence with a single limit point converges to it, hence
W - w. O

H Proof of Lemma 4.7 (Strong convergence)

Lemma 4.7 (Strong convergence). For any x := (21,...,%,) € RY,, a:=(a1,...,a,) € RY, with
im0 let f(x) =37, a;log 3t Then
f(x) > 0 with equality iff x = a. (1)

Further, for any sequence (x*));>0 in RZ, with Y, xz(-k) < >, a; it holds that

li (k)Y — li k) — 4.
dm feF) =0 & lim x™ =a @)
Proof. (1) follows from the Bregman divergence RE(alx) = >, a;log(a;/z;) — a; + x; > 0, hence

Yo ailoglag/z) > Y, a; — Y, x; > 0 with equality if and only if a = x. We now prove (2). “«” follows
from continuity of f, so it remains to show “=". From ), xgk') < Y, a; =: a we get that :cgk) € (0, a] for all
i€{l,...,n}and k > 0. Compactness of [0,a]” implies that all limit points of S := (x(¥)) lie within [0, a]”, and
that there exists at least one. Let ¢ denote a limit point of .S and (y(k)) a subsequence that converges to c. Note
that lim_,0 a; log(a;/¢) = oo. Hence we get by f(y*)) — 0 and by continuity of f that ¢ € (0,a]™ and f(c) = 0.
Now (1) implies that ¢ = a is the unique limit point of S, thus x*) — a. O

I Proof (sketch) of Proposition 5.2 (Strictly positive feasibility)

Consider the following specialization of Proposition 5.2 to connected graphs.

Proposition 5.2% (Strictly positive feasibility for connected graphs). Let G(W) = (V,E,W)
denote the graph corresponding to W € S, and assume that it is connected. For any f € R, there exists
a strictly positive solution in S(£, W) if and only if G(W) is a weak f-expander that is strict for all S ¢
{0, V1, Vo, V}, with either Vy := Vo := 0 if G(W) is non-bipartite, or V =: V; U Vy the bipartition of G(W).

It is straightforward to derive Proposition 5.2 from Proposition 5.2*, that is to generalize from connected graphs
to possibly unconnected graphs, by applying Proposition 5.2* to each connected component, and aggregating
the exceptional sets that force equality. So it remains to proof Proposition 5.2*.



We need some additional notation and concepts for the proof:

For i,j € V with ij € E we also write ¢ ~ j. For ¢ € V and X C V we write i ~ X if there exists a vertex
x € X with i ~ z. Otherwise, if 7 is not adjacent to any of the vertices in X, we write i ¥ X. For X, Y CV let
GX,)Y]|:={ij=jic€ E| (i,j) € X x Y} denote the set of edges connecting some vertex in X to some vertex
in Y. Thus, B C V is an independent set if and only if G[B, B] = (. Observe that for all X, Y C V it holds that

GIXUY,Y]=0 & G[X,Y]=G[y,Y]=0.

For any set B C V, we call any disjoint B C V \ B satisfying G[B,B] = 0 a non-adjacent opponent of B.
This also defines their rest R(B, B) := V' \ (B U B), which partitions V into V = B U B U R(B, B). The set
B* .= {i € V\ B | i # B} is the (unique) mazimum non-adjacent opponent of B. Thus, all vertices from the
rest R(B, B*) are adjacent to B. Any other non-adjacent opponent B of B satisfies that B C B*.

Let 6B:={i € V\B|3j € B:i~ j} denote the vertex boundary of B. It holds that §B = N(B) \ B. Further
0B = N(B) if and only if B is an independent set. For any set B and its maximum non-adjacent opponent B*
their rest is R(B, B*) = ¢ B.

Proof (sketch) of Proposition 5.2%. We start with Theorem 7 of Behrend (2013), restricted to a connected
graph with n > 2 vertices. This is equivalent to the tri-partition statement (i) below. We then transform (i)
along a sequence of equivalent statements (i) < (ii) < (iii) < (iv) < (v) to the more intuitive statement (v) in
terms of f-expansion, which is equivalent to Proposition 5.2*.

Let G = (V,E,W) for W € Q be connected, and f € RZ,. Then there exists a strictly positive solution in
S(f, W) if and only if any of the following equivalent statements holds:
(1) Xicafi =2 ep fj for all A, A, B with V=AU AU B and G[A U B, B] = §), where equality holds if and
only if additionally G[A, A U A] = 0.

(i) Yjeafi >3 ep fjforall A, A, B withV =AU AU B and G[A U B, B] = (), where equality holds if and
only if additionally either A= B =0 or (V = AU B and G[A, A] = G[B, B] = 0).

(iii) > ieafi > ZjeB f; for all independent sets B, non-adjacent opponents Band A = R(B, 3), where equality
holds if and only if additionally either A= B =@ or (V =AU B and G[A, A] = G[B, B] = 0).

(iv) > iea fi = X2 jep f; for all independent sets B, and A = N(B), where equality holds if and only if addition-
ally either A=B =0 or (V=AU B and G[4, A] = G[B, B] = 0).

(v) Dieafi > ZjEB f; for all subsets B C V, and A = N(B), where equality holds if and only if additionally
either B={,or B=V,or (V=AU B and G[A, A] = G[B, B] = 0).

Each intermediate step follows more or less straightforward by carefully applying all definitions. O



	Proof of Equation (2)
	Proof of Lemma 3.1
	Technical details on why "local affinity" is sufficient in Section 4.1
	Proof of Theorem 4.2
	Proof of Lemma 4.4 (L1-monotony)
	Proof of Lemma 4.5 (Volume bounds)
	Proof of Lemma 4.6 (Limit points)
	Proof of Lemma 4.7 (Strong convergence)
	Proof (sketch) of Proposition 5.2 (Strictly positive feasibility)

