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This supplement consists of several parts that refer directly to specific topics in the paper:

A - Proof of Equation (2)

B - Proof of Lemma 3.1 (Symmetric biproportional fit)

C - Technical details on why ”local affinity” is sufficient in Section 4.1

D - Proof of Theorem 4.2 (Convergence of PSIPF)

E - Proof of Lemma 4.4 (L1-monotony)

F - Proof of Lemma 4.5 (Volume bounds)

G - Proof of Lemma 4.6 (Limit points)

H - Proof of Lemma 4.7 (Strong convergence)

I - Proof (sketch) of Proposition 5.2 (Strictly positive feasibility)

A Proof of Equation (2)

Equation (2) claims that for all A,W ∈ Ω with E(A) ⊆ E(W ), r ∈ Rm>0, and R := Ω(r, ·,W ), it holds that
PR(A) = diag(r) ·diag(A1)−1 ·A. In order to keep notation simple, we first prove the following weaker statement
(by assuming A = W ) and finally generalize the result to any A with E(A) ⊆ E(W )

For W ∈ Ω, r ∈ Rm>0 and R := Ω(r, ·,W ) = {X ∈ Rm×n≥0 | X1 = r, E(X) ⊆ E(W )} it holds that

PR(W ) = diag(r) diag(W1)−1 ·W

Proof. From wij = 0⇒ xij = 0 and 0 · log(0/wij) := 0 it follows by definition of RE that

%(X) := RE(X‖W ) =
∑

i=1...m,
j=1...n

xij log(xij/wij)− xij + wij =
∑

ij∈E(W )

xij log(xij/wij)− xij + wij

From the definitions we get that

PR(W ) = arg minX∈Rm×n
≥0
{ %(X) | X1 = r, E(X) ⊆ E(W ) }

= arg minX∈Rm×n
≥0

{ ∑
ij∈E(W ) xij log(xij/wij)− xij | X1 = r, E(X) ⊆ E(W )

}
.

(?)

It follows from strict convexity of % and convexity of the constraints that the minimizer is unique, if existing (※).

Comment : Note that (?) describes a non-smooth optimization problem because the partial derivative
“∇Xijρ(X) = log(xij/wij)”, does not exist whenever ij ∈ E(W ) \ E(X). A general strategy to avoid this
problem is by first determining E(PR(W )) separately and then skipping all summands with ij /∈ E(PR(W ))
from (?), before finally taking the Lagrangian approach. For the projection to R we show in the following
that E(PR(W )) = E(W ).



We re-state (?) as the minimization over 2|E(W )| many individual minimization problems, one for each E ⊆ E(W ),
and each providing a unique (if existing) “inner minimizer” R∗(E) that achieves its respective minimum %∗(E):

PR(W ) = R∗(E∗) for E∗ := arg min
E⊆E(W )

{%∗(E)}

and %∗(E) :=

 min
X∈Rm×n

≥0

{ %(X) | X1 = r, E(X) = E } with unique minimizer R∗(E)

∞ if not existing
.

If PR(W ) exists, then E∗ is well-defined because at least one inner minimizer exists: for E = E(PR(W )) there
trivially exists R∗(E) = PR(W ). We now show that further E∗ is maximal in the sense that E(PR(W )) ⊇ E
for all E ⊆ E(W ) for which R∗(E) exists.

For any E1, E2 ⊆ E(W ) for which R∗(E1) and R∗(E2) exist let Rα := αR∗(E1) + (1 − α)R∗(E2) denote their
convex combination for α ∈ (0, 1). Then E(Rα) = E1∪E2 =: E12. In particular E12 6= ∅, thus R∗(E12) exists. By
continuity of % we get that limα→0 %(Rα) = %(R∗(E1)) = %∗(E1) and similarly that limα→1 %(Rα) = %(R∗(E2)) =
%∗(E2). Since further %∗(E12) ≤ %(Rα) we get that %∗(E12) ≤ min{%∗(E1), %∗(E2)}. Thus %∗ cannot increase
when considering the union of any two sets. This implies that with ξ := {E ⊆ E(W ) | %∗(E) < ∞} and E∗ :=⋃
E∈ξ E that %∗(E∗) ≤ %∗(E) for all E ⊆ E(W ). Hence R∗(E∗) must be some global minimizer. It is further

unique over all subsets E ⊆ E(W ) by the separate uniqueness argument (※) above. Hence PR(W ) = R∗(E∗).

Here, we even get that E∗ = E(W ) because there exists the feasible solution

W ∗ := diag(r) diag(W1)−1 ·W

of maximum possible non-zeros E(W ∗) = E(W ). It remains to show that PR(W ) indeed equals W ∗.

With the knowledge that E(PR(W )) = E(W ) we can re-state the minimization problem (?) as

PR(X) = arg minX∈Rm×n
≥0

{ ∑
ij∈E(W ) xij log(xij/wij)− xij | X1 = r, E(X) = E(W )

}
.

Now we can take the standard Lagrangian approach, that is to find a global minimum of the Lagrangian function

Λ(X,µ) = %(X)− µT (X1− r) =
∑

ij∈E(W )

xij log(xij/wij)− xij −
m∑
i=1

µi

(
∑

j s.t. ij∈E(W )

xij)− ri


over X ∈ RE(W )

>0 , by which we handle xij := 0 for all ij /∈ E(W ) as constants. From wij 6= 0 ⇔ xij 6= 0 we get
that ∇xij

Λ(X,µ) = log(xij/wij) − µi for all ij ∈ E(W ). Setting all derivatives to zero gives after entry-wise
exponentiation that

xij =

{
exp(µi) · wij for ij ∈ E(W )

0 for ij /∈ E(W )
,

that is in matrix notation X = diag(exp(µ))·W . Multiplying 1 from the right gives that r = X1 = diag(exp(µ))·
W1, hence diag(exp(µ)) = diag(r) diag(W1)−1. Thus X = W ∗ is indeed the (only) critical point. Further, the
Hessian matrix is the diagonal matrix with the all-positive diagonal ∇xij

∇xij
Λ(X,µ) = 1/xij , which is positive

definite. Thus W ∗ is the (unique global) minimum.

The proof easily generalizes to PR(A) for any A ∈ Ω with E(A) = E(W ) just by flipping the notation from
W = [wij ] to A = [aij ] whenever W appears as the argument of PR(·). Further, it generalizes to any A ∈ Ω
with E(A) ⊆ E(W ) by the convention xij · log(xij/0) := ∞ for xij > 0, which immediately implies that
E(PR(A)) ⊆ E(A), hence by maximality E(PR(A)) = E(A).

The proof for PC(W ) is fully analogous.



B Proof of Lemma 3.1

Lemma 3.1 (Symmetric biproportional fits). Let B denote the biproportional fit of W ∈ S to row
and column marginals f ∈ Rn>0. Then
(i) B = BT is symmetric

(ii) B = limk→∞Wk for a sequence of Wk ∈ Ψ(W )

(iii) B ∈ Ψ(W ) if and only if B is direct

Proof. (i) Let B = limk→∞R(k)WS(k) denote the biproportional fit of W to f . Then B = limk→∞R(k)WTS(k)

is the same biproportional fit of WT = W to f . Hence BT = limk→∞ S(k)WR(k) is another biproportional fit of
W to f , so by uniqueness, BT = B.

(ii) Now define T (k) :=
√
R(k)S(k) by its diagonal elements ti := (r

(k)
i s

(k)
i )1/2. For all i, j with wij = wji 6= 0, we

get from limk→∞ wij r
(k)
i s

(k)
j = bij = bji = limk→∞ wij r

(k)
j s

(k)
i that limk→∞(r

(k)
i s

(k)
j )1/2 = limk→∞(r

(k)
j s

(k)
i )1/2.

Hence,

lim
k→∞

wij t
(k)
i t

(k)
j = lim

k→∞
wij (r

(k)
i s

(k)
j r

(k)
j s

(k)
i )1/2 = wij · ( lim

k→∞

√
r
(k)
i s

(k)
j )2 = lim

k→∞
wij r

(k)
i s

(k)
j = bij .

For bij 6= 0 this implies with bij 6= 0 ⇒ wij 6= 0 that limk→∞ wij t
(k)
i t

(k)
j = bij . If bij = 0, then either wij 6= 0,

thus again limk→∞ wij t
(k)
i t

(k)
j = bij , or wij = 0, in which case limk→∞ wij t

(k)
i t

(k)
j = limk→∞ 0t

(k)
i t

(k)
j = 0 = bij .

Thus, limk→∞ T (k)WT (k) = B, which proves (ii) for Wk := T (k)WT (k) ∈ Ψ(W ).

(iii) The implication “⇒” follows from the definitions, so it remains to show “⇐”. In case of direct B = RWS,
we get from (ii) with T (k) := T :=

√
RS that B = TWT ∈ Ψ(W ).

C Technical details on why ”local affinity” is sufficient in Section 4.1

In this section we refer to the recursion (4) as the non-reflected sequence (x̃k) defined for some x̃0 ∈ RN by

x̃k := P[k](x̃k−1) ,

and to the recursion (5) as the sequence (xk) defined for x0 = x̃0 by

xk := (Ph[k] ◦ ∇h
∗)(∇h(xk−1) + rk−`)

and rk := ∇h(xk−1) + rk−` −∇h(xk) .

We say that a function h : RN → R is “suitable”, if it is Legendre, co-finite, and very strictly convex. Please
refer to B&L (Bauschke and Lewis, 2000) for detailed definitions. Beside others, orthogonal projections and
RE-projections are induced by a suitable function h as a Bregman divergence, so all results hold for both of
them.

In the following, 〈·, ·〉 denotes an inner product on RN . For any A ⊆ RN let BA(x0, ε) := {x ∈ A | ‖x−x0‖2 ≤ ε}
denote the ball of radius ε around x0 in A. For any subset C of an affine subspace A we denote c ∈ C as being
locally affine if there exists ε > 0 such that BA(c, ε) ⊆ C. The sequence (4) is locally affine if all its points for
k ≥ 1 are locally affine.

All that we need, and which is implied by local affinity, is sloppy spoken that there “exists a basis of A and its
negate within a small neighborhood in C around the point c”. Let us give some intuition on what this means
and why this can be helpful: if for a linear subspace L ⊆ RN and some q ∈ RN it holds that 〈x, q〉 ≤ 0 for all
x ∈ L then it follows that 〈x, q〉 = 0. This is easy to see from 〈b, q〉 ≤ 0 and 〈−b, q〉 ≤ 0 for every basis vector
b of L. It is already sufficient if the inequality holds everywhere within an arbitrary small ball around 0, since
it already contains a smaller-scaled basis of L. This insight is stated in the following lemma more general by
taking L as the difference space of an affine subspace A ⊆ RN .



Lemma C.1. Let A ⊆ RN denote an affine subspace. Then it holds for all q ∈ RN and a ∈ A:

∀x ∈ A : 〈x− a, q〉 = 0 ⇔ ∃ε > 0 : ∀x ∈ BA(a, ε) : 〈x− a, q〉 ≤ 0.

The same holds true for ≥ instead of ≤.

Proof. The direction ”⇒” is trivial, so we only have to prove ”⇐”: let L denote the linear subspace that underlies
A, thus, ∀x ∈ A : a − x ∈ L. Let b1, . . . , bc denote a basis of L. With b′i := ε · bi/(maxi{‖bi‖}) for i = 1, . . . , c
we get that b′1, . . . , b

′
c is also a basis of L, and that a ± b′i ∈ BA(a, ε). Thus, 〈b′i, q〉 ≤ 0 and 〈−b′i, q〉 ≤ 0, which

implies that 〈b′i, q〉 = 0 for all i. Thus, we get for all x ∈ A from the representation x = a+
∑c
i=1 αib

′
i for some

α1, . . . , αc ∈ R that 〈x− a, q〉 =
∑c
i=1 αi 〈b′i, q〉 = 0.

Note that this lemma does not state that q ⊥ x for x ∈ A. The orthogonality refers to the difference space,
that is q ⊥ (x− a) ∈ L. Lemma C.1 is the tool that we need in order to generalize B&L (Theorem 4.3) to local
affinity, as formulated in the following theorem.

Theorem C.2 (Convergence of locally affine sequences). Let F = C1 ∩ . . . ∩ C` be the non-empty
intersection of ` closed convex sets Ci ⊆ RN , where each Ci is a subset of an affine subspace Ai ⊆ RN . For
x̃0 ∈ RN consider the recursion

x̃k := Ph[k](x̃k−1)

for k ≥ 1. If the sequence (x̃0, x̃1, . . .) is locally affine, then limk→∞ x̃k = PhF (x̃0).

Proof. The proof shows by induction that xk = x̃k for all k ≥ 0. Then limk→∞ x̃k = PhF (x̃0) follows from
the fact that it is also the limit of (xk). For all k ≤ ` it holds that xk = x̃k because rk−` = 0 by definition,
and ∇h∗ ◦ ∇h = id. Now fix k > ` with by induction xi = x̃i for all i < k. Note that C[k] = C[k−`] and
A[k] = A[k−`]. Now we incorporate our local affinity assumption. Hence there exists some εk−` > 0 such that
BA[k]

(x̃k−`, εk−`) ⊆ C[k]. Because of xk−` = x̃k−` we have that BA[k]
(xk−`, εk−`) ⊆ C[k]. From B&L (Equation

1 in Theorem 3.2) we get that for all c ∈ C[k] it holds that 〈c− xk−`, rk−`〉 ≤ 0. So we can apply Lemma C.1
in order to get that 〈a− xk−`, rk〉 = 0 for all a ∈ A[k]. For the underlying difference space L[k] = A[k] − xk−`
we are free to choose any other element z ∈ A[k] for its representation, that is A[k] − xk−` = A[k] − z. Choosing
z = xk gives that 〈a− xk, rk〉 = 0 for all a ∈ A[k] ⊇ C[k]. The remaining part follows the ideas of the original
proof, but we also fix a small flaw in it. We have that xk−1 = x̃k−1, and we claim that

x̃k = Ph[k](x̃k−1)
!
= (Ph[k] ◦ ∇h

∗)(∇h(xk−1) + rk−`) = xk. (?)

Applying the characterization

a′ = Ph[k](a) ⇔ ∀c ∈ C[k] : 〈c− a′,∇h(a)−∇h(a′)〉 ≤ 0 (※)

for a := ∇h∗(∇h(xk−1)+rk−`) and corresponding1 a′ := xk in the direction of “⇒” to the right side in (?) gives:

0 ≥ 〈c− xk,∇h(∇h∗(∇h(xk−1) + rk−`))−∇h(xk)〉

= 〈c− xk,∇h(xk−1) + rk−` −∇h(xk)〉 ∇h ◦ ∇h∗ = id

= 〈c− xk,∇h(x̃k−1)−∇h(xk)〉+ 〈c− xk, rk−`〉 xk−1 = x̃k−1

= 〈c− xk,∇h(x̃k−1)−∇h(xk)〉 〈c− xk, rk−`〉 = 0

From (※) again, now for a := x̃k−1 and a′ = xk in direction “⇐”, we get that xk = Ph[k](x̃k−1), hence x̃k = xk.

Thus, we can simply drop all reflection terms without affecting the sequence at all, nor its limit. Hence in this
case the sequence generated by (5) coincides with (4).

Note that this theorem can be formulated in more generality by allowing to drop the reflection terms for individual
Ci’s: for any i ∈ {1, . . . , `} such that xk is locally affine for all [k] = i, we can drop all reflection terms rk for
[k] = i, while keeping all other required reflection terms. This does not affect the sequence at all.

1here is a small flaw in B&L: they apply a together with a′ = x̃k and later refer to 〈c− x̃k, rk−`〉 = 0. However, it
must be a′ = xk and the orthogonality must be shifted to 〈c− xk, rk−`〉 = 0.



D Proof of Theorem 4.2

Theorem 4.2 (Convergence of PSIPF). Let W ∈ S and f ∈ Rn>0 such that S(f ,W ) 6= ∅. Then the
PSIPF-sequence (W 〈〈k〉〉) converges to PS(f ,W )(W ). Further, W 〈〈k〉〉 ∈ Ψ(W ) for all k ≥ 0.

Proof. Let B = limk→∞W 〈k〉 = limk→∞ Y 〈k〉WZ〈k〉 denote the limit of the IPF-sequence. Lemma 3.1 gives

that B = BT . We have to show that limk→∞ w
〈〈k〉〉
ij = bij for all i, j. Whenever wij = wji 6= 0, we get from

limk→∞ wij y
〈k〉
i z

〈k〉
j = bij = bji = limk→∞ wij y

〈k〉
j z

〈k〉
i that limk→∞(y

〈k〉
i z

〈k〉
j )1/2 = limk→∞(y

〈k〉
j z

〈k〉
i )1/2.

Hence limk→∞ w
〈〈k〉〉
ij = limk→∞ wij(y

〈k〉
i z

〈k〉
j y

〈k〉
j z

〈k〉
i )1/2 = limk→∞ wijy

〈k〉
i z

〈k〉
j = bij . For bij 6= 0 this implies with

bij 6= 0 ⇒ wij 6= 0 that limk→∞ w
〈〈k〉〉
ij = bij . Otherwise (i.e., bij = 0) it either holds that wij 6= 0, thus again

limk→∞ w
〈〈k〉〉
ij = bij , or wij = 0, in which case limk→∞ w

〈〈k〉〉
ij =limk→∞ 0(y

〈k〉
i z

〈k〉
j y

〈k〉
j z

〈k〉
i )1/2 = 0 = bij .

E Proof of Lemma 4.4 (L1-monotony)

Lemma 4.4 (L1-monotony). For any W ∈ S and any mean function m, the m-sequence of W implies
that ‖f − d(k)‖1 is monotonously decreasing.

Proof. For k ≥ 0 we get with si := fi/d
(k)
i that

‖f − d(k+1)‖1 =
∑
i |fi − d

(k+1)
i |

=
∑
i |
∑
j w

(k)
ij si −

∑
j w

(k)
ij m(si, sj)|

≤
∑
i

∑
j>i w

(k)
ij (|si −m(si, sj)|+ |sj −m(sj , si)|)

(?)
=

∑
i

∑
j>i w

(k)
ij |si − sj |

≤
∑
i

∑
j>i w

(k)
ij (|si − 1|+ |sj − 1|)

≤
∑
i |si − 1| · d(k)i =

∑
i |fi − d

(k)
i | = ‖f − d(k)‖1 ,

where equality (?) holds true because of m(si, sj) = m(sj , si) ∈ [min(si, sj),max(si, sj)].

F Proof of Lemma 4.5 (Volume bounds)

Lemma 4.5 (Volume bounds). For any W ∈ S and any mean function m, the m-sequence of W
satisfies for all k ≥ 1 that

(i) ‖d(k)‖1 ≤ ‖f‖1 if m is sub-arithmetic
(ii) ‖d(k)‖1 = ‖f‖1 if m = mA

(iii) ‖d(k)‖1 ≥ ‖f‖1 if m is super-arithmetic

If m is strict in (i) or (iii), then equality holds if and only if fi/d
(k)
i = fj/d

(k)
j for all wij 6= 0.

Proof. (i) For k ≥ 0 we get with si := fi/d
(k)
i that

‖f‖1 − ‖d(k+1)‖1 =
∑
i(
∑
j w

(k)
ij si −

∑
j w

(k)
ij m(si, sj))

=
∑
i

∑
j>i w

(k)
ij (si −m(si, sj) + sj −m(sj , si))︸ ︷︷ ︸

≥0

where non-negativity of each summand follows from x+ y − 2m(x, y) ≥ x+ y − 2(x+ y)/2 = 0 (?) for sub-
arithmetic m. If m is strict, then the inequality in (?) holds with equality iff x = y. This implies that



‖f‖1 − ‖d(k+1)‖1 ≥ 0 holds with equality iff si = sj whenever w
(k)
ij 6= 0, that is wij 6= 0. (ii) follows from (i) and

the fact that (?) always holds with equality for m = mA. (iii) equals (i) with all inequalities flipped.

G Proof of Lemma 4.6 (Limit points)

Lemma 4.6 (Limit points). Every m-sequence is bounded and has at least one limit point W ∗. If
‖f −d(k)‖1 → 0, then every limit point W ∗ satisfies W ∗1 = f . If further m = mG, then W ∗ is the (unique)
biproportional fit of W to row and column marginals f , and it holds that W (k) →W ∗.

Proof. Lemma 4.4 implies that there exists L > 0 such that w
(k)
ij ≤ L for all i, j, k. Hence (W (k)) is bounded and

thus has at least one limit point W ∗ in compact [0, L]n×n. We now show that if ‖f − d(k)‖1 → 0, then any limit
point W ∗ of the m-sequence satisfies W ∗1 = f . Let (W (ki)) denote any subsequence that converges to W ∗. Then
‖f −W ∗1‖1 ≤ ‖f − d(ki)‖+ ‖(W (ki) −W ∗)1‖1 −→ 0. Now assume that m = mG. Then W (k) = T (k)WT (k)

for some T (k) ∈ diag(Rn>0), which gives that any limit point W ∗ is a biproportional scaling of W , that is
W ∗ = limi→∞ T (ki)WT (ki) for a subsequence (W (ki))i≥0. Because of W ∗1 = f we get that W ∗ is unique by the
uniqueness of biproportional fits. Finally, any bounded sequence with a single limit point converges to it, hence
W (k) →W ∗.

H Proof of Lemma 4.7 (Strong convergence)

Lemma 4.7 (Strong convergence). For any x := (x1, . . . , xn) ∈ Rn>0, a := (a1, . . . , an) ∈ Rn>0 with∑
i xi ≤

∑
i ai let f(x) :=

∑
i ai log ai

xi
. Then

f(x) ≥ 0 with equality iff x = a. (1)

Further, for any sequence (x(k))k≥0 in Rn>0 with
∑
i x

(k)
i ≤

∑
i ai it holds that

lim
k→∞

f(x(k)) = 0 ⇔ lim
k→∞

x(k) = a. (2)

Proof. (1) follows from the Bregman divergence RE(a‖x) =
∑
i ai log(ai/xi) − ai + xi ≥ 0, hence∑

i ai log(ai/xi) ≥
∑
i ai −

∑
i xi ≥ 0 with equality if and only if a = x. We now prove (2). “⇐” follows

from continuity of f , so it remains to show “⇒”. From
∑
i x

(k)
i ≤

∑
i ai =: a we get that x

(k)
i ∈ (0, a] for all

i ∈ {1, . . . , n} and k ≥ 0. Compactness of [0, a]n implies that all limit points of S := (x(k)) lie within [0, a]n, and
that there exists at least one. Let c denote a limit point of S and (y(k)) a subsequence that converges to c. Note
that limε→0 ai log(ai/ε) =∞. Hence we get by f(y(k))→ 0 and by continuity of f that c ∈ (0, a]n and f(c) = 0.
Now (1) implies that c = a is the unique limit point of S, thus x(k) → a.

I Proof (sketch) of Proposition 5.2 (Strictly positive feasibility)

Consider the following specialization of Proposition 5.2 to connected graphs.

Proposition 5.2F (Strictly positive feasibility for connected graphs). Let G(W ) = (V,E,W )
denote the graph corresponding to W ∈ S, and assume that it is connected. For any f ∈ Rn>0 there exists
a strictly positive solution in S(f ,W ) if and only if G(W ) is a weak f -expander that is strict for all S /∈
{∅, V1, V2, V }, with either V1 := V2 := ∅ if G(W ) is non-bipartite, or V =: V1 ∪̇ V2 the bipartition of G(W ).

It is straightforward to derive Proposition 5.2 from Proposition 5.2?, that is to generalize from connected graphs
to possibly unconnected graphs, by applying Proposition 5.2? to each connected component, and aggregating
the exceptional sets that force equality. So it remains to proof Proposition 5.2?.



We need some additional notation and concepts for the proof:

For i, j ∈ V with ij ∈ E we also write i ∼ j. For i ∈ V and X ⊆ V we write i ∼ X if there exists a vertex
x ∈ X with i ∼ x. Otherwise, if i is not adjacent to any of the vertices in X, we write i 6∼ X. For X,Y ⊆ V let
G[X,Y ] := {ij = ji ∈ E | (i, j) ∈ X × Y } denote the set of edges connecting some vertex in X to some vertex
in Y . Thus, B ⊆ V is an independent set if and only if G[B,B] = ∅. Observe that for all X,Y ⊆ V it holds that

G[X ∪ Y, Y ] = ∅ ⇔ G[X,Y ] = G[Y, Y ] = ∅.

For any set B ⊆ V , we call any disjoint B̃ ⊆ V \ B satisfying G[B̃, B] = ∅ a non-adjacent opponent of B.
This also defines their rest R(B, B̃) := V \ (B ∪̇ B̃), which partitions V into V = B ∪̇ B̃ ∪̇ R(B, B̃). The set
B∗ := {i ∈ V \ B | i 6∼ B} is the (unique) maximum non-adjacent opponent of B. Thus, all vertices from the
rest R(B,B∗) are adjacent to B. Any other non-adjacent opponent B̃ of B satisfies that B̃ ⊂ B∗.

Let δB := {i ∈ V \B | ∃j ∈ B : i ∼ j} denote the vertex boundary of B. It holds that δB = N(B) \B. Further
δB = N(B) if and only if B is an independent set. For any set B and its maximum non-adjacent opponent B∗

their rest is R(B,B∗) = δB.

Proof (sketch) of Proposition 5.2F. We start with Theorem 7 of Behrend (2013), restricted to a connected
graph with n ≥ 2 vertices. This is equivalent to the tri-partition statement (i) below. We then transform (i)
along a sequence of equivalent statements (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) to the more intuitive statement (v) in
terms of f -expansion, which is equivalent to Proposition 5.2?.

Let G = (V,E,W ) for W ∈ Ω be connected, and f ∈ Rn>0. Then there exists a strictly positive solution in
S(f ,W ) if and only if any of the following equivalent statements holds:

(i)
∑
i∈A fi ≥

∑
j∈B fj for all A, Ã,B with V = A ∪̇ Ã ∪̇ B and G[Ã ∪̇ B,B] = ∅, where equality holds if and

only if additionally G[A,A ∪̇ Ã] = ∅.

(ii)
∑
i∈A fi ≥

∑
j∈B fj for all A, Ã,B with V = A ∪̇ Ã ∪̇ B and G[Ã ∪̇ B,B] = ∅, where equality holds if and

only if additionally either A = B = ∅ or (V = A ∪̇ B and G[A,A] = G[B,B] = ∅).

(iii)
∑
i∈A fi ≥

∑
j∈B fj for all independent sets B, non-adjacent opponents B̃ and A = R(B, B̃), where equality

holds if and only if additionally either A = B = ∅ or (V = A ∪̇ B and G[A,A] = G[B,B] = ∅).

(iv)
∑
i∈A fi ≥

∑
j∈B fj for all independent sets B, and A = N(B), where equality holds if and only if addition-

ally either A = B = ∅ or (V = A ∪̇ B and G[A,A] = G[B,B] = ∅).

(v)
∑
i∈A fi ≥

∑
j∈B fj for all subsets B ⊆ V , and A = N(B), where equality holds if and only if additionally

either B = ∅, or B = V , or (V = A ∪̇ B and G[A,A] = G[B,B] = ∅).

Each intermediate step follows more or less straightforward by carefully applying all definitions.
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