Symmetric Iterative Proportional Fitting — Supplementary Material —

This supplement consists of several parts that refer directly to specific topics in the paper:

- [A](#page-0-0) Proof of Equation (2)
- [B](#page-2-0) Proof of Lemma 3.1 (Symmetric biproportional fit)
- [C](#page-2-1) Technical details on why "local affinity" is sufficient in Section 4.1
- [D](#page-4-0) Proof of Theorem 4.2 (Convergence of PSIPF)
- [E](#page-4-1) Proof of Lemma 4.4 $(L_1\text{-monotony})$
- [F](#page-4-2) Proof of Lemma 4.5 (Volume bounds)
- [G](#page-5-0) Proof of Lemma 4.6 (Limit points)
- [H](#page-5-1) Proof of Lemma 4.7 (Strong convergence)
- [I](#page-5-2) Proof (sketch) of Proposition 5.2 (Strictly positive feasibility)

A Proof of Equation (2)

Equation (2) claims that for all $A, W \in \Omega$ with $E(A) \subseteq E(W)$, $\mathbf{r} \in \mathbb{R}_{>0}^m$, and $\mathcal{R} := \Omega(\mathbf{r}, \cdot, W)$, it holds that $\mathcal{P}_\mathcal{R}(A) = \text{diag}(\mathbf{r}) \cdot \text{diag}(A \mathbf{1})^{-1} \cdot A$. In order to keep notation simple, we first prove the following weaker statement (by assuming $A = W$) and finally generalize the result to any A with $E(A) \subseteq E(W)$

For
$$
W \in \Omega
$$
, $\mathbf{r} \in \mathbb{R}_{\geq 0}^m$ and $\mathcal{R} := \Omega(\mathbf{r}, \cdot, W) = \{ X \in \mathbb{R}_{\geq 0}^{m \times n} \mid X \mathbf{1} = \mathbf{r}, E(X) \subseteq E(W) \}$ it holds that

$$
\mathcal{P}_{\mathcal{R}}(W) = \text{diag}(\mathbf{r}) \text{diag}(W \mathbf{1})^{-1} \cdot W
$$

Proof. From $w_{ij} = 0 \Rightarrow x_{ij} = 0$ and $0 \cdot \log(0/w_{ij}) := 0$ it follows by definition of RE that

$$
\varrho(X) := RE(X||W) = \sum_{\substack{i=1...m, \\ j=1...n}} x_{ij} \log(x_{ij}/w_{ij}) - x_{ij} + w_{ij} = \sum_{ij \in E(W)} x_{ij} \log(x_{ij}/w_{ij}) - x_{ij} + w_{ij}
$$

From the definitions we get that

$$
\mathcal{P}_{\mathcal{R}}(W) = \arg \min_{X \in \mathbb{R}_{\geq 0}^{m \times n}} \left\{ \varrho(X) \mid X \mathbf{1} = \mathbf{r}, E(X) \subseteq E(W) \right\}
$$

\n
$$
= \arg \min_{X \in \mathbb{R}_{\geq 0}^{m \times n}} \left\{ \sum_{ij \in E(W)} x_{ij} \log(x_{ij}/w_{ij}) - x_{ij} \mid X \mathbf{1} = \mathbf{r}, E(X) \subseteq E(W) \right\}.
$$
 (*)

It follows from strict convexity of ρ and convexity of the constraints that the minimizer is unique, if existing (\mathscr{E}) .

Comment: Note that (\star) describes a non-smooth optimization problem because the partial derivative $\sqrt[n]{X_{i,j} \rho(X)} = \log(x_{ij}/w_{ij})$, does not exist whenever $ij \in E(W) \setminus E(X)$. A general strategy to avoid this problem is by first determining $E(\mathcal{P}_R(W))$ separately and then skipping all summands with $ij \notin E(\mathcal{P}_R(W))$ from (\star) , before finally taking the Lagrangian approach. For the projection to R we show in the following that $E(\mathcal{P}_R(W)) = E(W)$.

We re-state (\star) as the minimization over $2^{|E(W)|}$ many individual minimization problems, one for each $E \subseteq E(W)$, and each providing a unique (if existing) "inner minimizer" $R^*(E)$ that achieves its respective minimum $\varrho^*(E)$:

$$
\mathcal{P}_{\mathcal{R}}(W) = R^*(E^*) \quad \text{for} \quad E^* := \underset{E \subseteq E(W)}{\arg \min} \{ \varrho^*(E) \}
$$
\nand

\n
$$
\varrho^*(E) := \begin{cases}\n\underset{X \in \mathbb{R}_{\geq 0}^{m \times n}}{\min} \{ \varrho(X) \mid X \mathbf{1} = \mathbf{r}, E(X) = E \} & \text{with unique minimizer } R^*(E) \\
\infty & \text{if not existing}\n\end{cases}
$$

If $\mathcal{P}_{\mathcal{R}}(W)$ exists, then E^* is well-defined because at least one inner minimizer exists: for $E = E(\mathcal{P}_{\mathcal{R}}(W))$ there trivially exists $R^*(E) = \mathcal{P}_{\mathcal{R}}(W)$. We now show that further E^* is maximal in the sense that $E(\mathcal{P}_{\mathcal{R}}(W)) \supseteq E$ for all $E \subseteq E(W)$ for which $R^*(E)$ exists.

For any $E_1, E_2 \subseteq E(W)$ for which $R^*(E_1)$ and $R^*(E_2)$ exist let $R_\alpha := \alpha R^*(E_1) + (1 - \alpha)R^*(E_2)$ denote their convex combination for $\alpha \in (0,1)$. Then $E(R_{\alpha}) = E_1 \cup E_2 = E_1$. In particular $E_{12} \neq \emptyset$, thus $R^*(E_{12})$ exists. By continuity of ϱ we get that $\lim_{\alpha\to 0} \varrho(R_{\alpha}) = \varrho(R^*(E_1)) = \varrho^*(E_1)$ and similarly that $\lim_{\alpha\to 1} \varrho(R_{\alpha}) = \varrho(R^*(E_2)) =$ $\varrho^*(E_2)$. Since further $\varrho^*(E_{12}) \leq \varrho(R_\alpha)$ we get that $\varrho^*(E_{12}) \leq \min\{\varrho^*(E_1), \varrho^*(E_2)\}\$. Thus ϱ^* cannot increase when considering the union of any two sets. This implies that with $\xi := \{ E \subseteq E(W) \mid \varrho^*(E) < \infty \}$ and $E^* :=$ $\bigcup_{E \in \mathcal{E}} E$ that $\varrho^*(E^*) \leq \varrho^*(E)$ for all $E \subseteq E(W)$. Hence $R^*(E^*)$ must be some global minimizer. It is further unique over all subsets $E \subseteq E(W)$ by the separate uniqueness argument (*) above. Hence $\mathcal{P}_R(W) = R^*(E^*)$.

Here, we even get that $E^* = E(W)$ because there exists the feasible solution

$$
W^* := \text{diag}(\mathbf{r}) \,\text{diag}(W\mathbf{1})^{-1} \cdot W
$$

of maximum possible non-zeros $E(W^*) = E(W)$. It remains to show that $\mathcal{P}_{\mathcal{R}}(W)$ indeed equals W^* .

With the knowledge that $E(\mathcal{P}_R(W)) = E(W)$ we can re-state the minimization problem (\star) as

$$
\mathcal{P}_{\mathcal{R}}(X) = \arg \min_{X \in \mathbb{R}_{\geq 0}^{m \times n}} \left\{ \sum_{ij \in E(W)} x_{ij} \log(x_{ij}/w_{ij}) - x_{ij} \mid X\mathbf{1} = \mathbf{r}, E(X) = E(W) \right\}.
$$

Now we can take the standard Lagrangian approach, that is to find a global minimum of the Lagrangian function

$$
\Lambda(X,\boldsymbol{\mu}) = \varrho(X) - \boldsymbol{\mu}^T(X\mathbf{1}-\mathbf{r}) = \sum_{ij \in E(W)} x_{ij} \log(x_{ij}/w_{ij}) - x_{ij} - \sum_{i=1}^m \mu_i \left((\sum_{j \text{ s.t. } ij \in E(W)} x_{ij}) - r_i \right)
$$

over $X \in \mathbb{R}_{\geq 0}^{E(W)}$, by which we handle $x_{ij} := 0$ for all $ij \notin E(W)$ as constants. From $w_{ij} \neq 0 \Leftrightarrow x_{ij} \neq 0$ we get that $\nabla_{x_i} \Lambda(X,\mu) = \log(x_{ij}/w_{ij}) - \mu_i$ for all $ij \in E(W)$. Setting all derivatives to zero gives after entry-wise exponentiation that

$$
x_{ij} = \begin{cases} \exp(\mu_i) \cdot w_{ij} & \text{for } ij \in E(W) \\ 0 & \text{for } ij \notin E(W) \end{cases}
$$

that is in matrix notation $X = \text{diag}(\exp(\mu)) \cdot W$. Multiplying 1 from the right gives that $\mathbf{r} = X \mathbf{1} = \text{diag}(\exp(\mu)) \cdot$ W1, hence diag($\exp(\mu)$) = diag(r) diag(W1)⁻¹. Thus $X = W^*$ is indeed the (only) critical point. Further, the Hessian matrix is the diagonal matrix with the all-positive diagonal $\nabla_{x_{ij}}\nabla_{x_{ij}}\Lambda(X,\mu) = 1/x_{ij}$, which is positive definite. Thus W^* is the (unique global) minimum.

 \Box

.

The proof easily generalizes to $\mathcal{P}_{\mathcal{R}}(A)$ for any $A \in \Omega$ with $E(A) = E(W)$ just by flipping the notation from $W = [w_{ij}]$ to $A = [a_{ij}]$ whenever W appears as the argument of $\mathcal{P}_{\mathcal{R}}(\cdot)$. Further, it generalizes to any $A \in \Omega$ with $E(A) \subseteq E(W)$ by the convention $x_{ij} \cdot \log(x_{ij}/0) := \infty$ for $x_{ij} > 0$, which immediately implies that $E(\mathcal{P}_{\mathcal{R}}(A)) \subseteq E(A)$, hence by maximality $E(\mathcal{P}_{\mathcal{R}}(A)) = E(A)$.

The proof for $\mathcal{P}_{\mathcal{C}}(W)$ is fully analogous.

B Proof of Lemma 3.1

Lemma 3.1 (Symmetric biproportional fits). Let B denote the biproportional fit of $W \in S$ to row and column marginals $f \in \mathbb{R}_{>0}^n$. Then (i) $B = B^T$ is symmetric (ii) $B = \lim_{k \to \infty} W_k$ for a sequence of $W_k \in \Psi(W)$

(iii) $B \in \Psi(W)$ if and only if B is direct

Proof. (i) Let $B = \lim_{k \to \infty} R^{(k)}WS^{(k)}$ denote the biproportional fit of W to f. Then $B = \lim_{k \to \infty} R^{(k)}W^{T}S^{(k)}$ is the same biproportional fit of $W^T = W$ to f. Hence $B^T = \lim_{k\to\infty} S^{(k)}WR^{(k)}$ is another biproportional fit of W to **f**, so by uniqueness, $B^T = B$.

(ii) Now define $T^{(k)} := \sqrt{R^{(k)}S^{(k)}}$ by its diagonal elements $t_i := (r_i^{(k)}s_i^{(k)})^{1/2}$. For all i, j with $w_{ij} = w_{ji} \neq 0$, we get from $\lim_{k \to \infty} w_{ij} r_i^{(k)} s_j^{(k)} = b_{ij} = b_{ji} = \lim_{k \to \infty} w_{ij} r_j^{(k)} s_i^{(k)}$ that $\lim_{k \to \infty} (r_i^{(k)} s_j^{(k)})^{1/2} = \lim_{k \to \infty} (r_j^{(k)} s_i^{(k)})^{1/2}$. Hence,

$$
\lim_{k \to \infty} w_{ij} \ t_i^{(k)} t_j^{(k)} = \lim_{k \to \infty} w_{ij} \ (r_i^{(k)} s_j^{(k)} r_j^{(k)} s_i^{(k)})^{1/2} = w_{ij} \cdot (\lim_{k \to \infty} \sqrt{r_i^{(k)} s_j^{(k)}})^2 = \lim_{k \to \infty} w_{ij} \ r_i^{(k)} s_j^{(k)} = b_{ij}.
$$

For $b_{ij} \neq 0$ this implies with $b_{ij} \neq 0 \Rightarrow w_{ij} \neq 0$ that $\lim_{k\to\infty} w_{ij} t_i^{(k)} t_j^{(k)} = b_{ij}$. If $b_{ij} = 0$, then either $w_{ij} \neq 0$, thus again $\lim_{k\to\infty} w_{ij} t_i^{(k)} t_j^{(k)} = b_{ij}$, or $w_{ij} = 0$, in which case $\lim_{k\to\infty} w_{ij} t_i^{(k)} t_j^{(k)} = \lim_{k\to\infty} 0 t_i^{(k)} t_j^{(k)} = 0 = b_{ij}$. Thus, $\lim_{k \to \infty} T^{(k)}WT^{(k)} = B$, which proves (ii) for $W_k := T^{(k)}WT^{(k)} \in \Psi(W)$.

(iii) The implication " \Rightarrow " follows from the definitions, so it remains to show " \Leftarrow ". In case of direct $B = RWS$, (ii) The implication \Rightarrow follows from the definitions, so it remain
we get from (ii) with $T^{(k)} := T := \sqrt{RS}$ that $B = TWT \in \Psi(W)$. \Box

C Technical details on why "local affinity" is sufficient in Section 4.1

In this section we refer to the recursion (4) as the non-reflected sequence (\tilde{x}_k) defined for some $\tilde{x}_0 \in \mathbb{R}^N$ by

$$
\tilde{x}_k := \mathcal{P}_{[k]}(\tilde{x}_{k-1}),
$$

and to the recursion (5) as the sequence (x_k) defined for $x_0 = \tilde{x}_0$ by

$$
x_k := (\mathcal{P}_{[k]}^h \circ \nabla h^*)(\nabla h(x_{k-1}) + r_{k-\ell})
$$

and
$$
r_k := \nabla h(x_{k-1}) + r_{k-\ell} - \nabla h(x_k) .
$$

We say that a function $h : \mathbb{R}^N \to \mathbb{R}$ is "suitable", if it is Legendre, co-finite, and very strictly convex. Please refer to B&L (Bauschke and Lewis, 2000) for detailed definitions. Beside others, orthogonal projections and RE -projections are induced by a suitable function h as a Bregman divergence, so all results hold for both of them.

In the following, $\langle \cdot, \cdot \rangle$ denotes an inner product on \mathbb{R}^N . For any $A \subseteq \mathbb{R}^N$ let $\mathcal{B}_A(x_0, \epsilon) := \{x \in A \mid ||x - x_0||_2 \le \epsilon\}$ denote the ball of radius ϵ around x_0 in A. For any subset C of an affine subspace A we denote $c \in \mathcal{C}$ as being locally affine if there exists $\epsilon > 0$ such that $\mathcal{B}_{A}(c, \epsilon) \subseteq \mathcal{C}$. The sequence (4) is locally affine if all its points for $k \geq 1$ are locally affine.

All that we need, and which is implied by local affinity, is sloppy spoken that there "exists a basis of A and its negate within a small neighborhood in $\mathcal C$ around the point c ". Let us give some intuition on what this means and why this can be helpful: if for a linear subspace $\mathcal{L} \subseteq \mathbb{R}^N$ and some $q \in \mathbb{R}^N$ it holds that $\langle x, q \rangle \leq 0$ for all $x \in \mathcal{L}$ then it follows that $\langle x, q \rangle = 0$. This is easy to see from $\langle b, q \rangle \leq 0$ and $\langle -b, q \rangle \leq 0$ for every basis vector b of $\mathcal L$. It is already sufficient if the inequality holds everywhere within an arbitrary small ball around $\mathbf 0$, since it already contains a smaller-scaled basis of \mathcal{L} . This insight is stated in the following lemma more general by taking $\mathcal L$ as the difference space of an affine subspace $\mathcal A \subseteq \mathbb R^N$.

Lemma C.1. Let $A \subseteq \mathbb{R}^N$ denote an affine subspace. Then it holds for all $q \in \mathbb{R}^N$ and $a \in A$: $\forall x \in \mathcal{A} : \langle x - a, q \rangle = 0 \qquad \Leftrightarrow \qquad \exists \epsilon > 0 : \forall x \in \mathcal{B}_{\mathcal{A}}(a, \epsilon) : \langle x - a, q \rangle \leq 0.$

The same holds true for \geq instead of \leq .

Proof. The direction " \Rightarrow " is trivial, so we only have to prove " \Leftarrow ": let L denote the linear subspace that underlies A, thus, $\forall x \in \mathcal{A} : a - x \in \mathcal{L}$. Let b_1, \ldots, b_c denote a basis of \mathcal{L} . With $b'_i := \epsilon \cdot b_i/(\max_i \{||b_i||\})$ for $i = 1, \ldots, c$ we get that b'_1, \ldots, b'_c is also a basis of \mathcal{L} , and that $a \pm b'_i \in \mathcal{B}_{\mathcal{A}}(a, \epsilon)$. Thus, $\langle b'_i, q \rangle \leq 0$ and $\langle -b'_i, q \rangle \leq 0$, which implies that $\langle b_i', q \rangle = 0$ for all i. Thus, we get for all $x \in A$ from the representation $x = a + \sum_{i=1}^{c} \alpha_i b_i'$ for some $\alpha_1, \ldots, \alpha_c \in \mathbb{R}$ that $\langle x - a, q \rangle = \sum_{i=1}^c \alpha_i \langle b_i', q \rangle = 0.$ П

Note that this lemma does not state that $q \perp x$ for $x \in A$. The orthogonality refers to the difference space, that is $q \perp (x - a) \in \mathcal{L}$. Lemma C.1 is the tool that we need in order to generalize B&L (Theorem 4.3) to local affinity, as formulated in the following theorem.

Theorem C.2 (Convergence of locally affine sequences). Let $\mathcal{F} = \mathcal{C}_1 \cap \ldots \cap \mathcal{C}_\ell$ be the non-empty intersection of ℓ closed convex sets $C_i \subseteq \mathbb{R}^N$, where each C_i is a subset of an affine subspace $\mathcal{A}_i \subseteq \mathbb{R}^N$. For $\tilde{x}_0 \in \mathbb{R}^N$ consider the recursion

$$
\tilde{x}_k := \mathcal{P}^h_{[k]}(\tilde{x}_{k-1})
$$

for $k \geq 1$. If the sequence $(\tilde{x}_0, \tilde{x}_1, \ldots)$ is locally affine, then $\lim_{k \to \infty} \tilde{x}_k = P^h_{\mathcal{F}}(\tilde{x}_0)$.

Proof. The proof shows by induction that $x_k = \tilde{x}_k$ for all $k \geq 0$. Then $\lim_{k \to \infty} \tilde{x}_k = P^h_{\mathcal{F}}(\tilde{x}_0)$ follows from the fact that it is also the limit of (x_k) . For all $k \leq \ell$ it holds that $x_k = \tilde{x}_k$ because $r_{k-\ell} = 0$ by definition, and $\nabla h^* \circ \nabla h = id$. Now fix $k > \ell$ with by induction $x_i = \tilde{x}_i$ for all $i < k$. Note that $\mathcal{C}_{[k]} = \mathcal{C}_{[k-\ell]}$ and $\mathcal{A}_{[k]} = \mathcal{A}_{[k-\ell]}$. Now we incorporate our local affinity assumption. Hence there exists some $\epsilon_{k-\ell} > 0$ such that $\mathcal{B}_{\mathcal{A}_{[k]}}(\tilde{x}_{k-\ell}, \epsilon_{k-\ell}) \subseteq \mathcal{C}_{[k]}$. Because of $x_{k-\ell} = \tilde{x}_{k-\ell}$ we have that $\mathcal{B}_{\mathcal{A}_{[k]}}(x_{k-\ell}, \epsilon_{k-\ell}) \subseteq \mathcal{C}_{[k]}$. From B&L (Equation 1 in Theorem 3.2) we get that for all $c \in \mathcal{C}_{[k]}$ it holds that $\langle c - x_{k-\ell}, r_{k-\ell} \rangle \leq 0$. So we can apply Lemma C.1 in order to get that $\langle a - x_{k-\ell}, r_k \rangle = 0$ for all $a \in \mathcal{A}_{[k]}$. For the underlying difference space $\mathcal{L}_{[k]} = \mathcal{A}_{[k]} - x_{k-\ell}$ we are free to choose any other element $z \in \mathcal{A}_{[k]}$ for its representation, that is $\mathcal{A}_{[k]} - x_{k-\ell} = \mathcal{A}_{[k]} - z$. Choosing $z = x_k$ gives that $\langle a - x_k, r_k \rangle = 0$ for all $a \in A_{[k]} \supseteq C_{[k]}$. The remaining part follows the ideas of the original proof, but we also fix a small flaw in it. We have that $x_{k-1} = \tilde{x}_{k-1}$, and we claim that

$$
\tilde{x}_k = \mathcal{P}_{[k]}^h(\tilde{x}_{k-1}) \quad \stackrel{!}{=} \quad (\mathcal{P}_{[k]}^h \circ \nabla h^*)(\nabla h(x_{k-1}) + r_{k-\ell}) = x_k. \tag{(*)}
$$

Applying the characterization

$$
a' = \mathcal{P}_{[k]}^{h}(a) \quad \Leftrightarrow \quad \forall c \in \mathcal{C}_{[k]} \; : \; \langle c - a', \nabla h(a) - \nabla h(a') \rangle \le 0 \tag{*}
$$

for $a := \nabla h^*(\nabla h(x_{k-1}) + r_{k-\ell})$ $a := \nabla h^*(\nabla h(x_{k-1}) + r_{k-\ell})$ $a := \nabla h^*(\nabla h(x_{k-1}) + r_{k-\ell})$ and corresponding¹ $a' := x_k$ in the direction of "⇒" to the right side in (*) gives:

$$
0 \geq \langle c - x_k, \nabla h(\nabla h^*(\nabla h(x_{k-1}) + r_{k-\ell})) - \nabla h(x_k) \rangle
$$

\n
$$
= \langle c - x_k, \nabla h(x_{k-1}) + r_{k-\ell} - \nabla h(x_k) \rangle
$$

\n
$$
= \langle c - x_k, \nabla h(\tilde{x}_{k-1}) - \nabla h(x_k) \rangle + \langle c - x_k, r_{k-\ell} \rangle
$$

\n
$$
= \langle c - x_k, \nabla h(\tilde{x}_{k-1}) - \nabla h(x_k) \rangle
$$

\n
$$
\langle c - x_k, r_{k-\ell} \rangle = 0
$$

From (*) again, now for $a := \tilde{x}_{k-1}$ and $a' = x_k$ in direction " \Leftarrow ", we get that $x_k = \mathcal{P}_{[k]}^h(\tilde{x}_{k-1})$, hence $\tilde{x}_k = x_k$.

Thus, we can simply drop all reflection terms without affecting the sequence at all, nor its limit. Hence in this case the sequence generated by (5) coincides with (4). \Box

Note that this theorem can be formulated in more generality by allowing to drop the reflection terms for individual \mathcal{C}_i 's: for any $i \in \{1, \ldots, \ell\}$ such that x_k is locally affine for all $[k] = i$, we can drop all reflection terms r_k for $[k] = i$, while keeping all other required reflection terms. This does not affect the sequence at all.

¹here is a small flaw in B&L: they apply a together with $a' = \tilde{x}_k$ and later refer to $\langle c - \tilde{x}_k, r_{k-\ell} \rangle = 0$. However, it must be $a' = x_k$ and the orthogonality must be shifted to $\langle c - x_k, r_{k-\ell} \rangle = 0$.

D Proof of Theorem 4.2

Theorem 4.2 (Convergence of PSIPF). Let $W \in S$ and $\mathbf{f} \in \mathbb{R}_{>0}^n$ such that $\mathcal{S}(\mathbf{f}, W) \neq \emptyset$. Then the PSIPF-sequence $(W^{\langle k \rangle})$ converges to $\mathcal{P}_{\mathcal{S}(\mathbf{f},W)}(W)$. Further, $W^{\langle k \rangle} \in \Psi(W)$ for all $k \geq 0$.

Proof. Let $B = \lim_{k \to \infty} W^{(k)} = \lim_{k \to \infty} Y^{(k)} W Z^{(k)}$ denote the limit of the IPF-sequence. Lemma 3.1 gives that $B = B^T$. We have to show that $\lim_{k\to\infty} w_{ij}^{\langle k\rangle\rangle} = b_{ij}$ for all *i*, *j*. Whenever $w_{ij} = w_{ji} \neq 0$, we get from $\lim_{k \to \infty} w_{ij} y_i^{(k)} z_j^{(k)} = b_{ij} = b_{ji} = \lim_{k \to \infty} w_{ij} y_j^{(k)} z_i^{(k)}$ that $\lim_{k \to \infty} (y_i^{(k)} z_j^{(k)})^{1/2} = \lim_{k \to \infty} (y_j^{(k)} z_i^{(k)})^{1/2}$. Hence $\lim_{k\to\infty} w_{ij}^{\langle \langle k \rangle} = \lim_{k\to\infty} w_{ij} (y_i^{\langle k \rangle} z_j^{\langle k \rangle} y_j^{\langle k \rangle} z_i^{\langle k \rangle})^{1/2} = \lim_{k\to\infty} w_{ij} y_i^{\langle k \rangle} z_j^{\langle k \rangle} = b_{ij}$. For $b_{ij} \neq 0$ this implies with $b_{ij} \neq 0 \Rightarrow w_{ij} \neq 0$ that $\lim_{k\to\infty} w_{ij}^{\langle k\rangle\rangle} = b_{ij}$. Otherwise (i.e., $b_{ij} = 0$) it either holds that $w_{ij} \neq 0$, thus again $\lim_{k\to\infty} w_{ij}^{\langle k \rangle} = b_{ij}$, or $w_{ij} = 0$, in which case $\lim_{k\to\infty} w_{ij}^{\langle k \rangle} = \lim_{k\to\infty} 0 (y_i^{\langle k \rangle} z_j^{\langle k \rangle} y_j^{\langle k \rangle} z_i^{\langle k \rangle})^{1/2} = 0 = b_{ij}$. \Box

E Proof of Lemma 4.4 $(L_1\text{-monotony})$

Lemma 4.4 (L₁-monotony). For any $W \in \mathcal{S}$ and any mean function m, the m-sequence of W implies that $\|\mathbf{f} - \mathbf{d}^{(k)}\|_1$ is monotonously decreasing.

Proof. For $k \geq 0$ we get with $s_i := f_i/d_i^{(k)}$ that

$$
\|\mathbf{f} - \mathbf{d}^{(k+1)}\|_1 = \sum_i |f_i - d_i^{(k+1)}|
$$
\n
$$
= \sum_i |\sum_j w_{ij}^{(k)} s_i - \sum_j w_{ij}^{(k)} m(s_i, s_j)|
$$
\n
$$
\leq \sum_i \sum_{j>i} w_{ij}^{(k)} (|s_i - m(s_i, s_j)| + |s_j - m(s_j, s_i)|)
$$
\n
$$
\stackrel{\text{(k)}}{=} \sum_i \sum_{j>i} w_{ij}^{(k)} |s_i - s_j|
$$
\n
$$
\leq \sum_i \sum_{j>i} w_{ij}^{(k)} (|s_i - 1| + |s_j - 1|)
$$
\n
$$
\leq \sum_i |s_i - 1| \cdot d_i^{(k)} = \sum_i |f_i - d_i^{(k)}| = \|\mathbf{f} - \mathbf{d}^{(k)}\|_1
$$

 \Box

where equality (\star) holds true because of $m(s_i, s_j) = m(s_j, s_i) \in [\min(s_i, s_j), \max(s_i, s_j)].$

F Proof of Lemma 4.5 (Volume bounds)

Lemma 4.5 (Volume bounds). For any $W \in \mathcal{S}$ and any mean function m, the m-sequence of W satisfies for all $k \geq 1$ that

> (i) $\|\mathbf{d}^{(k)}\|_1 \leq \|\mathbf{f}\|_1$ if m is sub-arithmetic (*ii*) $\|\mathbf{d}^{(k)}\|_1 = \|\mathbf{f}\|_1$ *if* $m = m_A$ (iii) $\|\mathbf{d}^{(k)}\|_1 \geq \|\mathbf{f}\|_1$ if m is super-arithmetic

If m is strict in (i) or (iii), then equality holds if and only if $f_i/d_i^{(k)} = f_j/d_j^{(k)}$ for all $w_{ij} \neq 0$.

Proof. (i) For $k \geq 0$ we get with $s_i := f_i/d_i^{(k)}$ that

$$
\|\mathbf{f}\|_{1} - \|\mathbf{d}^{(k+1)}\|_{1} = \sum_{i} \left(\sum_{j} w_{ij}^{(k)} s_{i} - \sum_{j} w_{ij}^{(k)} m(s_{i}, s_{j})\right)
$$

$$
= \sum_{i} \sum_{j>i} w_{ij}^{(k)} \underbrace{(s_{i} - m(s_{i}, s_{j}) + s_{j} - m(s_{j}, s_{i}))}_{\geq 0}
$$

where non-negativity of each summand follows from $x + y - 2m(x, y) \ge x + y - 2(x + y)/2 = 0$ (*) for subarithmetic m. If m is strict, then the inequality in (\star) holds with equality iff $x = y$. This implies that

 $||\mathbf{f}||_1 - ||\mathbf{d}^{(k+1)}||_1 \geq 0$ holds with equality iff $s_i = s_j$ whenever $w_{ij}^{(k)} \neq 0$, that is $w_{ij} \neq 0$. (ii) follows from (i) and the fact that (\star) always holds with equality for $m = m_A$. (iii) equals (i) with all inequalities flipped. □

G Proof of Lemma 4.6 (Limit points)

Lemma 4.6 (Limit points). Every m-sequence is bounded and has at least one limit point W^* . If $\|\mathbf{f}-\mathbf{d}^{(k)}\|_1 \to 0$, then every limit point W^* satisfies $W^*\mathbf{1} = \mathbf{f}$. If further $m = m_G$, then W^* is the (unique) biproportional fit of W to row and column marginals **f**, and it holds that $W^{(k)} \to W^*$.

Proof. Lemma 4.4 implies that there exists $L > 0$ such that $w_{ij}^{(k)} \leq L$ for all i, j, k . Hence $(W^{(k)})$ is bounded and thus has at least one limit point W^* in compact $[0, L]^{n \times n}$. We now show that if $\|\mathbf{f} - \mathbf{d}^{(k)}\|_1 \to 0$, then any limit point W^{*} of the m-sequence satisfies W^* **1** = **f**. Let $(W^{(k_i)})$ denote any subsequence that converges to W^* . Then $\|\mathbf{f} - W^*\mathbf{1}\|_1 \leq \|\mathbf{f} - \mathbf{d}^{(k_i)}\| + \|(W^{(k_i)} - W^*)\mathbf{1}\|_1 \longrightarrow 0.$ Now assume that $m = m_G$. Then $W^{(k)} = T^{(k)}WT^{(k)}$ for some $T^{(k)} \in \text{diag}(\mathbb{R}_{\geq 0}^n)$, which gives that any limit point W^* is a biproportional scaling of W, that is $W^* = \lim_{i \to \infty} T^{(k_i)} W T^{(k_i)}$ for a subsequence $(W^{(k_i)})_{i \geq 0}$. Because of $W^* \mathbf{1} = \mathbf{f}$ we get that W^* is unique by the uniqueness of biproportional fits. Finally, any bounded sequence with a single limit point converges to it, hence $W^{(k)} \to W^*$. \Box

H Proof of Lemma 4.7 (Strong convergence)

Lemma 4.7 (Strong convergence). For any $\mathbf{x} := (x_1, \ldots, x_n) \in \mathbb{R}_{>0}^n$, $\mathbf{a} := (a_1, \ldots, a_n) \in \mathbb{R}_{>0}^n$ P $_{>0}^n$ with $i_i x_i \leq \sum_i a_i$ let $f(\mathbf{x}) := \sum_i a_i \log \frac{a_i}{x_i}$. Then

 $f(\mathbf{x}) \geq 0$ with equality iff $\mathbf{x} = \mathbf{a}$. (1)

Further, for any sequence $(\mathbf{x}^{(k)})_{k\geq 0}$ in $\mathbb{R}_{>0}^n$ with $\sum_i x_i^{(k)} \leq \sum_i a_i$ it holds that

$$
\lim_{k \to \infty} f(\mathbf{x}^{(k)}) = 0 \quad \Leftrightarrow \quad \lim_{k \to \infty} \mathbf{x}^{(k)} = \mathbf{a}.\tag{2}
$$

Proof. (1) follows from the Bregman divergence $RE(\mathbf{a}||\mathbf{x}) = \sum_i a_i$ $log(a_i/x_i) - a_i + x_i \geq 0$, hence \sum $i_i a_i \log(a_i/x_i) \ge \sum_i a_i - \sum_i x_i \ge 0$ with equality if and only if $\mathbf{a} = \mathbf{x}$. We now prove (2). " \Leftarrow " follows from continuity of f, so it remains to show " \Rightarrow ". From $\sum_i x_i^{(k)} \leq \sum_i a_i =: a$ we get that $x_i^{(k)} \in (0, a]$ for all $i \in \{1, \ldots, n\}$ and $k \geq 0$. Compactness of $[0, a]^n$ implies that all limit points of $S := (\mathbf{x}^{(k)})$ lie within $[0, a]^n$, and that there exists at least one. Let **c** denote a limit point of S and $(\mathbf{y}^{(k)})$ a subsequence that converges to **c**. Note that $\lim_{\epsilon \to 0} a_i \log(a_i/\epsilon) = \infty$. Hence we get by $f(\mathbf{y}^{(k)}) \to 0$ and by continuity of f that $\mathbf{c} \in (0, a]^n$ and $f(\mathbf{c}) = 0$. Now (1) implies that $\mathbf{c} = \mathbf{a}$ is the unique limit point of S, thus $\mathbf{x}^{(k)} \to \mathbf{a}$. \Box

I Proof (sketch) of Proposition 5.2 (Strictly positive feasibility)

Consider the following specialization of Proposition 5.2 to connected graphs.

Proposition 5.2* (Strictly positive feasibility for connected graphs). Let $\mathcal{G}(W) = (V, E, W)$ denote the graph corresponding to $W \in \mathcal{S}$, and assume that it is connected. For any $f \in \mathbb{R}_{\geq 0}^n$ there exists a strictly positive solution in $S(f, W)$ if and only if $G(W)$ is a weak f-expander that is strict for all $S \notin$ $\{\emptyset, V_1, V_2, V\}$, with either $V_1 := V_2 := \emptyset$ if $G(W)$ is non-bipartite, or $V =: V_1 \cup V_2$ the bipartition of $G(W)$.

It is straightforward to derive Proposition 5.2 from Proposition 5.2^{*}, that is to generalize from connected graphs to possibly unconnected graphs, by applying Proposition 5.2^* to each connected component, and aggregating the exceptional sets that force equality. So it remains to proof Proposition 5.2^{\star} .

We need some additional notation and concepts for the proof:

For $i, j \in V$ with $ij \in E$ we also write $i \sim j$. For $i \in V$ and $X \subseteq V$ we write $i \sim X$ if there exists a vertex $x \in X$ with $i \sim x$. Otherwise, if i is not adjacent to any of the vertices in X, we write $i \not\sim X$. For $X, Y \subseteq V$ let $G[X, Y] := \{ij = ji \in E \mid (i, j) \in X \times Y\}$ denote the set of edges connecting some vertex in X to some vertex in Y. Thus, $B \subseteq V$ is an independent set if and only if $G[B, B] = \emptyset$. Observe that for all $X, Y \subseteq V$ it holds that

$$
G[X \cup Y, Y] = \emptyset \Leftrightarrow G[X, Y] = G[Y, Y] = \emptyset.
$$

For any set $B \subseteq V$, we call any disjoint $\tilde{B} \subseteq V \setminus B$ satisfying $G[\tilde{B}, B] = \emptyset$ a non-adjacent opponent of B. This also defines their rest $R(B, \tilde{B}) := V \setminus (B \cup \tilde{B})$, which partitions V into $V = B \cup \tilde{B} \cup R(B, \tilde{B})$. The set $B^* := \{i \in V \setminus B \mid i \not\sim B\}$ is the (unique) maximum non-adjacent opponent of B. Thus, all vertices from the rest $R(B, B^*)$ are adjacent to B. Any other non-adjacent opponent \tilde{B} of B satisfies that $\tilde{B} \subset B^*$.

Let $\delta B := \{i \in V \setminus B \mid \exists j \in B : i \sim j\}$ denote the vertex boundary of B. It holds that $\delta B = N(B) \setminus B$. Further $\delta B = N(B)$ if and only if B is an independent set. For any set B and its maximum non-adjacent opponent B^* their rest is $R(B, B^*) = \delta B$.

Proof (sketch) of Proposition 5.2^{*}. We start with Theorem 7 of Behrend (2013), restricted to a connected graph with $n \geq 2$ vertices. This is equivalent to the tri-partition statement (i) below. We then transform (i) along a sequence of equivalent statements (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (v) to the more intuitive statement (v) in terms of f -expansion, which is equivalent to Proposition 5.2^* .

Let $G = (V, E, W)$ for $W \in \Omega$ be connected, and $f \in \mathbb{R}_{\geq 0}^n$. Then there exists a strictly positive solution in $\mathcal{S}(\mathbf{f}, W)$ if and only if any of the following equivalent statements holds:

- (i) $\sum_{i\in A} f_i \geq \sum_{j\in B} f_j$ for all A, \tilde{A}, B with $V = A \cup \tilde{A} \cup B$ and $G[\tilde{A} \cup B, B] = \emptyset$, where equality holds if and only if additionally $G[A, A \cup \tilde{A}] = \emptyset$.
- (ii) $\sum_{i\in A} f_i \geq \sum_{j\in B} f_j$ for all A, \tilde{A}, B with $V = A \cup \tilde{A} \cup B$ and $G[\tilde{A} \cup B, B] = \emptyset$, where equality holds if and only if additionally either $A = B = \emptyset$ or $(V = A \cup B$ and $G[A, A] = G[B, B] = \emptyset$.
- (iii) $\sum_{i\in A} f_i \geq \sum_{j\in B} f_j$ for all independent sets B, non-adjacent opponents \tilde{B} and $A = R(B, \tilde{B})$, where equality holds if and only if additionally either $A = B = \emptyset$ or $(V = A \cup B$ and $G[A, A] = G[B, B] = \emptyset$.
- (iv) $\sum_{i\in A} f_i \ge \sum_{j\in B} f_j$ for all independent sets B, and $A = N(B)$, where equality holds if and only if additionally either $A = B = \emptyset$ or $(V = A \cup B$ and $G[A, A] = G[B, B] = \emptyset$.
- (v) $\sum_{i\in A} f_i \ge \sum_{j\in B} f_j$ for all subsets $B \subseteq V$, and $A = N(B)$, where equality holds if and only if additionally either $B = \emptyset$, or $B = V$, or $(V = A \cup B$ and $G[A, A] = G[B, B] = \emptyset$.

Each intermediate step follows more or less straightforward by carefully applying all definitions.

 \Box