
Tight Regret Bounds for Stochastic Combinatorial Semi-Bandits

A Proofs of Main Theorems

A.1 Proof of Lemma 1

Let Rt = R(At, wt) be the stochastic regret of CombUCB1 at time t, where At and wt are the solution and the weights of
the items at time t, respectively. Furthermore, let Et =

�
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be the event that
w̄(e) is outside of the high-probability confidence interval around ŵTt�1(e)(e) for some item e at time t; and let Et be the
complement of Et, w̄(e) is in the high-probability confidence interval around ŵTt�1(e)(e) for all e at time t. Then we can
decompose the regret of CombUCB1 as:
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Now we bound each term in our regret decomposition.

The regret of the initialization, E
h

Pt0�1
t=1 Rt

i

, is bounded by KL because Algorithm 2 terminates in at most L steps, and
Rt  K for any At and wt.

The second term in our regret decomposition, E
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, is small because all of our confidence intervals hold
with high probability. In particular, for any e, s, and t:
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and therefore:
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Since Rt  K for any At and wt, E
⇥
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⇤
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3 KL.

Finally, we rewrite the last term in our regret decomposition as:
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In equality (a), the outer expectation is over the history of the agent up to time t, which in turn determines At and Et; and
E [Rt |At] is the expected regret at time t conditioned on solution At. Equality (b) follows from �At = E [Rt |At]. Now
we bound �At1

�

Et,�At > 0

 

for any suboptimal At. The bound is derived based on two facts. First, when CombUCB1

chooses At, f(At, Ut) � f(A⇤, Ut). This further implies that
P
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Ut(e). Second, when event
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and 2
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e2At\A⇤ ct�1,Tt�1(e) � �At follows from the observation that �At =

P

e2A⇤\At
w̄(e) �

P

e2At\A⇤ w̄(e). Now
note that cn,Tt�1(e) � ct�1,Tt�1(e) for any time t  n. Therefore, the event Ft in (3) must happen and:
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This concludes our proof.

A.2 Proof of Theorem 2

By Lemma 1, it remains to bound ˆR(n) =
Pn

t=t0
�At1{Ft}, where the event Ft is defined in (3). By Lemma 2 and from

the assumption that �At = � for all suboptimal At, it follows that:
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To bound the above quantity, it is sufficient to bound the number of times that events G1,t and G2,t happen. Then we set
the tunable parameters d and ↵ such that the two counts are of the same magnitude.

Claim 1. Event G1,t happens at most
↵

d
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Proof. Recall that event G1,t can happen only if at least d chosen suboptimal items are not observed “sufficiently often”
up to time t, Tt�1(e)  ↵K2 6

�2 log n for at least d items in ˜At. After the event happens, the observation counters of these
items increase by one. Therefore, after the event happens ↵

dK
2L 6

�2 log n times, all suboptimal items are guaranteed to be
observed at least ↵K2 6

�2 log n times and G1,t cannot happen anymore.
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Proof. Event G2,t can happen only if there exists e 2 ˜At such that Tt�1(e)  ↵d2

(
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6
�2 log n. After the event happens,

the observation counter of item e increases by one. Therefore, the number of times that event G2,t can happen is bounded
trivially by ↵d2

(
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Based on Claims 1 and 2, ˆR(n) is bounded as:
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Finally, we choose ↵ = 4 and d = K
2
3 ; and it follows that the regret is bounded as:
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A.3 Proof of Theorem 3

Let Ft be the event in (3). By Lemmas 1 and 2, it remains to bound:
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In the next step, we introduce item-specific variants of events G1,t (6) and G2,t (7), and then associate the regret at time t
with these events. In particular, let:
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be the events that item e is not observed “sufficiently often” under events G1,t and G2,t, respectively. Then by the defini-
tions of the above events, it follows that:
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where ˜E = E \A⇤ is the set of subptimal items; and we bound ˆR(n) as:

ˆR(n) 
X

e2Ẽ
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Let each item e be contained in Ne suboptimal solutions and �e,1 � . . . � �e,Ne be the gaps of these solutions, ordered
from the largest gap to the smallest one. Then ˆR(n) can be further bounded as:
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where inequality (a) is by the definitions of events Ge,1,t and Ge,2,t, inequality (b) is from the solution to:
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Finally, we choose ↵ = 4 and d = K
2
3 ; and it follows that the regret is bounded as:
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A.4 Proof of Theorem 4

The first step of the proof is identical to that of Theorem 2. By Lemma 1, it remains to bound ˆR(n) =
Pn

t=t0
�At1{Ft},

where the event Ft is defined in (3). By Lemma 3 and from the assumption that �At = � for all suboptimal At, it follows
that:
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Note that �At > 0 implies �At = �. Therefore, mi,t does not depend on t and we denote it by mi = ↵i
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on the same argument as in Claim 1, event Gi,t cannot happen more than Lmi
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It remains to choose (↵i) and (�i) such that:
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• limi!1 ↵i = limi!1 �i = 0;

• Monotonicity conditions in (9) and (10) hold;

• Inequality (12) holds,
p
6
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 1;

•
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is minimized.

We choose (↵i) and (�i) to be geometric sequences, �i = �i and ↵i = d↵i for 0 < ↵,� < 1 and d > 0. For this setting,
↵i ! 0 and �i ! 0, and the monotonicity conditions are also satisfied. Moreover, if � <
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Given the above, the best choice of d is 6
⇣

1��p
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and the problem of minimizing the constant in our regret bound can

be written as:
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We find the solution to the above problem numerically, and determine it to be ↵ = 0.1459 and � = 0.2360. For these ↵
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A.5 Proof of Theorem 5

Let Ft be the event in (3). By Lemmas 1 and 3, it remains to bound:
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In the next step, we define item-specific variants of events Gi,t (11) and associate the regret at time t with these events. In
particular, let:
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Let each item e be contained in Ne suboptimal solutions and �e,1 � . . . � �e,Ne be the gaps of these solutions, ordered
from the largest gap to the smallest one. Then ˆR(n) can be further bounded as:
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where inequality (a) is by the definition of event Ge,i,t, inequality (b) follows from the solution to:
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and inequality (c) follows from (16). For the same (↵i) and (�i) as in Theorem 4, we have
P1
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< 267 and it follows
that the regret is bounded as:
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A.6 Proof of Theorem 6

The key idea is to decompose the regret of CombUCB1 into two parts, where the gaps are larger than ✏ and at most ✏. We
analyze each part separately and then set ✏ to get the desired result.

By Lemma 1, it remains to bound ˆR(n) =
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�At1{Ft}, where the event Ft is defined in (3). We partition ˆR(n) as:
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and bound the first term trivially. The second term is bounded in the same way as ˆR(n) in the proof of Theorem 5, except
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Based on the above inequalities:

R(n)  534KL

✏
log n+ ✏n+

✓

⇡2

3

+ 1

◆

KL .

Finally, we choose ✏ =

r

534KL log n

n
and get:

R(n)  2

p

534KLn log n+

✓

⇡2

3

+ 1

◆

KL < 47

p

KLn log n+

✓

⇡2

3

+ 1

◆

KL ,

which concludes our proof.
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B Technical Lemmas

Lemma 4. Let Si, ¯Si, and mi be defined as in Lemma 3; and |Si| < �iK for all i > 0. Then:
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The first two equalities follow from the definitions of ¯Si and Si. The inequality follows from the facts that |Si| < �iK for
all i > 0 and |S0|  �0K.


