A Proofs of Main Theorems

A.1 Proof of Lemma 1

Let $R_t = R(A_t, w_t)$ be the stochastic regret of CombUCB1 at time t, where A_t and w_t are the solution and the weights of the items at time t, respectively. Furthermore, let $\mathcal{E}_t = \{\exists e \in E : |\bar{w}(e) - \hat{w}_{T_{t-1}(e)}(e)| \ge c_{t-1,T_{t-1}(e)}\}$ be the event that $\bar{w}(e)$ is outside of the high-probability confidence interval around $\hat{w}_{T_{t-1}(e)}(e)$ for some item e at time t; and let $\overline{\mathcal{E}}_t$ be the complement of \mathcal{E}_t , $\bar{w}(e)$ is in the high-probability confidence interval around $\hat{w}_{T_{t-1}(e)}(e)$ for all e at time t. Then we can decompose the regret of CombUCB1 as:

$$R(n) = \mathbb{E}\left[\sum_{t=1}^{t_0-1} R_t\right] + \mathbb{E}\left[\sum_{t=t_0}^n \mathbb{1}\{\mathcal{E}_t\} R_t\right] + \mathbb{E}\left[\sum_{t=t_0}^n \mathbb{1}\{\overline{\mathcal{E}}_t\} R_t\right].$$

Now we bound each term in our regret decomposition.

The regret of the initialization, $\mathbb{E}\left[\sum_{t=1}^{t_0-1} R_t\right]$, is bounded by KL because Algorithm 2 terminates in at most L steps, and $R_t \leq K$ for any A_t and w_t .

The second term in our regret decomposition, $\mathbb{E}\left[\sum_{t=t_0}^{n} \mathbb{1}\{\mathcal{E}_t\} R_t\right]$, is small because all of our confidence intervals hold with high probability. In particular, for any e, s, and t:

$$P(|\bar{w}(e) - \hat{w}_s(e)| \ge c_{t,s}) \le 2 \exp[-3 \log t],$$

and therefore:

$$\mathbb{E}\left[\sum_{t=t_0}^n \mathbb{1}\{\mathcal{E}_t\}\right] \le \sum_{e \in E} \sum_{t=1}^n \sum_{s=1}^t P(|\bar{w}(e) - \hat{w}_s(e)| \ge c_{t,s}) \le 2\sum_{e \in E} \sum_{t=1}^n \sum_{s=1}^t \exp[-3\log t] \le 2\sum_{e \in E} \sum_{t=1}^n t^{-2} \le \frac{\pi^2}{3}L.$$

Since $R_t \leq K$ for any A_t and w_t , $\mathbb{E}\left[\sum_{t=t_0}^n \mathbb{1}\{\mathcal{E}_t\} R_t\right] \leq \frac{\pi^2}{3}KL$.

Finally, we rewrite the last term in our regret decomposition as:

$$\mathbb{E}\left[\sum_{t=t_0}^n \mathbb{1}\left\{\overline{\mathcal{E}}_t\right\} R_t\right] \stackrel{\text{(a)}}{=} \sum_{t=t_0}^n \mathbb{E}\left[\mathbb{1}\left\{\overline{\mathcal{E}}_t\right\} \mathbb{E}\left[R_t \mid A_t\right]\right] \stackrel{\text{(b)}}{=} \mathbb{E}\left[\sum_{t=t_0}^n \Delta_{A_t} \mathbb{1}\left\{\overline{\mathcal{E}}_t, \Delta_{A_t} > 0\right\}\right].$$

In equality (a), the outer expectation is over the history of the agent up to time t, which in turn determines A_t and $\overline{\mathcal{E}}_t$; and $\mathbb{E}[R_t | A_t]$ is the expected regret at time t conditioned on solution A_t . Equality (b) follows from $\Delta_{A_t} = \mathbb{E}[R_t | A_t]$. Now we bound $\Delta_{A_t} \mathbb{1}\{\overline{\mathcal{E}}_t, \Delta_{A_t} > 0\}$ for any suboptimal A_t . The bound is derived based on two facts. First, when CombUCB1 chooses A_t , $f(A_t, U_t) \ge f(A^*, U_t)$. This further implies that $\sum_{e \in A_t \setminus A^*} U_t(e) \ge \sum_{e \in A^* \setminus A_t} U_t(e)$. Second, when event $\overline{\mathcal{E}}_t$ happens, $|\overline{w}(e) - \widehat{w}_{T_{t-1}(e)}(e)| < c_{t-1,T_{t-1}(e)}$ for all items e. Therefore:

$$\sum_{e \in A_t \setminus A^*} \bar{w}(e) + 2 \sum_{e \in A_t \setminus A^*} c_{t-1, T_{t-1}(e)} \ge \sum_{e \in A_t \setminus A^*} U_t(e) \ge \sum_{e \in A^* \setminus A_t} U_t(e) \ge \sum_{e \in A^* \setminus A_t} \bar{w}(e) \,,$$

and $2\sum_{e \in A_t \setminus A^*} c_{t-1,T_{t-1}(e)} \ge \Delta_{A_t}$ follows from the observation that $\Delta_{A_t} = \sum_{e \in A^* \setminus A_t} \bar{w}(e) - \sum_{e \in A_t \setminus A^*} \bar{w}(e)$. Now note that $c_{n,T_{t-1}(e)} \ge c_{t-1,T_{t-1}(e)}$ for any time $t \le n$. Therefore, the event \mathcal{F}_t in (3) must happen and:

$$\mathbb{E}\left[\sum_{t=t_0}^n \Delta_{A_t} \mathbb{1}\left\{\overline{\mathcal{E}}_t, \Delta_{A_t} > 0\right\}\right] \leq \mathbb{E}\left[\sum_{t=t_0}^n \Delta_{A_t} \mathbb{1}\left\{\mathcal{F}_t\right\}\right].$$

This concludes our proof.

A.2 Proof of Theorem 2

By Lemma 1, it remains to bound $\hat{R}(n) = \sum_{t=t_0}^{n} \Delta_{A_t} \mathbb{1}\{\mathcal{F}_t\}$, where the event \mathcal{F}_t is defined in (3). By Lemma 2 and from the assumption that $\Delta_{A_t} = \Delta$ for all suboptimal A_t , it follows that:

$$\hat{R}(n) = \Delta \sum_{t=t_0}^n \mathbb{1}\{\mathcal{F}_t\} = \Delta \sum_{t=t_0}^n \mathbb{1}\{G_{1,t}, \Delta_{A_t} > 0\} + \Delta \sum_{t=t_0}^n \mathbb{1}\{G_{2,t}, \Delta_{A_t} > 0\} .$$

To bound the above quantity, it is sufficient to bound the number of times that events $G_{1,t}$ and $G_{2,t}$ happen. Then we set the tunable parameters d and α such that the two counts are of the same magnitude.

Claim 1. Event
$$G_{1,t}$$
 happens at most $\frac{\alpha}{d}K^2L\frac{6}{\Delta^2}\log n$ times.

Proof. Recall that event $G_{1,t}$ can happen only if at least d chosen suboptimal items are not observed "sufficiently often" up to time $t, T_{t-1}(e) \le \alpha K^2 \frac{6}{\Delta^2} \log n$ for at least d items in \tilde{A}_t . After the event happens, the observation counters of these items increase by one. Therefore, after the event happens $\frac{\alpha}{d}K^2L\frac{6}{\Delta^2}\log n$ times, all suboptimal items are guaranteed to be observed at least $\alpha K^2\frac{6}{\Delta^2}\log n$ times and $G_{1,t}$ cannot happen anymore.

Claim 2. Event $G_{2,t}$ happens at most $\frac{\alpha d^2}{(\sqrt{\alpha}-1)^2}L\frac{6}{\Delta^2}\log n$ times.

Proof. Event $G_{2,t}$ can happen only if there exists $e \in \tilde{A}_t$ such that $T_{t-1}(e) \leq \frac{\alpha d^2}{(\sqrt{\alpha}-1)^2} \frac{6}{\Delta^2} \log n$. After the event happens, the observation counter of item e increases by one. Therefore, the number of times that event $G_{2,t}$ can happen is bounded trivially by $\frac{\alpha d^2}{(\sqrt{\alpha}-1)^2} L \frac{6}{\Delta^2} \log n$.

Based on Claims 1 and 2, $\hat{R}(n)$ is bounded as:

$$\hat{R}(n) \le \left(\frac{\alpha}{d}K^2 + \frac{\alpha d^2}{(\sqrt{\alpha} - 1)^2}\right)L\frac{6}{\Delta}\log n$$

Finally, we choose $\alpha = 4$ and $d = K^{\frac{2}{3}}$; and it follows that the regret is bounded as:

$$R(n) \leq \mathbb{E}\left[\hat{R}(n)\right] + \left(\frac{\pi^2}{3} + 1\right) KL \leq K^{\frac{4}{3}}L\frac{48}{\Delta}\log n + \left(\frac{\pi^2}{3} + 1\right) KL.$$

A.3 Proof of Theorem 3

Let \mathcal{F}_t be the event in (3). By Lemmas 1 and 2, it remains to bound:

$$\hat{R}(n) = \sum_{t=t_0}^n \Delta_{A_t} \mathbb{1}\{\mathcal{F}_t\} = \sum_{t=t_0}^n \Delta_{A_t} \mathbb{1}\{G_{1,t}, \Delta_{A_t} > 0\} + \sum_{t=t_0}^n \Delta_{A_t} \mathbb{1}\{G_{2,t}, \Delta_{A_t} > 0\} .$$

In the next step, we introduce item-specific variants of events $G_{1,t}$ (6) and $G_{2,t}$ (7), and then associate the regret at time t with these events. In particular, let:

$$G_{e,1,t} = G_{1,t} \cap \left\{ e \in \tilde{A}_t, T_{t-1}(e) \le \alpha K^2 \frac{6}{\Delta_{A_t}^2} \log n \right\}$$

$$\tag{14}$$

$$G_{e,2,t} = G_{2,t} \cap \left\{ e \in \tilde{A}_t, T_{t-1}(e) \le \frac{\alpha d^2}{(\sqrt{\alpha} - 1)^2} \frac{6}{\Delta_{A_t}^2} \log n \right\}$$
(15)

be the events that item e is not observed "sufficiently often" under events $G_{1,t}$ and $G_{2,t}$, respectively. Then by the definitions of the above events, it follows that:

$$\mathbb{1}\{G_{1,t}, \Delta_{A_t} > 0\} \le \frac{1}{d} \sum_{e \in \tilde{E}} \mathbb{1}\{G_{e,1,t}, \Delta_{A_t} > 0\} \\
\mathbb{1}\{G_{2,t}, \Delta_{A_t} > 0\} \le \sum_{e \in \tilde{E}} \mathbb{1}\{G_{e,2,t}, \Delta_{A_t} > 0\},$$

where $\tilde{E} = E \setminus A^*$ is the set of subptimal items; and we bound $\hat{R}(n)$ as:

$$\hat{R}(n) \le \sum_{e \in \tilde{E}} \sum_{t=t_0}^n \mathbb{1}\{G_{e,1,t}, \Delta_{A_t} > 0\} \frac{\Delta_{A_t}}{d} + \sum_{e \in \tilde{E}} \sum_{t=t_0}^n \mathbb{1}\{G_{e,2,t}, \Delta_{A_t} > 0\} \Delta_{A_t}.$$

Let each item e be contained in N_e suboptimal solutions and $\Delta_{e,1} \ge ... \ge \Delta_{e,N_e}$ be the gaps of these solutions, ordered from the largest gap to the smallest one. Then $\hat{R}(n)$ can be further bounded as:

$$\begin{split} \hat{R}(n) &\leq \sum_{e \in \tilde{E}} \sum_{t=t_0}^{n} \sum_{k=1}^{N_e} \mathbbm{1}\{G_{e,1,t}, \Delta_{A_t} = \Delta_{e,k}\} \frac{\Delta_{e,k}}{d} + \sum_{e \in \tilde{E}} \sum_{t=t_0}^{n} \sum_{k=1}^{N_e} \mathbbm{1}\{G_{e,2,t}, \Delta_{A_t} = \Delta_{e,k}\} \Delta_{e,k} \\ &\stackrel{(a)}{\leq} \sum_{e \in \tilde{E}} \sum_{t=t_0}^{n} \sum_{k=1}^{N_e} \mathbbm{1}\left\{e \in \tilde{A}_t, T_{t-1}(e) \leq \alpha K^2 \frac{6}{\Delta_{e,k}^2} \log n, \Delta_{A_t} = \Delta_{e,k}\right\} \frac{\Delta_{e,k}}{d} + \\ &\sum_{e \in \tilde{E}} \sum_{t=t_0}^{n} \sum_{k=1}^{N_e} \mathbbm{1}\left\{e \in \tilde{A}_t, T_{t-1}(e) \leq \frac{\alpha d^2}{(\sqrt{\alpha} - 1)^2} \frac{6}{\Delta_{e,k}^2} \log n, \Delta_{A_t} = \Delta_{e,k}\right\} \Delta_{e,k} \\ &\stackrel{(b)}{\leq} \sum_{e \in \tilde{E}} \frac{6\alpha K^2 \log n}{d} \left[\Delta_{e,1} \frac{1}{\Delta_{e,1}^2} + \sum_{k=2}^{N_e} \Delta_{e,k} \left(\frac{1}{\Delta_{e,k}^2} - \frac{1}{\Delta_{e,k-1}^2}\right)\right] + \\ &\sum_{e \in \tilde{E}} \frac{6\alpha d^2 \log n}{(\sqrt{\alpha} - 1)^2} \left[\Delta_{e,1} \frac{1}{\Delta_{e,1}^2} + \sum_{k=2}^{N_e} \Delta_{e,k} \left(\frac{1}{\Delta_{e,k}^2} - \frac{1}{\Delta_{e,k-1}^2}\right)\right] \\ &\stackrel{(c)}{\leq} \sum_{e \in \tilde{E}} \left(\frac{\alpha}{d} K^2 + \frac{\alpha d^2}{(\sqrt{\alpha} - 1)^2}\right) \frac{12}{\Delta_{e,\min}} \log n, \end{split}$$

where inequality (a) is by the definitions of events $G_{e,1,t}$ and $G_{e,2,t}$, inequality (b) is from the solution to:

$$\max_{A_1,\dots,A_n} \sum_{t=t_0}^n \sum_{k=1}^{N_e} \mathbb{1}\left\{ e \in \tilde{A}_t, T_{t-1}(e) \le \frac{C}{\Delta_{e,k}^2} \log n, \Delta_{A_t} = \Delta_{e,k} \right\} \Delta_{e,k}$$

for appropriate C, and inequality (c) follows from Lemma 3 of Kveton et al. [12]:

$$\left[\Delta_{e,1} \frac{1}{\Delta_{e,1}^2} + \sum_{k=2}^{N_e} \Delta_{e,k} \left(\frac{1}{\Delta_{e,k}^2} - \frac{1}{\Delta_{e,k-1}^2} \right) \right] < \frac{2}{\Delta_{e,N_e}} = \frac{2}{\Delta_{e,\min}} \,. \tag{16}$$

Finally, we choose $\alpha = 4$ and $d = K^{\frac{2}{3}}$; and it follows that the regret is bounded as:

$$R(n) \leq \mathbb{E}\left[\hat{R}(n)\right] + \left(\frac{\pi^2}{3} + 1\right) KL \leq \sum_{e \in \tilde{E}} K^{\frac{4}{3}} \frac{96}{\Delta_{e,\min}} \log n + \left(\frac{\pi^2}{3} + 1\right) KL.$$

A.4 Proof of Theorem 4

The first step of the proof is identical to that of Theorem 2. By Lemma 1, it remains to bound $\hat{R}(n) = \sum_{t=t_0}^{n} \Delta_{A_t} \mathbb{1}\{\mathcal{F}_t\}$, where the event \mathcal{F}_t is defined in (3). By Lemma 3 and from the assumption that $\Delta_{A_t} = \Delta$ for all suboptimal A_t , it follows that:

$$\hat{R}(n) = \Delta \sum_{t=t_0}^n \mathbb{1}\{\mathcal{F}_t\} = \Delta \sum_{i=1}^\infty \sum_{t=t_0}^n \mathbb{1}\{G_{i,t}, \Delta_{A_t} > 0\}.$$

Note that $\Delta_{A_t} > 0$ implies $\Delta_{A_t} = \Delta$. Therefore, $m_{i,t}$ does not depend on t and we denote it by $m_i = \alpha_i \frac{K^2}{\Delta^2} \log n$. Based on the same argument as in Claim 1, event $G_{i,t}$ cannot happen more than $\frac{Lm_i}{\beta_i K}$ times, because at least $\beta_i K$ items that are observed at most m_i times have their observation counters incremented in each event $G_{i,t}$. Therefore:

$$\hat{R}(n) \le \Delta \sum_{i=1}^{\infty} \frac{Lm_i}{\beta_i K} = KL \frac{1}{\Delta} \left[\sum_{i=1}^{\infty} \frac{\alpha_i}{\beta_i} \right] \log n \,. \tag{17}$$

It remains to choose (α_i) and (β_i) such that:

- $\lim_{i\to\infty} \alpha_i = \lim_{i\to\infty} \beta_i = 0;$
- Monotonicity conditions in (9) and (10) hold;
- Inequality (12) holds, $\sqrt{6} \sum_{i=1}^{\infty} \frac{\beta_{i-1} \beta_i}{\sqrt{\alpha_i}} \le 1;$
- $\sum_{i=1}^{\infty} \frac{\alpha_i}{\beta_i}$ is minimized.

We choose (α_i) and (β_i) to be geometric sequences, $\beta_i = \beta^i$ and $\alpha_i = d\alpha^i$ for $0 < \alpha, \beta < 1$ and d > 0. For this setting, $\alpha_i \to 0$ and $\beta_i \to 0$, and the monotonicity conditions are also satisfied. Moreover, if $\beta < \sqrt{\alpha}$, we have:

$$\sqrt{6}\sum_{i=1}^{\infty}\frac{\beta_{i-1}-\beta_i}{\sqrt{\alpha_i}} = \sqrt{6}\sum_{i=1}^{\infty}\frac{\beta^{i-1}-\beta^i}{\sqrt{d\alpha^i}} = \sqrt{\frac{6}{d}}\frac{1-\beta}{\sqrt{\alpha}-\beta} \le 1$$

provided that $d \ge 6 \left(\frac{1-\beta}{\sqrt{\alpha}-\beta}\right)^2$. Furthermore, if $\alpha < \beta$, we have:

$$\sum_{i=1}^{\infty} \frac{\alpha_i}{\beta_i} = \sum_{i=1}^{\infty} \frac{d\alpha^i}{\beta^i} = \frac{d\alpha}{\beta - \alpha}$$

Given the above, the best choice of d is $6\left(\frac{1-\beta}{\sqrt{\alpha-\beta}}\right)^2$ and the problem of minimizing the constant in our regret bound can be written as:

$$\begin{split} &\inf_{\alpha,\beta} \quad 6\left(\frac{1-\beta}{\sqrt{\alpha}-\beta}\right)^2 \frac{\alpha}{\beta-\alpha} \\ &\text{s.t.} \quad 0<\alpha<\beta<\sqrt{\alpha}<1 \,. \end{split}$$

We find the solution to the above problem numerically, and determine it to be $\alpha = 0.1459$ and $\beta = 0.2360$. For these α and β , $6\left(\frac{1-\beta}{\sqrt{\alpha}-\beta}\right)^2 \frac{\alpha}{\beta-\alpha} < 267$. We apply this upper bound to (17) and it follows that the regret is bounded as:

$$R(n) \le \mathbb{E}\left[\hat{R}(n)\right] + \left(\frac{\pi^2}{3} + 1\right) KL \le KL\frac{267}{\Delta}\log n + \left(\frac{\pi^2}{3} + 1\right) KL$$

A.5 Proof of Theorem 5

Let \mathcal{F}_t be the event in (3). By Lemmas 1 and 3, it remains to bound:

$$\hat{R}(n) = \sum_{t=t_0}^n \Delta_{A_t} \mathbb{1}\{\mathcal{F}_t\} = \sum_{i=1}^\infty \sum_{t=t_0}^n \Delta_{A_t} \mathbb{1}\{G_{i,t}, \Delta_{A_t} > 0\}.$$

In the next step, we define item-specific variants of events $G_{i,t}$ (11) and associate the regret at time t with these events. In particular, let:

$$G_{e,i,t} = G_{i,t} \cap \left\{ e \in \tilde{A}_t, T_{t-1}(e) \le m_{i,t} \right\}$$

$$(18)$$

be the event that item e is not observed "sufficiently often" under event $G_{i,t}$. Then it follows that:

$$\mathbb{1}\{G_{i,t}, \Delta_{A_t} > 0\} \le \frac{1}{\beta_i K} \sum_{e \in \tilde{E}} \mathbb{1}\{G_{e,i,t}, \Delta_{A_t} > 0\} ,$$

because at least $\beta_i K$ items are not observed "sufficiently often" under event $G_{i,t}$. Therefore, we can bound $\hat{R}(n)$ as:

$$\hat{R}(n) \le \sum_{e \in \tilde{E}} \sum_{i=1}^{\infty} \sum_{t=t_0}^{n} \mathbb{1}\{G_{e,i,t}, \Delta_{A_t} > 0\} \frac{\Delta_{A_t}}{\beta_i K}$$

Let each item e be contained in N_e suboptimal solutions and $\Delta_{e,1} \ge \ldots \ge \Delta_{e,N_e}$ be the gaps of these solutions, ordered from the largest gap to the smallest one. Then $\hat{R}(n)$ can be further bounded as:

$$\begin{split} \hat{R}(n) &\leq \sum_{e \in \tilde{E}} \sum_{i=1}^{\infty} \sum_{t=t_0}^{n} \sum_{k=1}^{N_e} \mathbbm{1}\{G_{e,i,t}, \Delta_{A_t} = \Delta_{e,k}\} \frac{\Delta_{e,k}}{\beta_i K} \\ &\stackrel{(a)}{\leq} \sum_{e \in \tilde{E}} \sum_{i=1}^{\infty} \sum_{t=t_0}^{n} \sum_{k=1}^{N_e} \mathbbm{1}\left\{e \in \tilde{A}_t, T_{t-1}(e) \leq \alpha_i \frac{K^2}{\Delta_{e,k}^2} \log n, \Delta_{A_t} = \Delta_{e,k}\right\} \frac{\Delta_{e,k}}{\beta_i K} \\ &\stackrel{(b)}{\leq} \sum_{e \in \tilde{E}} \sum_{i=1}^{\infty} \frac{\alpha_i K \log n}{\beta_i} \left[\Delta_{e,1} \frac{1}{\Delta_{e,1}^2} + \sum_{k=2}^{N_e} \Delta_{e,k} \left(\frac{1}{\Delta_{e,k}^2} - \frac{1}{\Delta_{e,k-1}^2}\right)\right] \\ &\stackrel{(c)}{\leq} \sum_{e \in \tilde{E}} \sum_{i=1}^{\infty} \frac{\alpha_i K \log n}{\beta_i} \frac{2}{\Delta_{e,\min}} \\ &= \sum_{e \in \tilde{E}} K \frac{2}{\Delta_{e,\min}} \left[\sum_{i=1}^{\infty} \frac{\alpha_i}{\beta_i}\right] \log n \,, \end{split}$$

where inequality (a) is by the definition of event $G_{e,i,t}$, inequality (b) follows from the solution to:

$$\max_{A_1,\dots,A_n} \sum_{t=t_0}^n \sum_{k=1}^{N_e} \mathbb{1}\left\{e \in \tilde{A}_t, T_{t-1}(e) \le \alpha_i \frac{K^2}{\Delta_{e,k}^2} \log n, \Delta_{A_t} = \Delta_{e,k}\right\} \frac{\Delta_{e,k}}{\beta_i K}$$

and inequality (c) follows from (16). For the same (α_i) and (β_i) as in Theorem 4, we have $\sum_{i=1}^{\infty} \frac{\alpha_i}{\beta_i} < 267$ and it follows that the regret is bounded as:

$$R(n) \leq \mathbb{E}\left[\hat{R}(n)\right] + \left(\frac{\pi^2}{3} + 1\right) KL \leq \sum_{e \in \tilde{E}} K \frac{534}{\Delta_{e,\min}} \log n + \left(\frac{\pi^2}{3} + 1\right) KL.$$

A.6 Proof of Theorem 6

The key idea is to decompose the regret of CombUCB1 into two parts, where the gaps are larger than ϵ and at most ϵ . We analyze each part separately and then set ϵ to get the desired result.

By Lemma 1, it remains to bound $\hat{R}(n) = \sum_{t=t_0}^{n} \Delta_{A_t} \mathbb{1}\{\mathcal{F}_t\}$, where the event \mathcal{F}_t is defined in (3). We partition $\hat{R}(n)$ as:

$$\hat{R}(n) = \sum_{t=t_0}^n \Delta_{A_t} \mathbb{1}\{\mathcal{F}_t, \Delta_{A_t} < \epsilon\} + \sum_{t=t_0}^n \Delta_{A_t} \mathbb{1}\{\mathcal{F}_t, \Delta_{A_t} \ge \epsilon\}$$
$$\leq \epsilon n + \sum_{t=t_0}^n \Delta_{A_t} \mathbb{1}\{\mathcal{F}_t, \Delta_{A_t} \ge \epsilon\}$$

and bound the first term trivially. The second term is bounded in the same way as $\hat{R}(n)$ in the proof of Theorem 5, except that we only consider the gaps $\Delta_{e,k} \ge \epsilon$. Therefore, $\Delta_{e,\min} \ge \epsilon$ and we get:

$$\sum_{t=t_0}^n \Delta_{A_t} \mathbb{1}\{\mathcal{F}_t, \Delta_{A_t} \ge \epsilon\} \le \sum_{e \in \tilde{E}} K \frac{534}{\epsilon} \log n \le KL \frac{534}{\epsilon} \log n \,.$$

Based on the above inequalities:

$$R(n) \le \frac{534KL}{\epsilon} \log n + \epsilon n + \left(\frac{\pi^2}{3} + 1\right) KL$$

Finally, we choose $\epsilon = \sqrt{\frac{534KL\log n}{n}}$ and get:

$$R(n) \le 2\sqrt{534KLn\log n} + \left(\frac{\pi^2}{3} + 1\right)KL < 47\sqrt{KLn\log n} + \left(\frac{\pi^2}{3} + 1\right)KL,$$

which concludes our proof.

B Technical Lemmas

Lemma 4. Let S_i , \overline{S}_i , and m_i be defined as in Lemma 3; and $|S_i| < \beta_i K$ for all i > 0. Then:

$$\sum_{i=1}^{\infty} \frac{|\bar{S}_i \setminus \bar{S}_{i-1}|}{\sqrt{m_i}} < \sum_{i=1}^{\infty} \frac{(\beta_{i-1} - \beta_i)K}{\sqrt{m_i}}.$$

Proof. The lemma is proved as:

$$\begin{split} \sum_{i=1}^{\infty} |\bar{S}_i \setminus \bar{S}_{i-1}| \frac{1}{\sqrt{m_i}} &= \sum_{i=1}^{\infty} (|S_{i-1} \setminus S_i|) \frac{1}{\sqrt{m_i}} \\ &= \sum_{i=1}^{\infty} (|S_{i-1}| - |S_i|) \frac{1}{\sqrt{m_i}} \\ &= \frac{|S_0|}{\sqrt{m_1}} + \sum_{i=1}^{\infty} |S_i| \left(\frac{1}{\sqrt{m_{i+1}}} - \frac{1}{\sqrt{m_i}}\right) \\ &< \frac{\beta_0 K}{\sqrt{m_1}} + \sum_{i=1}^{\infty} \beta_i K \left(\frac{1}{\sqrt{m_{i+1}}} - \frac{1}{\sqrt{m_i}}\right) \\ &= \sum_{i=1}^{\infty} (\beta_{i-1} - \beta_i) K \frac{1}{\sqrt{m_i}} \,. \end{split}$$

The first two equalities follow from the definitions of \bar{S}_i and S_i . The inequality follows from the facts that $|S_i| < \beta_i K$ for all i > 0 and $|S_0| \le \beta_0 K$.