
Preferential Attachment in Graphs with Affinities

A Proof of Theorem 1

Here, we give a full proof of Theorem 1. Recall that an equivalent construction of the PAGA graphs is obtained
by collapsing the graph Gmt1 to Gtm leading to t super nodes. Accordingly, based on Gtm, we can directly generate
Gt+1
m by (temporarily) adding m more nodes, each linking with a single edge, and then collapsing these m nodes

to the (t+ 1)th super node. Let dt,i(v) denote the degree of the super-node v after mt+ i− 1 edges have been
introduced, the probability that the mt+ ith node (or equivalently its corresponding super-node t+ 1) connects
to v is

Pr{(t+ 1, v)} =


dt,i(v)+m(f(v,t+1)−1)

(f(·,t+1)+1)(mt+i)−1
1 ≤ v ≤ t

dt,i(t+1)+i·(f(·,t+1)−1)+1

(f(·,t+1)+1)(mt+i)−1
v = t+ 1.

(15)

Given these definitions, we begin with proving statement 1. With Eq. (9) and starting conditions

N(k, 1) = [k = 2m], N(k, t) = N(k, t, 1) (16)

we get a complete description of N(k, t) as Eq. (8) of statement 1

N(k, t+ 1) = N(k, t,m+ 1) + Pr(dt,m+1(t+ 1) = k)

Next we prove statement 2 which is straightforward from the definition. First, note that k ∈ {m,m+ 1, ..., 2m},
i.e.:

Pr(dt,k+1(t+ 1)k) = 0, k < m or k > 2m. (17)

The minimal value dt,m+1(t+1) = m is obtained when no one of the k edges is a loop. In this case, dt,i(t+1) = i−1
for all i, so:

Pr(dt,m+1(t+ 1) = m) =

m∏
i=1

(
1− i · f(·, t+ 1)

(f(·, t+ 1) + 1)(mt+ i)− 1

)
= 1 +Om

(
1

tf(·, t+ 1)

)
.

From
2m∑
k=m

Pr(dt,m+1 = k) = 1 and Pr(dt,m+1 = k) ≥ 0:

Pr(dt,m+1(t+ 1) = k) = Om

(
1

tf(·, t+ 1)

)
,m < d ≤ 2m. (18)

Finally the claim follows from the definition of [k = m].

Before proving statement 3, we first derive some properties of c(k, t, i) and prove statement 4 en-route. Here, for
brevity, we denote c(k, t, i) as c(k). Starting from c(m) we study the step-wise change of c(k) as:

c(m) =
B(m · f(m, t, i), f(·, t) + 2)

B(m · f(m, t, i), f(·, t) + 1)

=
Γ(f(·, t) + 2)

Γ(f(·, t) + 1)
× Γ(m · f(m, t, i) + f(·, t) + 1)

Γ(m · f(m, t, i) + f(·, t) + 2)

=
f(·, t) + 1

m · f(m, t, i) + f(·, t) + 1

(19)

For k > m, the ratio of c(k, i) to c(k − 1, i) can be simplified as:

c(k − 1)

c(k)
=
B
(
k − 1 +m(f(k − 1, t, i)− 1)), f(·, t) + 2

)
B
(
k +m(f(k, t, i)− 1)), f(·, t) + 2

)
=

Γ
(
k − 1 +m(f(k − 1, t, i)− 1)

)
Γ
(
k +m(f(k, t, i)− 1)

) ×
Γ
(
k +m(f(k, t, i)− 1)) + f(·, t) + 2

)
Γ
(
k − 1 +m(f(k − 1, t, i)− 1) + f(·, t) + 2

)
=
k +m(f(k, t)− 1) + 1 + f(·, t)
k − 1 +m(f(k − 1, t)− 1)

,

(20)
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where we make the approximation f(k, t, i) ' f(k − 1, t, i) with the assumption that the average similarity of
nodes with degree k to node t is similar to that of nodes with degree k + 1. In particular, c(k − 1) > c(k), so
c(k) < c(m) < 1 for all k ≥ m.

Now to analyze the asymptotic behavior of c(k) we begin by taking logarithm as:

ln c(k, i) = C0 + ln Γ(k + C1)− ln Γ(k + C1 + f(·, t) + 2)

C0 = ln
Γ(f(·, t) + 2)

B(m · f(m, t, i), f(·, t) + 1)
, C1 = m(f(k, t, i)− 1) (21)

Exploiting the fact that asymptotically

Γ(x+ 1) ∼
√

2πx
(
x
e

)x ln→ ln
√

2π + x(lnx− 1) + 1
2 lnx, Eq. (21) becomes:

C0 + (k + C1) (ln(k + C1)− 1) +O

(
1

k

)
−
(
k + C1 + f(·, t) + 2

) (
ln(k + C1 + f(·, t) + 2)− 1

)
=C0 + (k + C1)

(
ln k +

C1

k
− 1

)
+O

(
1

k

)
−
(
k + C1 + f(·, t) + 2

)(
ln k +

C1 + f(·, t) + 2

k
− 1

)
=C0 −

(
2 + f(·, t)

)
ln k +O

(
1

k

)
Rewriting the C0 term, the full expression of asymptotic value of c(k) as k grows becomes

c(k) =
Γ(f(·, t) + 2)

B(m(f(m, t, i)), f(·, t) + 1)
k−2−f(·,t)

(
1 +O

(
1

k

))
.

To prove the statement 3, we show

N(k, t, i+ 1)

=

t∑
v=1

Pr(dt,i+1(v) = k)

=

t∑
v=1

(Pr(dt,i+1(v) = k, γ = v) + Pr(dt,i+1(v) = k, γ 6= v))

=

t∑
v=1

(Pr(dt,i(v) = k − 1, γ = v) + Pr(dt,i(v) = k, γ 6= v))

=

t∑
v=1

(
Pr(dt,i(v) = k − 1)

k − 1 +m(f(v, t+ 1)− 1)

(f(·, t+ 1) + 1)(mt+ i)− 1
+ Pr(dt,i(v) = k)

(
1− k +m(f(v, t+ 1)− 1)

(f(·, t+ 1) + 1)(mt+ i)− 1

))

= N(k − 1, t, i)
k − 1 +m(f(k − 1, t+ 1, i)− 1)

(f(·, t+ 1) + 1) · (mt+ i)− 1
+N(k, t, i)

(
1− k +m(f(k, t+ 1, i)− 1)

(f(·, t+ 1) + 1) · (mt+ i)− 1

)
(22)

By proving statement 4, we complete our proof of Theorem 1. For the ease of proof, let us define Ñ(k, t, i):

Ñ(k, t, i) = N(k, t, i)− c(k, t, i)
(
t+

i

m
− 1

m(1 + f(·, t))

)
(23)

The lhs of (11) can be expressed in a recursive fashion as:

Ñ(k, t, i+ 1) +
i

m
[k = m]

= Ñ(k, t, i+ 1) +
1

m
[k = m] +

i− 1

m
[k = m]

= Ñ(k, t, i+ 1) + [k = m]c(m, t, i)
m(f(m, t, i)) + f(·, t) + 1

m(1 + f̄(·, t))
+
i− 1

m
[k = m]
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= N(k, t, i+ 1)− c(k, t, i) (f(·, t) + 1)(mt+ i+ 1)− 1

m(1 + f(·, t))
− c(m, t, i) [k = m](m(f(m, t, i)) + f(·, t) + 1)

m(1 + f(·, t))
+
i− 1

m
[k = m]

= N(k, t, i+ 1)−
(

(f(·, t) + 1)(mt+ i)− 1

m(f(·, t) + 1)

)
× c(k, t, i)

(f(·, t) + 1)(mt+ i+ 1)− 1− [k = m]
(
k +m(f(k, t)− 1) + f(·, t) + 1

)
(1 + f(·, t)) · (mt+ i)− 1

+
i− 1

m
[k = m]

= N(k, t, i+ 1) +
i− 1

m
[k = m]−

(
t+

i

m
− 1

m(1 + f(·, t))

)
c(k, i)

(1 + f(·, t))(mt+ i)− 1

×

{
(1− [k = m])

(
k +m(f(k, t, i)− 1) + 1 + f(·, t)

)
+

(
(f(·, t) + 1)(mt+ i)− 1

)
−

(
k +m(f(k, t, i)− 1)

)}

= N(k, t, i+ 1) +
i− 1

m
[k = m]−

(
t+

i

m
− 1

m(1 + f(·, t)

)
×
(
c(k − 1, t, i)

k − 1 +m(f(k − 1, t, i)− 1)

(1 + f(·, t)) · (mt+ i)− 1
+ c(k, i)

(
1− k +m(f(k, t, i)− 1)

(1 + f(·, t))(mt+ i)− 1

))
= Ñ(k − 1, t, i)

k − 1 +m(f(k − 1, t, i)− 1)

(1 + f(·, t)) · (mt+ i)− 1
+ Ñ(k, t, i)

(
1− k +m(f(k, t, i)− 1)

(1 + f(·, t))(mt+ i)− 1

)
+
i− 1

m
[k = m]

Note that the last line comes from Eq. (22) and Eq. (23). Now, in a fashion similar to [18] involving manipulations
like the ones done above, we have Ñ(k, t, i) + [k = m] i−1

m = Om
(

1
k

)
finishing the proof of the theorem.

B Proof of Theorem 3

The proof of the bound on the diameter for PAGA graphs can by obtained by extending the original proof for
the standard preferential attachment model from a uniform measure to a non-uniform measure, described by the
affinity function f . Here, we ignore the case of having disconnected components in a graph as the graph will be
one connected component with high probability.2 As self loops do not affect the eccentricity of a node and hence
the diameter, we simply ignore them in the generation process itself – for the purpose of bounding the diameter.

We begin the proof by noting that for m = 1 the graph is a tree and for the cases m ≥ 2, which are formed
by collapsing the graph Gmt1 graph, the diameter can only shrink. Next, the diameter of the graph can not be
larger than twice the height of this tree, which is equal to the maximal graph distance between vertex 1 and any
of the other vertices. So, it is sufficient to bound the height of the tree.

For bounding the tree height, we follow the steps of [48] and outline here the differences.3 We start with a
continuous time branching process, where the rate is given by λt(j) = d(j) + f(j, t). Therefore, the overall
transition rate after t vertices are present (i.e. after t− 1 births) is given by:

t∑
j=1

(d(j) + f(t, j) = 2t+ tf̄(·, t+ 1) (24)

Now we can decompose the time τt as a sum of independent variables, exponentially distributed with parameter
2t+ tf̄(·, t+ 1), i.e.

τt =

t∑
j=1

tj

where tj ∼ Exp(2j + jf̄(·, j + 1)). It follows that the mean and variance are bounded by

E[τt] =

t∑
j=1

1

2j + jf̄(·, j + 1)
= O(log t)

2In order for a PAGA graph to have a disconnected component, a new super-node t + 1 has to make m self loops.
This probability asymptotically goes to 0. Note that even in the uniform case this probability is 1

t

m
, while the self-loop

probability in PAGA is typically smaller than 1/t.
3To avoid clash of notations, we also redefine the birth times as τ1, .., τt instead of ti.
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var(τt) =

t∑
j=1

1

2j + jf̄(·, j + 1)
= O(1)

These conditions match the ones required in [48]. Accordingly, the small world property holds for the PAGA
model.

C Proof of Theorem 4

Note that at every timestep, there can be at most m(m−1)
2 new triangles added. So the number of triangles T (Gtm)

is bounded by O(n). On the other hand, the number of triplets in Gtm follows
dmax∑
k=1

N(k, t)
(
k
2

)
∝

dmax∑
k=1

t · kf̄(·,t).

As the sum
dmax∑
k=1

k = mt, it is straightforward that C(Gtm) → 0 unless f̄(·, t) > 1. We omit the analysis for the

cases where f̄(·, t) > 1 as real graphs follow power law exponent around -2.1 to -2.5 (0.1 ≤ f̄(·, t) ≤ 0.5) �

D Spyplot of W
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Figure 6: Spyplot of the matrix W . Blue entries correspond to positive elements; red entries to negative elements
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E Topics and keywords learned by LDA

We used 50 topics (i.e. W is a 50× 50 matrix) for learning the affinity function f . Here, we represent the top 20
keywords for top 10 topics we obtained from LDA.

Topic 0 Topic 1 Topic 2 Topic 3 Topic 4
method quantization gauge theory gauge
integral hamiltonian invariant field magnetic
path dirac invariance approach nonabelian
using zero local based abelian
functional modes brst discuss chernsimons
regularization canonical lagrangian nonperturbative electric
approach physical covariant presented charge
formula lightcone constraints properties theory
use coordinates formulation new monopole
integrals shown formalism methods su
expansion quantized class may monopoles
used formalism first present flux
series variables ghost talk charged
procedure mode cohomology version higgs
technique constraint extended interpretation dual
applied leads fields developed term
obtained operator lorentz techniques vortex
integration approach fixing provide selfdual
expression constraints transformations used vortices
formalism formulation auxiliary analysis yangmills
Topic 5 Topic 6 Topic 7 Topic 8 Topic 9
n matrix coupling loop form
supersymmetric model point theory general
supersymmetry matrices limit perturbation parameters
supergravity ansatz fixed renormalization arbitrary
superconformal spectral large wilson given
super models strong finite explicit
superspace relation flow perturbative parameter
yangmills limit points expansion q
multiplet integrable constant one values
superfield spin group order set
multiplets smatrix renormalization loops independent
cal scattering weak non can
bps elements theory result terms
theories eigenvalues infrared lambda one
harmonic chain constants cutoff structure
susy bethe rg diagrams forms
superfields corresponding behavior divergences present
supersymmetries factors view expectation real
sym related critical values allows
large representation expansion scheme showns
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