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A ALTERNATIVE RKHS POLICY
PARAMETERIZATION

In Bagnell (2004) the policy

πh,Σ(a|s) :=
1

Zs
ef(s,a)

Zs =

∫
A
ef(s,a)da

where f : S × A → R is an element of an RKHS on
S×A, is considered6, as in (20). The gradient is computed
as follows

∇fπf (a|s)
πf (a|s)

= ∇f log πf (a|s)
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f(a|s)− log

∫
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′,s)da′
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f(a′,s)da′∫
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f(a′,s)da′

= K((a, s), ·)−
∫
A∇fe

f(a′,s)da′

Zs

= K((a, s), ·)− 1

Zs

∫
A
K((a′, s), ·)ef(a

′,s)da′

= K((a, s), ·)− EA∼πf (·|s)[K((A, s), ·)].

B GREEDY FEATURE SELECTION
USING VECTOR VALUED MATCHING
PURSUIT

Our algorithm uses, as a subcomponent, a vector-valued
version of the matching pursuit algorithm (Mallat and
Zhang, 1993). Although this is a straightforward extension
of the scalar case, it is to our knowledge not explicitly de-
rived in the literature and so we derive the method here for
clarity.

Suppose we wish to regress a vector-valued function

f∗ : X → V,

given a data sampleD = {xi, vi}mi=1 where vi = f∗(xi)+ε
where ε is zero-mean noise, f∗(xi) = E[Vi|xi]. Suppose
we are given a dictionary G = {g1, ..., gn}, where gi :
X → R, of candidate real-valued functions, and we aim to
find an estimate f̂ for f∗ of the form,

f̂ =

D∑
i=1

wiĝi

where BD = {ĝi}Di=1 ⊆ G is called the basis and wi ∈ V .
When V = R, matching pursuit Mallat and Zhang (1993)

6strictly speaking the function f is defined on observations
rather than states in Bagnell (2004)

can be used to incrementally build the basis, and we now
detail the extension to the vector-valued output case. We
build the basis incrementally and for each basis Bj we form
an estimate f̂ j =

∑j
i=1 w

iĝi. We begin with the empty
basis B0 and add new basis elements ĝj+1 to greedily opti-
mize the objective. For each estimate we define the residue
rj ,

rji = vi − f̂j(xi) ∈ V,

and pick the g ∈ D which minimizes the next residue when
added to the current estimate,

gj+1 = argmin
g∈D

min
w∈V

m∑
i=1

||vi − ((f̂j + wg)(xi))||2V

= argmin
g∈D

min
w∈V

m∑
i=1

||rji − wg(xi)||2V .
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i=1 ||r

j
i − wg(xi)||2V = 0 at the minimum we

have,
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Then,
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(23)

+
||
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Thus ĝj+1 = argmaxg∈G
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2 . Thus at

each iteration of matching pursuit we must evaluate
||
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i ||

2
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2 for a selection of k dictionary elements

(not necessarily all). We have,
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For each dictionary element g this can be computed in
O(mj +md+ jd) where d = dim(V), and so O(k(mj +
md+ jd)) over k dictionary elements.

It is sometimes useful, at iteration j to “backfit” all the
weights {wi}ji=1 by replacing them with the least squares
solution: i.e. matching pursuit is used to find the basis but
the weights are finally optimized using least squares. Alter-
natively this can be performed end of the process or several
times throughout.

In order to find a compact representation we can also use
matching pursuit adaptively by setting a tolerance δ such
that the algorithm terminates when it fails to reduce the
residue by more than δ. Thus the method will only add
features if they significantly help.

The output of vector valued matching pursuit is a collection
of weights {wi}ji=1 and features {ĝi(·)}ji=1 such that f∗ ≈∑j
i=1 w

iĝi.


