
Modelling Policies in MDPs in Reproducing Kernel Hilbert Space

Guy Lever Ronnie Stafford
University College London

London, UK
g.lever@cs.ucl.ac.uk

University College London
London, UK

ronnie.stafford@gmail.com

Abstract

We consider modelling policies for MDPs in
(vector-valued) reproducing kernel Hilbert func-
tion spaces (RKHS). This enables us to work
“non-parametrically” in a rich function class, and
provides the ability to learn complex policies.
We present a framework for performing gradient-
based policy optimization in the RKHS, deriv-
ing the functional gradient of the return for our
policy, which has a simple form and can be esti-
mated efficiently. The policy representation natu-
rally focuses on the relevant region of state space
defined by the policy trajectories, and does not
rely on a-priori defined basis points; this can be
an advantage in high dimensions where suitable
basis points may be difficult to define a-priori.
The method is adaptive in the sense that the
policy representation will naturally adapt to the
complexity of the policy being modelled, which
is achieved with standard efficient sparsification
tools in an RKHS. We argue that finding a good
kernel on states can be easier then remetrizing a
high dimensional feature space. We demonstrate
the approach on benchmark domains and a simu-
lated quadrocopter navigation task.

1 INTRODUCTION

Gradient methods are a popular means of performing pol-
icy optimization in reinforcement learning (RL) and con-
trol problems modelled as Markov decision processes (Sut-
ton et al., 1999), and have achieved significant practical
success (e.g. Kober and Peters, 2011; Deisenroth and Ras-
mussen, 2011; Kohl and Stone, 2004). Some problems with
the approach persist however. Firstly, practitioners usually

Appearing in Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2015, San Diego,
CA, USA. JMLR: W&CP volume 38. Copyright 2015 by the
authors.

choose a parametric class to model policies, such as linear
functions on some predefined feature space. It can be diffi-
cult to pick a suitable feature space a-priori and the ability
of such parametric classes to represent complex functions
can be poor. Recently there has been interest in policy gra-
dient methods in very rich policy classes such as those pa-
rameterized by neural networks (e.g. Wierstra et al., 2010;
Heess et al., 2012; Silver et al., 2014). Secondly, steepest
gradient ascent is not invariant to a rescaling of parameters
and a poor choice of parameter scaling can adversely affect
the performance of steepest ascent. Identifying a suitable
scaling has been identified as an important problem and
practitioners often rely on remetrizing, using, for example,
an inverse Fisher information matrix as a preconditioner, as
in natural gradients (Kakade, 2001). Such preconditioning
can be expensive in large parameter spaces.

In this work we present an alternative method of mod-
elling policies “non-parametrically”1 in vector-valued re-
producing kernel Hilbert spaces (RKHS), which addresses
the problems discussed above. The key advantages of this
approach are:

1. The policy space can be a very rich function class.
For example, kernels can be chosen such that any
continuous policy can be accurately modelled in the
RKHS. The policy gradient is an entire function in the
RKHS, not restricted by any a-priori chosen parame-
terization of the class.

2. The gradient of the log policy has a simple analytic
form. The policy gradient can be easily and efficiently
estimated.

3. Complex policies can be compactly represented.
The representation of the policy within the RKHS can
be adaptive to the complexity of the problem, finding a
compact representation if sufficient, or a complex rep-
resentation if needed, and focus on the region of state
space defined by the policy trajectory. This can be
achieved using standard, efficient sparsification meth-
ods in an RKHS, see Section 2.2. We do not have to

1By which we mean policies can be drawn from a potentially
infinite-dimensional function space.

590

Modelling Policies in MDPs in Reproducing Kernel Hilbert Space

specify a large feature space a-priori, or deal with a
large number of parameters.

4. It may alleviate the need for remetrization via pre-
conditioning. The chosen RKHS function class is en-
dowed with a meaningful norm which is often use-
ful (capturing our preferred notion of “smoothness”
of functions) and one would not normally want to
remetrize the function space (as one would then have
a different RKHS). While steepest ascent generally
takes the policy gradient w.r.t. the Euclidean metric
on parameter space and the natural gradient algorithm
takes the policy gradient w.r.t. a sensible distance
measure between the induced trajectory distributions,
we take the policy gradient w.r.t. a sensible metric be-
tween the functions defining policies. Choosing a ker-
nel on moderately sized state spaces which induces a
useful norm on functions can be more straightforward
than remetrizing a high dimensional, abstract feature
space.

Non-parametric methods using reproducing kernel Hilbert
spaces of functions are of fundamental importance
throughout machine learning (Shawe-Taylor and Cristian-
ini, 2004; Schölkopf and Smola, 2002) and it is surprising
the functional policy gradient in an RKHS has not been
thoroughly investigated. The specific contributions of this
paper are to develop the framework for learning policies
in vector-valued reproducing kernel Hilbert spaces, deriv-
ing the functional policy gradient analytically, which has a
particularly simple form and can be computed efficiently.
We develop sparsification tools for representing complex
policies compactly and adaptively. We discuss compatible
function approximation. We provide an ‘actor-critic’ al-
gorithm for policy optimization in an RKHS. We analyze
connections to gradient preconditioning methods.

We compare the approach to existing alternative meth-
ods on benchmark problems and a challenging simulated
quadrocopter navigation task.

1.1 Prior Work

Modelling policies in a RKHS was first considered in Bag-
nell and Schneider (2003); Bagnell (2004), though the pol-
icy takes a different form. We compare the two approaches
in detail in Section 3 and experimentally.

1.2 Background

1.2.1 Markov Decision Processes

We recall some basic concepts associated with reinforce-
ment learning and control problems. In RL an agent acts
in an environment by sequentially choosing actions over
a sequence of time steps, in order to maximize a cumula-
tive reward. We model this as a Markov decision process

(MDP) which comprises: a state space S, an action space
A and we denote the state-action space Z := S × A, with
z = (s, a), zt = (st, at) etc., an initial state distribution,
with density p1(s1), a stationary transition dynamics dis-
tribution with conditional density2 p(st+1|Zt = zt) sat-
isfying the Markov property p(st+1|Zi = zi,∀i ≤ t) =
p(st+1|Zt = zt), and a reward function r : Z → R. Given
an MDP an agent controls a trajectory ξ := (z1, z2, ...)
over Z by sequentially selecting actions at ∈ A at each
time step according to a chosen stationary stochastic pol-
icy πw : S → P(A), where P(A) is the set of probability
measures onA and w ∈ W is a parameterizing variable for
policies. (Overloading notation) we denote by πw(at|st)
the conditional probability density at at associated to the
policy πw. The agent’s goal is to obtain a policy which
maximizes the cumulative discounted reward,

U(w) := U(πw) := E[rγ(ξ)] (1)

=

∫
p(ξ;πw)

∞∑
t=1

γt−1r(zt)dξ,

where p(ξ;πw) is the distribution over trajectories z1, z2, ...
when following πw and rγ(ξ) :=

∑∞
t=1 γ

t−1r(zt).

The optimization methods we focus on in this work are
the policy gradient methods. These are iterative schemes
which (in the most basic form), given a current policy πw,
suggest to increment the parameter w in the direction of
steepest ascent of U(πw):

w ← w + η∇wU(πw), (2)

for some η ∈ R. We can write the update direction as

∇wU(πw) =

∫
p(ξ;w)rγ(ξ)∇w log p(ξ;w)dξ

=

∫
p(ξ;w)rγ(ξ)

∞∑
t=1

∇w log πw(at|st)dξ. (3)

The policy gradient theorem (Sutton et al., 1999) implies
that

∇wU(πw) =

∫
ρw(z)Qπw(z)∇w log πw(a|s)dz (4)

where Qπw(z) :=
∑∞
t=1 EZt∼pt(·|Z1=z)[γ

t−1r(Zt)] and
ρw(z) :=

∑∞
t=1 γ

t−1pt(z;w) and where pt(z;w) is the
marginal density over a single state-action pair at time point
t following πw.

1.2.2 (Vector-valued) Reproducing Kernel Hilbert
Spaces

We will model functions h : S → A as elements of a re-
producing kernel Hilbert space (RKHS). Since the action

2When it is clear from context we will drop the random
variable in the conditional density and write p(st+1|zt) =
p(st+1|Zt = zt) for convenience.

591

Guy Lever, Ronnie Stafford

space A might in general be a vector space of dimension
greater than 1 we will need the framework of vector-valued
RKHS, which are sets of functions mapping an input space
X to a vector space Y . These spaces are the natural gener-
alization of real-valued RKHSs, which is the special case
Y = R.

Following Micchelli and Pontil (2005): let X be a set and
Y a Hilbert space with inner product 〈·, ·〉Y . then a Hilbert
space H ⊆ YX is an RKHS when, for every y ∈ Y and
x ∈ X , the linear functional h 7→ 〈y, h(x)〉Y is con-
tinuous. There is therefore (by the Reisz lemma) an ele-
ment K(x|y) ∈ H such that for all h ∈ H it holds that
〈y, h(x)〉Y = 〈K(x|y), h〉H. This is called the “reproduc-
ing property” of K in H. We denote H = HK . Further,
the inner product in HK satisfies 〈K(x|y),K(x′|y′)〉K =
〈y,K(x, x′)y′〉Y , where K(x, x′)y := K(x|y)(x′) ∈ Y ,
and where the kernel function K(x, x′) : Y → Y is in the
space L(Y) of linear operators on Y . We will generally
prefer the notation K(x, ·)y for the function K(x|y). HK
is then the completion (w.r.t. its norm) of the linear span
of the set {K(x|y) : x ∈ X , y ∈ Y}, and an h ∈ HK
is typically specified by an expansion (possibly infinite) of
the form:

h(·) =
∑
i

K(xi|yi) =
∑
i

K(xi, ·)yi. (5)

Vector-valued RKHSs are typically specified by choosing
the operator-valued kernel K : X × X → L(Y), which
defines the entire function class and its norm.

The special case that Y = R with the Euclidean inner prod-
uct corresponds to the well known setting of a real-valued
RKHS (Shawe-Taylor and Cristianini, 2004; Schölkopf and
Smola, 2002), where for clarity K(x, x′) is a real number
and K(x|y) = yK(x, ·). Another simple special case is
when Y = Rn, and K(x, x′) = K̂(x, x′)I , where K̂ is a
scalar-valued kernel and I the identity matrix. In general
however, K can be operator-valued.

2 MODELLING POLICIES IN AN RKHS

The policies we consider in this work are stochastic Gaus-
sian policies,

πh,Σ(a|s) :=
1

Z
e−

1
2 (h(s)−a)

>Σ−1(h(s)−a), (6)

parameterized by deterministic functions, h ∈ H, h : S →
A ⊆ Rm, and a covariance Σ on Rm. The function h(·)
will be an element of an RKHSHK ,

h(·) =
∑
i

K(si, ·)αi ∈ HK , (7)

where si ∈ S and αi ∈ A. Our primary focus is on op-
timizing πh,Σ w.r.t. h, and for compactness often write

πh = πh,Σ when clear from context. We suppose S is
an arbitrary set but assume for simplicity that A = Rm.
SinceA will often have dimension greater than one, we re-
quire HK to be a class of vector-valued RKHS functions
(see Section 1.2.2). To specify the RKHS we pick a kernel
K : S × S → L(A). The most basic choice of K is to
pick K(s, s′) = κ(s, s′)I , where κ is a scalar-valued ker-
nel, but general linear operatorsK(s, s′) are covered by the
theory: these would typically capture correlations between
the action space. For example, the movement of joints is
often highly correlated (consider grasping tasks), and the
operator K(s, s′) could be used to encode prior knowledge
of such correlations. Note that, because of our choice ofA,
Z does not depend upon h.

2.1 Policy Gradients in RKHS

We now consider how to compute the steepest ascent direc-
tion of the return (4) w.r.t. h when the policy is modelled
as in (6) and h is modelled non-parametrically in a (vector-
valued) RKHS HK ⊆ AS . Importantly, the gradient will
be an entire function in HK . Recalling (4), to compute the
steepest ascent direction we first need to compute the gradi-
ent of log πh,Σ(a|s) which is then integrated together with
the Q-function. This will be a functional gradient and the
notion of the Fréchet derivative3 is sufficient for us.

Given the policy form (6) we have,

log πh,Σ(a|s) = − logZ − 1

2
(h(s)− a)>Σ−1(h(s)− a),

where h ∈ HK , h : S → A = Rm. The following result
provides the gradient of the log policy with respect to the
function h.

Claim 2.1. The derivative of the map f : HK → R, f :
h 7→ log πh,Σ(a|s), at h, is the bounded linear mapDf |h :
HK → R defined by,

Df |h : g 7→ (a− h(s))>Σ−1g(s)

= 〈K(s, ·)Σ−1(a− h(s)), g〉K . (8)

Thus the direction of steepest ascent is the function,

∇h(log πh,Σ(a|s)) = K(s, ·)Σ−1(a− h(s)) ∈ HK . (9)

Proof. We just check that (8) satisfies the definition of the

3The Fréchet derivative is the derivative for functions on a Ba-
nach space. Let V and W be Banach spaces, and U ⊂ V be an
open subset of V . A function f : U → W is called Fréchet
differentiable at x ∈ U if there exists a bounded linear operator
Df |x : V → W such that,

lim
r→0

‖f(x+ r)− f(x)−Df |x(r)‖W
‖r‖V

= 0.

592

Modelling Policies in MDPs in Reproducing Kernel Hilbert Space

Fréchet derivative: we have that

f(h+ g) = log πh+g,Σ

= − logZ − 1

2
(h(s) + g(s)− a)>Σ−1(h(s) + g(s)− a),

so with Df |h(g) defined as in (8) we have that

|f(h+ g)− f(h)−Df |h(g)|
||g||K

=
g(s)>Σ−1g(s)

2||g||K

=
〈g,K(s, ·)Σ−1g(s)〉K

2||g||K

≤ ||g||K(Σ−1g(s))>K(s, s)Σ−1g(s)

2||g||K
= (Σ−1g(s))>K(s, s)Σ−1g(s)/2

→ 0, (10)

where the last line we took the limit as g → 0 and the
inequality is due to Cauchy-Schwarz.

Substituting (9) into the integral (4), the ascent direction is
therefore given by the integral,

∇hU(πh) =

∫
ρh(z)Qπh(z)K(s, ·)Σ−1(a− h(s))dz.

(11)

Note that the steepest ascent direction is a function. To
evaluate this integral we can estimate Qπh(z) and approx-
imate the integral by sampling T state-action pairs {zk =
(sk, ak)}Tk=1 from (1−γ)ρh(·) and approximating with the
sum4:

(1− γ)∇hU(πh)

≈
T∑
k=1

Qπh(zk)K(sk, ·)Σ−1(ak − h(sk)) ∈ HK . (12)

Note that the gradient is a function in HK with an expan-
sion of the form (7).

4We remark that in computing the gradient of the log policy
we had to obtain the derivative of the point evaluation functional
δs : h 7→ h(s). The derivative of the point evaluation functional
h 7→ 〈h,K(s, ·)〉 in an RKHS can be identified with the element
K(s, ·) of the function space, ensuring the finite sum (12) is in-
deed an element of the RKHS and a valid direction to increment
the policy. In many other function classes this would not be the
case; in fact, the defining property of an RKHS is the fact that
point evaluation is a continuous linear functional. i.e. for Hilbert
function spaces that are not RKHS, replacing the policy gradient
integral with a sum as in (12) would not be guaranteed to be an
element of our function space, and we would not be able to ap-
proximate the integral as a sum, and remain in the function space.
RKHS are precisely those Hilbert function spaces in which we
can use the approximation (12).

2.2 Compact Representations Via Sparsification in
the RKHS

Unlike a parametric model with a fixed size of the ex-
pansion, successively updating the policy (7) via (2) by
adding increments (12) will lead to an increasingly com-
plex function representation. This means we can model
complex policies, but also that our policies will become
slow to evaluate. We must therefore keep the size of expan-
sion of our policy (7), and the gradient (12) under control.
We achieve this by sparsifying these expansions i.e. given
any h(·) =

∑N
i=1K(si, ·)αi ∈ HK , we seek a ĥ(·) =∑N

i=1K(si, ·)βi ∈ HK where only n � N of the βi are
non zero. This can be achieved efficiently using (a vector-
valued version of) the kernel matching pursuit algorithm
(Vincent and Bengio, 2002). This method adds basis fea-
tures K(si, ·), and coefficients βi to the sparse expansion
sequentially by greedily adding the feature which maxi-
mally reduces the error

∑
i∈I ||h(si) − ĥ(si)||2A (where I

is some subsample of {1, ..., N}) at each stage. See Ap-
pendix B for a description of the vector-valued version of
the method.

In fact this allows us to find compact policy representations
adaptively: we can define a tolerance for matching pursuit
so that basis features and weights will be added to the com-
pact policy expansion only if the error is reduced by more
than the tolerance level, so the expansion becomes com-
plex if the policy we are fitting requires it, but otherwise
remains compact. This is a distinct advantage over para-
metric versions of the policy (7) where the number of basis
points would usually be a-priori fixed, which could be too
small (meaning we cannot represent the optimal policy), or
too large (slow to evaluate, and more difficult to evaluate
gradients).

2.3 Compatible Function Approximation

To use the form of the policy gradient theorem (11) to
compute an ascent direction, we must approximate the Q-
function Qπh . Thus we now consider compatible function
approximation (Sutton et al., 1999) in this setting; that is,
we consider estimates Q̂πh ofQπh such that replacingQπh
with Q̂πh in (11) the integral still evaluates to the policy
gradient.

Theorem 2.2, below, provides one way to achieve compat-
ible function approximation in our setting. We first define
our approximation class for Qπh : Given the vector-valued
RKHS HK ⊆ AS used to model policies of the form (6),
(7) and a function h ∈ HK , define the scalar-valued kernel
Kh : (S ×A)× (S ×A)→ R,

Kh((s, a), (s′, a′))

:=
(
K(s, s′)Σ−1(a− h(s))

)>
Σ−1(a′ − h(s′)), (13)

and denote the RKHS associated to Kh by HhK ⊂ RS×A.

593

Guy Lever, Ronnie Stafford

We verify that HhK is indeed an RKHS; to do this it is
sufficient to demonstrate the existence of a feature map
φ : S × A → Fφ, and an inner product 〈·, ·〉Fφ in Fφ
such that Kh((s, a), (s′, a′)) = 〈φ(s, a), φ(s′, a′)〉Fφ (e.g.
Schölkopf and Smola, 2002). Thus we define

φ : (s, a) 7→ K(s, ·)Σ−1(a− h(s)) ∈ HK =: Fφ, (14)

so that by the reproducing property of K inHK ,

〈φ(s, a), φ(s′, a′)〉Fφ
= 〈K(s, ·)Σ−1(a− h(s)),K(s′, ·)Σ−1(a′ − h(s′))〉HK
= Kh((s, a), (s′, a′)),

as required. Further, for any q ∈ Fφ there exists a w ∈ Fφ
such that,

q(s, a) = 〈w, φ(s, a)〉Fφ
= 〈w,K(s, ·)Σ−1(a− h(s))〉HK . (15)

We now demonstrate that HhK is a compatible approxima-
tion architecture:
Theorem 2.2. Suppose that Q̂πh ∈ HhK is such that,

Q̂πh = argmin
Q∈HhK

∫
ρh(z)(Q(z)−Qπh(z))2dz. (16)

Then Q̂πh is a compatible function approximator for Qπh ,
i.e.

∇hU(πh) =

∫
ρh(z)Q̂πh(z)K(s, ·)Σ−1(a− h(s))dz.

(17)

Proof. From (15) there exists a wh ∈ HK such that,

Q̂πh(s, a) = 〈wh,K(s, ·)Σ−1(a− h(s))〉HK . (18)

Therefore∇whQ̂πh(s, a) = K(s, ·)Σ−1(a−h(s)) ∈ HK .
And now from (16),

0 =

∫
ρh(z)(Q̂πh(z)−Qπh(z))∇whQ̂πh(z)dz

=

∫
ρh(z)(Q̂πh(z)−Qπh(z))K(s, ·)Σ−1(a− h(s))dz

which implies (17).

Thus, compatible function approximation can be achieved
by using kernel regression to estimate Qπh using the com-
patible kernel (13). Many practical methods exist to do this
and in our experiments we choose efficient kernel match-
ing pursuit algorithm (Vincent and Bengio, 2002) to regress
Q̂πh quickly in the desired RKHSHhK .

2.4 An Actor-Critic Algorithm with RKHS Policies

We now combine these elements to present a full practical
policy gradient scheme based on modelling policies in an
RKHS: the algorithm pseudocode is given in Algorithm 1.

Algorithm 1 Compatible RKHS Actor-Critic
Input: MDPM = {S,A, r, P}; kernel K : S × S →
L(A); initial covariance Σ1

Initialize: h1 = 0
Parameters: tolerance δ
for j = 1, 2, ... do

Collect data from the system using policy πhj
Compatible Q approximation: Fit Qπhj with Q̂πhj
inHhK as in Section 2.3
Compute policy gradient: Approximate the policy
gradient∇hU(πhj ,Σj) using (12)
Update policy: hj+1 = hj + ηj∇hjU(πhj ,Σj) for
step size ηj
Sparsify policy: Sparsify hj+1 ∈ HK with tolerance
δ as in Section 2.2
Update Σ: reduce Σj (or take a gradient step w.r.t.
Σj)

end for

3 COMPARISON TO OTHER
APPROACHES

We briefly discuss connections to a simple parametric ver-
sion of our policy, an alternative method of modelling poli-
cies in an RKHS and to the natural gradient algorithm.

3.1 Comparison to the Parametric Case

We first compare to a similar parametric approach. Re-
stricting to the real-valued RKHS function case, and
putting S = Rd, for simplicity, a parametric approach
might consider policies of the form (6) but where the func-
tion h is given as a linear function over features φi(·),
where

h(s) =

n∑
i=1

wiφi(s) (19)

φi(s) = K(s, ci).

Rather than take the gradient in the RKHSHK the standard
approach would be to optimize the weights w and centres
{ci}. Putting θ = (w, {ci}) ∈ Rn+dn (with a Euclidean
norm) it is straightforward to compute the necessary deriva-
tives with respect to θ (assuming the kernel is differen-
tiable), but recalling the discussion of Section 1.2.1, there
is no obvious way to choose a scaling of these parame-
ters, whereas modelling everything directly in an RKHS
essentially fixes the scaling in a principled way by adopt-
ing the RKHS norm on functions as that determining the
scaling. Secondly, in high dimensional state spaces (con-
sider a state representation of images with thousands of
pixels, for instance) the size of the parameter vector would
become huge, making scaling and preconditiong difficult
and computationally expensive, but in such spaces it is vi-
tal to optimize the position of centres as a small number of

594

Modelling Policies in MDPs in Reproducing Kernel Hilbert Space

well positioned centres would be hard to choose a-priori.
Thirdly, it is not necessarily easy to choose n a-priori, pick-
ing n too large would be computationally expensive (espe-
cially if we precondition, see Section 3.3), too small could
mean we are unable to fit important policies. Recalling the
discussion in Section 2.2, we can fit to the complexity of
our problem adaptively. A final key issue with working
parametrically is that the ideal position of centres must be
reachable from the initialization by continuous reposition-
ing since they are updated by following a gradient direction
through state space. This could be a particular problem
in high dimensional complex state spaces where the ideal
position of centres might be unreachable without passing
through poor positions, and gradually repositioning centres
could be slow. When parameterizing in an RKHS we do not
have this problem: we do not rely on repositioning and new
centres can immediately emerge anywhere on the support
of our current trajectory through state space.

3.2 Comparison to Prior Work

An alternative policy form, explored in Bagnell and Schnei-
der (2003); Bagnell (2004)5 is

πf (a|s) :=
1

Z
ef(s,a), (20)

where f : S×A → R is an element of an RKHS on S×A,

f(s, a) =

n∑
i=1

αiK((si, ai), (s, a)). (21)

The policy gradient is (see Appendix A)

∇fπf (a|s)
πf (a|s)

= K((a, s), ·)− EA∼πf (·|s)[K((A, s), ·)].

Contrasting (6) and (20), the latter is in one sense more
general than (6) – distributions that are not Gaussians can
be modelled. However, in MDPs, optimal deterministic
policies always exist, so more general distributions are not
needed to model the optimal policy. Indeed an optimal pol-
icy which is a deterministic function may be difficult to
learn under (20) since it would require, for each s, the map
a 7→ f(s, a) to be a delta peak in the action space, which
would usually not correspond to an RKHS function f , or be
easily approximated by an RKHS function with a compact
expansion (it would be a very complex function requiring
a large expansion of the form (21) and slow to evaluate).
Under (6), to learn a deterministic function we simply de-
cay Σ towards zero. Indeed, experimentally we observe
that we need a much larger expansion of (21) to learn well
than in the method we propose. Note also that the gradient
of the log policy contains an expectation, which we must
sample in order to estimate, which is both expensive and
may lead to inaccuracies.

5Strictly speaking they consider POMDPs and so the kernel is
defined on observation space.

3.3 Comparison with Natural Gradients

For a normed parameter space W , the steepest ascent di-
rection∇wU(πw) is not invariant to rescaling of individual
components of the parameter vector w. This arises since

∇wU(w)

||∇wU(w)||
= argsup
v:||v||=1

lim
ε→0

U(w + εv)− U(w)

ε
(22)

thus the direction of steepest ascent of (1) depends upon the
choice of norm || · || on the parameter space, and in partic-
ular prefers lower norm directions: if a rescaling decreases
the norm in a particular direction, that direction will fea-
ture more in the gradient. This causes problems such as
the plateau effect, when the objective function (1) contains
ridges, and gradient ascent will zig-zag.

One popular approach to remedy this is to take the natu-
ral gradient (Kakade, 2001) in which the parameter space
is remetrized to measure a discrepancy between the pol-
icy distributions under different parameters – and this is in-
variant to rescaling parameters. In the approach we present
gradients are functional gradients taken in the Hilbert func-
tion space – w in (22) is an RKHS function – and thus the
gradient direction is affected by the Hilbert space norm
over functions parameterizing our policies. In fact the
RKHS norm encodes a notion of “smoothness” of func-
tions, which is generally useful throughout machine learn-
ing for expressing a preference for smooth functions via
regularization. Here, the functional gradient will prefer
smoother policies in the policy space, in the sense specified
by the RKHS norm. If this norm is sensible we can avoid
the post-hoc remetrization using a preconditioner, which
can be expensive in large parameter spaces. Choosing a
suitable kernel on a state space, inducing a sensible norm
on the RKHS, can be quite straightforward compared to
remetrizing a high dimensional feature space. For example,
state spaces might be lower dimensional, and practitioner
may have good intuition for sensible kernels; in fact many
kernels specifically tailored to the application domain may
exist.

4 EXPERIMENTS

We present results for four MDPs; a synthetic Toy task,
the familiar benchmarks Mountain Car, Inverted Pendu-
lum and a simulated Quadrocopter UAV navigation task.
We define R ∈ [0, 1] in all the reward functions and dis-
count factor γ = 0.99 across all tasks. Average cumulative
rewards for each task are presented for each iteration of
policy improvement.

Our proposed RKHS actor-critic controller, RKHS2 (Sec-
tion 2.4), is presented along with existing comparisons: a
parametric controller Para (Section 3.1 with weight gradi-
ent updates); a parametric controller with a natural gradient
pre-conditioner Nat (Section 3.3 with weight gradient up-

595

Guy Lever, Ronnie Stafford

Figure 1: Toy cumulative reward, H = 20

dates); a parametric controller with adjustable centres Para
C (Section 3.1 with weight and centre updates), and the
existing RKHS controller (section 3.2) RKHS1. Each con-
troller is a compatible actor-critic of the same generic form
as Algorithm 1. Step sizes ηj were chosen by perform-
ing a line search over a grid of 50 candidates. For fairness
of comparison we use the same kernels (Gaussians) and
the same number of centres in each controller (we use a
number of centres sufficient for these controllers to gener-
ally achieve the tasks), and the same number of samples
were used to estimate the Q-function. We restrict the max-
imum number of centres in the RKHS methods to be equal
to the parametric versions, however in practice one would
set the number of centres adaptively as in Section 2.2. For
the two RKHS controllers we sparsified the gradient before
performing the line search for the step size (which is more
efficient than sparsifying every policy) – with a budget of
centres we found it was best to sparsify the gradient more
than the policy. Where appropriate each policy is randomly
initialised.

4.1 Toy, Mountain Car and Pendulum Benchmarks

The Toy benchmark is a Markov chain on interval S ∈
[−4, 4] where A ∈ [−1, 1] and r(s, a) = e−|s−3|. The
dynamics are s′ = s + a + ε where ε is small amount of
Gaussian noise, and the agent is reset to s = 0 if it leaves
the interval. Over a horizon of H = 20 optimal return is
around 14, doing nothing receives almost no reward. The
controllers used 20 centres. Fig. 1 shows results averaged
over 50 experiments.

The second benchmark is the Mountain Car problem (see
e.g. Singh and Sutton, 1996). The agent controls a car
located at the bottom of a valley and the objective is
to drive to the top of a hill but does not have enough
power to achieve this directly and must therefore climb
the opposite hill a short distance before accelerating to-
ward the goal. States s = (x, v) are position and veloc-

Figure 2: Mountain car cumulative reward, H = 100

ity, S = (−1.2, 0.7) × (−0.07, 0.07), A = [−1, 1] and
r(s, a) = e−8(x−0.6)

2

and s0 = (−0.5, 0). Dynamics are
x′ = x+v+ε1, v′ = v+0.001a−0.0025 cos(3x)+ε2/10,
where ε1, ε2 are Gaussian random variables with standard
deviation 0.02. For a horizon H = 100 optimal return is
around 25. Doing nothing receives almost no reward. The
controllers used 50 centres. Results shown in Fig. 2 are
averaged over 30 experiments.

The third benchmark is the under-actuated Inverted Pen-
dulum swing-up problem. An agent applies torque A =
[−3, 3] to a pendulum where states s = (θ, ω) are angular
position and velocity, Θ = [−π, π) (angle from the ver-
tical) and Ω = [−4π, 4π]. Reward is r(s, a) = e−0.5θ

2

and s0 = (−π, 0). Dynamics are θ′ = θ + ω∆t + ε1 and
ω′ = ω + ω̇∆t + 2ε2, ∆t = 0.05 and ε1, ε2 are Gaussian
random variables with standard deviation 0.02. We tran-
sitioned twice using the dynamics with the current action
before allowing the policy to select its next action, there-
fore one MDP transition is equal to twice the application of
the dynamics equations. Over a horizon H = 400 optimal
reward is around 80, anything over 60 means the pendu-
lum is kept balanced and doing nothing receives almost no
reward. The controllers used 100 centres. Results shown
in Fig. 3 are averaged over 15 experiments for only four
controllers that were practical in this slightly more difficult
task: we abandoned the existing RKHS1 controller due to a
high computational expense of selecting actions.

The proposed RKHS actor-critic algorithm is competitive
with the best algorithms on each benchmark.

4.2 Quadrocotper UAV

The fourth experiment is a Quadrocotper navigation task
which uses a simulator (De Nardi, 2013) specifically cal-
ibrated to model the dynamics of a single or multiple
PelicanTM platforms. We restrict our experiment to a
single platform which is a higher dimensional problem,

596

Modelling Policies in MDPs in Reproducing Kernel Hilbert Space

Figure 3: Inverted Pendulum cumulative reward, H = 400

Figure 4: UAV navigation cumulative reward, H = 50

S ⊂ R13, compared to the previous tasks. Explicitly
s = (x, y, z, θ φ, ψ, ẋ, ẏ, ż, θ̇, φ̇, ψ̇, F) which consists of
platform position sxyz ∈ R3, platform roll, pitch and yaw
sθφψ ∈ R3, associated time derivatives and the thrust ap-
plied to all rotors F ∈ R. The action space is three dimen-
sionalA ⊂ R3 which represent desired velocity vectors for
the platform. The simulator mimics the architecture of a
real platform such that a PID controller receives these de-
sired velocities at the agent’s rate and translates them into
low level commands issued directly to the rotor blades at
a rate of about 50Hz, in attempt to attain those velocities,
which creates complex dynamics for the system. A target
location is defined at coordinates xtarg such that we define
r(s, a) = e−

1
2σ2
||xtarg−sxyz||2 . The controllers used 100

centres.

All existing controllers are unable to compete with the pro-
posed RKHS2 on this high dimensional task – see Fig. 4,
averaged over 25 experiments. One key possible advantage
the proposed controller has here is its ability to immedi-
ately add new centres anywhere along its trajectory sup-
port, rather than by moving existing centres, which may be
an advantage on this higher dimensional task.

Figure 5: Toy experiments with fewer centres

4.3 Learning with Fewer Centres

Finally we consider the effect of reducing the budget of
centres in the Toy MDP. Results over a range of centres
are shown in Fig. 5. As expected the RKHS actor-critic
does not degrade in performance as the number of centres
is reduced, whereas the other controllers can degrade sig-
nificantly. This suggests that the RKHS parameterization
is able to identify optimal basis points well.

5 CONCLUSIONS AND EXTENSIONS

We have presented a method of modelling policies
in RKHS function spaces, allowing us to work non-
parametrically in policy gradient methods in reinforcement
learning, with rich representation potential and without the
need to a-priori specify parameters. We have derived the
policy gradient for our method which is en entire function.
We have demonstrated how the representation of the pol-
icy can be adaptive to the problem at hand using efficient
sparse approximation techniques, and have demonstrated
how to perform compatible Q estimation in our framework
by deriving the compatible approximation kernel. We have
verified the method against competitor methods in bench-
mark domains and on a simulated quadrocopter navigation
task. The approach seems to have an advantage in high
dimensional state spaces where picking good basis points
to represent policies a-priori can be difficult: rather than
gradually moving around a-priori chosen basis points our
method provides a principled way to add basis points along
experienced trajectories.

Acknowledgements

This work was supported by the European Community Sev-
enth Framework Programme (FP7/2007-2013) under grant
agreement 270327 (CompLACS).

597

Guy Lever, Ronnie Stafford

References
Bagnell, J. (2004). Learning Decisions: Robustness, Un-

certainty and Approximations. PhD thesis, Carnegie
Mellon University.

Bagnell, J. A. D. and Schneider, J. (2003). Policy search
in reproducing kernel hilbert space. Technical Report
CMU-RI-TR-03-45, Robotics Institute, Pittsburgh, PA.

De Nardi, R. (2013). The qrsim quadrotor simulator. Tech-
nical Report RN/13/08, Department of Computer Sci-
ence, University College London, Gower Street, London
UK.

Deisenroth, M. P. and Rasmussen, C. E. (2011). Pilco:
A model-based and data-efficient approach to policy
search. In ICML, pages 465–472.

Heess, N., Silver, D., and Teh, Y. W. (2012). Actor-critic
reinforcement learning with energy-based policies. In
Proceedings of the Tenth European Workshop on Rein-
forcement Learning, EWRL 2012, Edinburgh, Scotland,
June, 2012, pages 43–58.

Kakade, S. (2001). A natural policy gradient. In NIPS,
pages 1531–1538.

Kober, J. and Peters, J. (2011). Policy search for motor
primitives in robotics. Machine Learning, 84(1-2):171–
203.

Kohl, N. and Stone, P. (2004). Policy gradient reinforce-
ment learning for fast quadrupedal locomotion. In Pro-
ceedings of the 2004 IEEE International Conference on
Robotics and Automation, ICRA 2004, April 26 - May 1,
2004, New Orleans, LA, USA, pages 2619–2624.

Mallat, S. and Zhang, Z. (1993). Matching pursuits with
time-frequency dictionaries. IEEE Transactions on Sig-
nal Processing, 41(12):3397–3415.

Micchelli, C. A. and Pontil, M. (2005). On learning vector-
valued functions. Neural Computation, 17(1):177–204.

Schölkopf, B. and Smola, A. (2002). Learning With Ker-
nels: Support Vector Machines, Regularization, Opti-
mization and Beyond. Adaptive Computation and Ma-
chine Learning Series. Mit Press.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Meth-
ods for Pattern Analysis. Cambridge University Press.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D.,
and Riedmiller, M. (2014). Deterministic policy gradi-
ent algorithms. In Proceedings of the 31th International
Conference on Machine Learning, ICML 2014, Beijing,
China, 21-26 June 2014, pages 387–395.

Singh, S. P. and Sutton, R. S. (1996). Reinforcement learn-
ing with replacing eligibility traces. Machine Learning,
22(1-3):123–158.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. (1999). Policy gradient methods for reinforcement

learning with function approximation. In NIPS, pages
1057–1063.

Vincent, P. and Bengio, Y. (2002). Kernel matching pursuit.
Machine Learning, 48(1-3):165–187.

Wierstra, D., Förster, A., Peters, J., and Schmidhuber, J.
(2010). Recurrent policy gradients. Logic Journal of the
IGPL, 18(5):620–634.

598

