
Supplemental Material for Scalable Operational Decision
Optimization in Adversarial Environments

Bo Li and Yevgeniy Vorobeychik
Electrical Engineering and Computer Science

Vanderbilt University
Nashville, TN

{bo.li.2,yevgeniy.vorobeychik}@vanderbilt.edu

1 Model Analysis

Proposition 1.1. Suppose that PA = 0 and c = 1
(i.e., no budget constraint). Then the optimal policy
is

q(~x) =

{
1 if p(~x) ≥ G(~x)

G(~x)+V (~x)

0 o.w.

Proof. Since we consider only static adversaries and
there is no budget constraint, the objective becomes

max
~q

∑
~x∈X

[(1− q(~x))G(~x)(1− p(~x))− p(~x)vS(~x)] ,

and the only remaining constraint is that q(~x) ∈ [0, 1]
for all ~x. Since now the objective function is entirely
decoupled for each ~x, we can optimize each q(~x) in
isolation for each ~x ∈ X . Rewriting, maximizing the
objective for a given ~x is equivalent to minimizing
q(~x)[G(~x) − p(~x)(G(~x) + V (~x))]. Whenever the right
multiplicand is negative, the quantity is minimized
when q(~x) = 1, and when it is positive, the quantity

is minimized when q(~x) = 0. Since p(~x) ≥ G(~x)
G(~x)+V (~x)

implies that the right multiplicand is negative (more
accurately, non-positive), the result follows.

Proposition 1.2. Suppose that PA = 0 and c|X | is
an integer. Then the optimal policy is to let q(~x) = 0
for all ~x with

p(~x) <
G(~x)

G(~x) + V (~x)
.

Rank the remaining ~x in descending order of p(~x) and
set q(~x) = 1 for the top c|X | inputs, with q(~x) = 0 for
the rest.

Proof. The LP can be rewritten so as to minimize∑
~x

q(~x)[G(~x)− p(~x)(G(~x) + V (~x))]

subject to the budget constraint. By the same argu-
ment as above, whenever p(~x) is below the threshold,
the optimal q(~x) = 0. Removing the corresponding
~x from the objective, we obtain a special knapsack
problem in which the above greedy solution is opti-
mal, since the coefficient on the budget constraint is
1.

2 Computing Adversary’s Best
Response

Theorem 2.1. EVASION is NP-complete.

Proof. This adversary evasion problem is in NP, as
we can non-deterministically pick a ≤ k features and
verify if q(~x′) ≤ λ.

We prove that the problem is NP-hard via a reduction
from 3-dimensinal matching (3DM). For an arbitrary
instance of 3DM, W , Y , and Z are finite, disjoint sets
with the same number of d elements. T is a subset of
W ×Y ×Z, which means T consists of triples (w, y, z)
such that w ∈ W, y ∈ Y , and z ∈ Z. M ⊆ T (|M | =
d) is a 3-dimensional matching if for any two distinct
triples (w1, y1, z1) ∈M and (w2, y2, z2) ∈M , w1 6= w2,
y1 6= y2, and z1 6= z2.

Each triple (wi, yi, zi) ∈ T corresponds to one feature,
which controls a set of basis (swi

, sd+yi , s2d+zi). There
are n = |T | features and m = |W | + |Y | + |Z| = 3d
basises, which forms the basis matrix as the figure 1
below. Each elements within the matrix bji = 1 de-
notes that the jth basis is controlled by the ith fea-
ture; otherwise 0. As each feature controls exactly
one basis from each part, we have for any feature

i(1 ≤ i ≤ n) and basis j(1 ≤ j ≤ m),
d∑
j=1

bji =

1,
2d∑
d+1

bji = 1,
3d∑

2d+1

bji = 1, (d = 1
3m). Let k = d,

λ = q(x) − 3d/D, (D ≥ 3d), ∆ = q(~x) − q(~x′). If

Supplemental Material for Scalable Operational Decision Optimization in Adversarial Environments

q(x′) ≤ λ, we have ∆ = q(~x) − q(x~x′) ≥ 3d/D. Let
α1 = α2 = ... = αm = 1

2D , and x is a vector with all
0. Therefore φj(x) = αj(−1)sjx = 1

2D for 1 ≤ j ≤ m.

Consequentially, let xl
′

denotes the modified instance
x′, which only differs in feature l with x. If bhl = 1,
the corresponding basis function would flip the sigh,

thus φh(xl
′
) = αl(−1)shx

l′
= − 1

2D . Suppose there are
J bases that have been flipped the sign,

∆ =q(~x)− q(~x′) =

m∑
j=1

αj(−1)sjx −
m∑
j=1

αj(−1)sjx
′

=

∑
j∈J

αj(−1)sjx +
∑
j∈S\J

αj(−1)sjx

−
∑
j∈J

αj(−1)sjx
′
+
∑
j∈S\J

αj(−1)sjx
′

 .

As
∑

j∈S\J
αj(−1)sjx =

∑
j∈S\J

αj(−1)sjx
′
, ∆ = 1

2D |J | −

(− 1
2D)|J | = |J|

D , which means the decrement of q(x)
equals to the number of basises that would flip the sign
divided by D. It is easy to see how this construction
can be accomplished in polynomial time. Therefore,

Figure 1: Illustration for the problem construction

suppose there are a ≤ k features that can be mod-
ified in x to satisfy that q(~x′) ≤ λ. It follows that

∆ = q(~x) − q(~x′) ≥ 3d/D. Additionally, as each fea-
ture only control 3 basises, the total number of ba-
sis that would flip the sign is ∆ = q(~x) − q(~x′) ≤
3a/D ≤ 3k/D = 3d/D. It derives that ∆ = 3d/D,
which means there is no overlap between selected basis.
Accordingly, subset M (|M | = d) is chosen and each
triple (wi, yi, zi) ∈ M corresponds to the set of con-
trolled basises by feature i. Therefore the total number
of elements within the selected subsets in M satisfies
|W | + |Y | + |Z| = ∆ · D = 3d. So any two selected
distinct triples (w1, y1, z1) ∈ M and (w2, y2, z2) ∈ M ,
w1 6= w2, y1 6= y2, and z1 6= z2. This means if there
is a solution for the adversary evasion problem, there
exists a 3-dimensional matching.

Conversely, suppose M is a 3DM. The d selected ex-
clusive triples correspond to k = d specific feature,
each of which controls 3 basis. As all the triples
are non-overlapped, there are 3d different respond-
ing basises that would flip the sign, which means
q(~x′) = q(~x) −∆ = q(~x) − 3d/D = λ. Therefore, the
adversary evasion problem can be solved if and only if
a 3DM exists.

Theorem 2.2. Suppose that the number of inputs in
any basis is bounded by a constant c. Then Approx-
Evasion (Algorithm 1) computes a solution x′ to prob-
lem 6 which achieves ∆̂ ≥ ∆∗

1+ε , where ∆̂ = ∆(x′) in

time poly(n, 1
ε , 2

c).

Proof. The operations of Trim and removing from
Dl every member that is greater than q(~x) main-
tain the property that every element of Dl meets
our decreasing requirement. For every element di in
Di that the corresponding retrieved value is at most
q(x), there exists an element dk ∈ Di such that
Retrieve(di)

(1+ε/2n)i ≤ Retrieve(dk) ≤ Retrieve(di). This

must hold for the optimal ∆∗, therefore there exists
an element d ∈ Dn that ∆∗

(1+ε/2n)n ≤ Retrieve(d) ≤
∆∗. Thus ∆∗

Retrieve(d) ≤ (1 + ε
2n)n. As this inequal-

ity must also hold for ∆̂, ∆∗

∆̂
≤ (1 + ε

2n)n. Since

lim
n→∞

(1 + ε/2n)n = eε/2 and d
dn (1 + ε/2n)n > 0, the

function (1 + ε/2n)n increases with n and we have
(1 + ε/2n)n ≤ eε/2 ≤ 1 + ε/2 + (ε/2)2 ≤ 1 + ε.
Therefore, ∆̂ ≥ ∆∗

1+ε .

Next we show that it is a polynomial-time approxima-
tion scheme based on a restrictive feature group size
c, which is the maximum size of each feature group
obtained from Algorithm 2. To analyze the run time,
we need to derive the bound on the length of Di.
After trimming between groups of features, successive
elements d and d′ of Di must have the relationship
d′/d > 1 + ε/2n. That is, they must differ by a factor
of at least 1 + ε/2n. Each list, therefore, constraints
the value 0, possibly value δ > 0, which is a small
number less than the minimal α value, and up to

blog1+ε/2n
q(x)
δ c. Therefore we can derive that the

number of elements in each list Di is at most

2c
(

log1+ε/2n

q(x)

δ
+ 2

)
= 2c

(
ln q(x)

δ

ln(1 + ε/2n)
+ 2

)
(1)

≤2c

(
2n(1 + ε/2n) ln q(x)

δ

ε
+ 2

)
(2)

<2c

(
3n ln q(x)

δ

ε
+ 2

)
. (3)

Bo Li and Yevgeniy Vorobeychik

Therefore, this bound of the list length is polynomial
in the size of the input n when c ≤ log2 n. Since the
running time of ApproxAdversaryEvasion is polyno-
mial in the lengths of the Di, we conclude that there
is a polynomial-time approximation scheme (O(n ·2c))
with respect to the restricted feature group size as c
(c ≤ log2 n).

Algorithm 1 returns the approximate solution of max-
imum ∆ to obtain a minimal q(~x′) by modifying less
or equal to k features.

Algorithm 1ApproxAdversaryEvasion(F, q(~x), ε, k)

n← |F |
D0 ← {(∅, 0)} // tuple di = (feaSet, value) ∈ D
G = GenFeaGroup(F, S)
l← 0
for i ← 1 to |G| do

for j ← 1 to |gi| do
l← l+ 1 // merge two tuple-lists by di.value
Dl ←MergeTuple(Dl−1, AddFea(Dl−1, fij , k))

end for
Dl ← Trim(Dl, ε/2n)
remove elements from Dl that dl.value > q(~x)

end for
let d∗ correspond to the maximum d.value in Dn

return d∗

As the length of Di can be 2i, which makes the merge
algorithm take exponential time, here we employ the
Algorithm 4 to trim the list length. The idea is that if

Algorithm 2 GenFeaGroup(F, S)

G← ∅
n← |F |
m← |S|
for j ← 1 to m do
for i← 1 to n do
gj ← ∅
if sji = 1 then
gj ← gj ∪ fi

end if
end for
G← G ∪ gj

end for
G← DisjointSet(G) // convert G to disjoint-sets
return G

some combination of features make the decrease of q(~x)
similar, then only one combination should be kept.
This means that with a trimming parameter δ, for any
element di removed from Di, there is an element dj
that approximates di, that is,
Retrieve(di)

1+δ ≤ Retrieve(dj) ≤ Retrieve(di).

However, this Trim action can only be done for fea-
tures that have no common basises to avoid missing
qualified feature combination. Therefore, Algorithm 2
is applied to group the features that need to be added
as a whole before Trim; and algorithm 3 helps to form
different feature combinations and guarantee only less
or equal to k features are considered.

Algorithm 3 AddFea(D, f, k)

m← |D|
D′ ← ∅
for i← 1 to m do

if size(i.set ∪ f) ≤ k then
t′i.set← ti.set ∪ f
t′i.value← Retrieve(t′i.set)
insert t′i into ordered D′ by t′i.value

end if
end for
return D′

Algorithm 4 Trim(D, ε)

m← |D|
D′ ← d1

last← d1.value
for i ← 2 to m do
if di.value > last · (1 + ε) then

append di onto the end of D′

last← di.value
end if

end for
return D′

Finally, for each feature combination we would use the
algorithm 5 to obtain the corresponding value based
on the chosen bases. Our goal is to find the feature
combination that reduce the most from q(~x) by flip-
ping fewer features, which means the strategy x′ can
have a higher chance to pass the classifier after less
modification on the original “ideal” instance x.

Algorithm 5 Retrieve(d)

w ← ∅
for fi ∈ d do
w ← w ⊕ wfi // wfi is basis set controled by fi

end for
v ←

∑
sj∈w

−2αxj // αxj is the actual value in x

return v

Supplemental Material for Scalable Operational Decision Optimization in Adversarial Environments

3 Experiments

Here we test the AAS scheme with the same set up
of simulations on the feature space of 500, and similar
results shown as below have demonstrated the consis-
tency and robustness of our proposed approach.

(a) (b)

(c) (d)

Figure 2: Comparison of normalized utility on TREC
data, trained on year 2005, and tested on years 2005-
2008. Our method is labeled as AAS(·), where the
parameter is the classifier that serves to provide p(x).
The following parameters are used: δ = 0.2,V (x) =
G(x) = 1, PA = 1 (a) c=0.1; (b) c=0.3; (c) c=0.5; (d)
c=0.9.

(a) (b)

Figure 3: Comparison of the expected utility assuming
PA = 1, V (x) = G(x) = 1; (a) c = 0.1; (b) c = 0.3.

(a) (b)

(c) (d)

Figure 4: Comparison of normalized utility on TREC
data, trained on year 2005, and tested on years 2005-
2008. Our method is labeled as AAS(·), where the
parameter is the classifier that serves to provide p(x).
The following parameters are used: δ = 0.2,G(x) = 1,
PA = 1 (a) V (x) = 2, c=0.1; (b) V (x) = 10, c=0.1;
(c) V (x) = 2, c=0.3; (d) V (x) = 10, c=0.3.

(a) (b)

Figure 5: Comparison of the expected utility assuming
PA = 1; (a) V (x) = 2; (b) V (x) = 10. c = 0.3.

(a) (b)

Figure 6: Comparision of the expected utility assum-
ing PA = 1, introducing parameter error with 0.2 for
δ; (a) c = 0.1; (b) c = 0.3.

Bo Li and Yevgeniy Vorobeychik

(a) (b)

Figure 7: Comparison of the expected utility assuming
PA = 1, introducing parameter error with 0.2 for δ; (a)
V (x) = 2; (b) V (x) = 10. c = 0.3.

(a) (b)

Figure 8: Comparison of the expected utility assuming
PA = 1, introducing adversarial model error; (a) c =
0.1; (b) c = 0.3.

