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Abstract

This paper studies the off-policy evaluation prob-
lem, where one aims to estimate the value of a
target policy based on a sample of observations
collected by another policy. We first consider the
single-state, or multi-armed bandit case, estab-
lish a finite-time minimax risk lower bound, and
analyze the risk of three standard estimators. For
the so-called regression estimator, we show that
while it is asymptotically optimal, for small sam-
ple sizes it may perform suboptimally compared
to an ideal oracle up to a multiplicative factor that
depends on the number of actions. We also show
that the other two popular estimators can be ar-
bitrarily worse than the optimal, even in the limit
of infinitely many data points. The performance
of the estimators are studied in synthetic and real
problems; illustrating the methods strengths and
weaknesses. We also discuss the implications of
these results for off-policy evaluation problems
in contextual bandits and fixed-horizon Markov
decision processes.

1 Introduction

In reinforcement learning including multi-armed bandits,
one of the most fundamental problems is policy evaluation

— estimating the average reward obtained by running a
given policy to select actions in an unknown system. A
straightforward solution is to simply run the policy and
measure the average reward collected. In many applica-
tions, however, running a new policy in the actual system
can be expensive or even impossible. For example, flying
a helicopter with a new policy can be risky as it may lead
to crashes; deploying a new ad display policy on a website
may be catastrophic to user experience; testing a new treat-
ment on patients may simply be impossible for legal and
ethical reasons; etc.
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It is the purpose of off-policy evaluation (Precup et al.,
2000, Sutton et al., 2010), sometimes referred to as offline

evaluation in the bandit literature (Li et al., 2011) or coun-

terfactual reasoning (Bottou et al., 2013) to overcome this
problem. Here, we still aim to estimate the average reward
of a target policy, but instead of running it directly, we only
have access to a sample of observations made about the un-
known system, which may be collected in the past using a
different policy. Off-policy evaluation has been found use-
ful in several important applications (Langford et al., 2008,
Li et al., 2011, Bottou et al., 2013) and can also be regarded
as a key building block for policy optimization which, as
in supervised learning, can often be reduced to evalua-
tion, as long as the complexity of the policy class is well-
controlled (Ng and Jordan, 2000). Accordingly, off-policy
evaluation was found to be useful in many optimization
algorithms for Markov decision processes (e.g., Heidrich-
Meisner and Igel 2009) and bandit problems (Auer et al.,
2002, Langford and Zhang, 2008, Strehl et al., 2011).

In the context of supervised learning, off-policy learning is
known as the covariate shift problem, where one estimates
losses under changing distributions for model selection
(Quiñonero-Candela et al., 2008, Yu and Szepesvári, 2012)
and is also related to active learning (Dasgupta, 2011). In
statistics, the problem appears in the context of causal ef-
fect estimation from controlled experiments (e.g., Holland
(1986)), where one is to estimate an intervention’s effect on
outcomes based on observational data that are collected by
a different intervention. Thus, results established here may
have useful implications in these related problems.

The topic of the present paper is off-policy evaluation in
finite settings, under a mean squared error (MSE) crite-
rion. As opposed to the statistics literature (e.g., Hirano
et al. (2003)), in addition to the asymptotics, we are also
interested in results for finite sample sizes. In particular,
we are interested in limits of performance (minimax MSE)
given fixed policies, but unknown stochastic rewards with
bounded mean reward, as well as the performance of esti-
mation procedures compared to the minimax MSE. We are
not aware of prior work that would have studied the above
problem (i.e., relating the MSE of algorithms to the best
possible MSE). The pros and cons of minimax estimation
are discussed at length in well-known textbooks (Kiefer,
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1987, Lehmann and Casella, 1998). We view achieving the
minimax optimal MSE as a modest goal: if an estimator
fails to achieve it (up to a constant factor), its use is not rec-
ommended unless additional knowledge is available. How-
ever, as we will see in our problem setting, even achieving
this modest goal is nontrivial. The picture is further compli-
cated by the fact that our estimators are not given a bound
on the mean reward function.

Our main results are as follows: We start with a lower
bound on the minimax MSE, as well as an asymptotic lower
MSE to set a target for the estimation procedures. Next,
we derive the exact MSE of the importance sampling es-
timator (IS), which is shown to have an extra (uncontrol-
lable) factor as compared to the lower bounds. We then
consider the weighted version of the IS estimator (WIS)
and argue that it shares the same limitation as the IS es-
timator. Next, we consider the estimator which estimates
the mean rewards by sample means, which we call the re-
gression estimator (REG). The motivation of studying this
estimator is both its simplicity and also because it is known
that a related estimator is asymptotically efficient (Hirano
et al., 2003). The main question is whether the asymptotic
efficiency transfers into finite-time efficiency. Our answer
to this is mixed: We show that for a large class of settings
the MSE of REG is within a constant factor of the mini-
max MSE lower bound; however, the “constant” depends
on the number of actions (K), or a lower bound on the
variance. We also show that the dependence of the MSE
of REG on the number actions is unavoidable. Therefore,
while REG is asymptotically optimal, in finite-sample set-
tings it may be less than ideal except for “small” action sets
or high noise setting, when it can be thought of as a mini-
max near-optimal estimator. We also show that for sample
sizes up to

p
K all estimators must suffer a constant MSE.

2 Multi-armed Bandits

We first introduce the problem studied. Let A =

{1, 2, . . . ,K} be a finite set of K actions. Data Dn
=

((A
1

, R
1

), . . . , (An, Rn)) 2 (A⇥R)n is generated by the
following process: Given a distribution ⇡D 2 �A over A
(i.e., ⇡D : A ! [0, 1] such that

P

a ⇡D(a) = 1),

Ai ⇠ ⇡D(·), Ri ⇠ �(·|Ai), i = 1, . . . , n ,

for some collection � = (�(·|a))a2A of distributions over
the reals, indexed by actions. It is assumed that each pair
(Ai, Ri) is independent of the others. We think of Ri as the
random reward for action Ai, and ⇡D as a policy generating
the actions. The problem is to estimate the value

v⇡
�

:= EA⇠⇡,R⇠�(·|A)

[R ] (=

P

a ⇡(a)r�(a) )

of some target policy ⇡ 2 �A, possibly different from
the data generating policy ⇡D. Here, in the second expres-
sion shown in the parenthesis, r

�

(a) = ER⇠�(·|a)[R] is

the mean reward of action a. The estimate bv must be con-
structed based on ⇡, ⇡D, and the data Dn only and we view
an estimator A as a function that maps triplets (⇡,⇡D, Dn

)

to some estimate bv 2 R. The quality of an estimate bv pro-
duced by an estimator is measured by its mean squared er-
ror, MSE (bv) := E

⇥

(bv � v⇡
�

)

2

⇤

. The off-policy value es-

timation problem in multi-armed bandits is the problem of
constructing estimators of the above form with low mean
squared error (MSE). This can be viewed as the simplified
version of the full-blown off-policy value estimation prob-
lem in Markovian Decision Problems, which is more preva-
lent in the literature (see the references in the introduction
and Section 3).

The task is clearly infeasible if ⇡D(a) = 0 for some a 2 A,
hence in what follows we always assume that ⇡D(a) > 0

for all actions a 2 A. The question then is how sensitive
an estimator will be or must be to small values of ⇡D. The
fact that ⇡D is small alone will not necessarily lead to high
MSE. For example, if ⇡ agrees with ⇡D, then the fact that
some values of ⇡D(a) are small will not matter. Similarly,
if the reward variance �2

�

(a) := VR⇠�(·|a)(R) is very
small, even a few reward observations at the a are suffi-
cient to estimate the mean reward r

�

(a) with a small error,
mitigating the negative effect a small probability ⇡D(a).
A “reasonable” estimator exploits these effects. Indeed,
from a reasonable estimator we expect that if a problem
instance is “easier,” the estimator will have a smaller MSE,
i.e., the estimator should adapt to the difficulty of problem
instances. A rigorous study of this problem is the main
topic of the present paper.

The rest of the paper is organized as follows: To define
what can be reasonably expected from an estimator, in Sec-
tion 2.2 we will first establish several lower bounds on the
MSE of unrestricted estimators, both for finite n and when
n ! 1. In the next sections (Section 2.3 and Section 2.4)
we will investigate several popular estimation methods,
comparing upper bounds on their MSE to the previously
obtained lower bounds, thus highlighting their strengths
and weaknesses. These findings are complemented in Sec-
tion 2.5 with simulation results both on synthetic and real-
world data (illuminating the strengths and weaknesses of
the theoretical results), while in Section 3 we will look at
the implications of our results beyond multi-armed bandits.

2.1 Notation

We shall denote by ⇡D ⌦ � the common distribution un-
derlying the random pairs (Ai, Ri) (i.e., ⇡D ⌦ � is a dis-
tribution on A ⇥ R). We let ⇡⇤

D := mina ⇡D(a) and
⇡(B) :=

P

a2B ⇡(a) for B ✓ A. For convenience, we
identify a function f : A ! R with the K-dimensional
vector whose kth component is f(k). Thus, r

�

, �2

�

, etc. are
considered vectors. For x, y 2 RK , x  y means xi  yi
for all 1  i  K. The set of all distribution families
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(�(·|a))a2A indexed by A is denoted by  . We let R
+

denote the set of nonnegative reals and for �2 2 RK
+

, we
denote by  �2 the set of � 2  such that �2

�

 �, while
we denote by  �2,R

max

the subset of  �2 such that for any
� 2  �2,R

max

, 0  r
�

(a)  R
max

holds for all a 2 A.

The following quantities will facilitate discussions:

V
1

:= E


V
✓

⇡(A)

⇡D(A)

R|A
◆�

=

X

a

⇡2

(a)

⇡D(a)
�2

�

(a) , (1a)

V
2

:= V
✓

E


⇡(A)

⇡D(A)

R|A
�◆

= V
✓

⇡(A)

⇡D(A)

r
�

(A)

◆

=

X

a

⇡2

(a)

⇡D(a)
r
�

(a)2 � (v⇡
�

)

2 . (1b)

Note that V
1

and V
2

are functions of �,⇡D and ⇡, but
this dependence is suppressed. Also, V

1

and V
2

are inde-
pendent in that there are no constants c, C > 0 such that
cV

1

 V
2

 CV
1

for any ⇡,⇡D,�. For subsets B ✓ A,
we denote by pB,n the probability that none of the actions
in Dn falls into B; that is, pB,n = P(A

1

, . . . , An /2 B).
Hence, pB,n = (1 � ⇡D(B))

n. For singletons B = {a},
the shorthand pa,n is used instead of p{a},n.

2.2 Lower Bounds

We start with establishing a minimax lower bound that
characterizes the inherent hardness of the off-policy value
estimation problem. As noted before, an estimator A

is considered as a function that maps (⇡,⇡D, Dn
) to an

estimate of v⇡
�

, denoted bvA(⇡,⇡D, Dn
). Fix �2

:=

(�2

(a))a2A. We consider the minimax optimal MSE over
the class of problems where � 2  �2,R

max

:

R⇤
n(⇡,⇡D, R

max

,�2

) :=

inf

A
sup

�2 �2,R
max

E⇡D⌦�
⇥

(bvA(⇡,⇡D, Dn
)� v⇡

�

)

2

⇤

,

where by E⇡D⌦� we denote the expectation oper-
ator underlying the probability measure P⇡D⌦� un-
der which the joint distribution of the data Dn

=

((A
1

, R
1

), . . . , (An, Rn)) is (⇡D⌦�)n. The restriction on
the magnitude of the mean reward function through R

max

is necessary because limR
max

!1 R⇤
n(⇡,⇡D, R

max

,�2

) =

1. The intuitive explanation of this is that for any n > 0,
the probability that for some action a 2 A there is no re-
ward observed for a is positive. Under this event no es-
timator can guess a correct value of the underlying mean
reward. Of course, one may object that an estimator may
not need to estimate the mean reward of the actions, but
a rigorous formal argument shows that this does not allow
any estimator to escape from having an unbounded MSE
when the range of r

�

is unbounded.

The first part of the theorem below shows that the minimax
MSE scales quadratically with R

max

, while the second part
shows that when R

max

or n is large, the minimax MSE

scales with V
1

/n where V
1

is defined like in (1a), with �2

�

replaced by �2—the largest possible variance within the
class  �2,R

max

. Thus, as expected, larger variances make
the problem harder, though V

1

captures more finely the re-
lationship between ⇡,⇡D and the variances. The final part
shows that the constant multiplying V

1

/n can be increased
to 1 asymptotically, as n becomes large.
Theorem 1. For any n > 0, ⇡D, ⇡, R

max

and �2

, one has

R⇤
n(⇡,⇡D, R

max

,�2

) � 1

4

R2

max

max

B⇢A
⇡2

(B)pB,n .

Furthermore, provided that

max

a

⇡(a)�2

(a)

⇡D(a)

r

0.6

V
1


p
nR

max

, (2)

we also have that

R⇤
n(⇡,⇡D, R

max

,�2

) � 0.02
V
1

n
,

where V
1

=

P

a
⇡2

(a)
⇡D(a)�

2

(a). Finally,

lim inf

n!1

R⇤
n(⇡,⇡D, R

max

,�2

)

V
1

/n
� 1. (3)

One may wonder about the necessity of condition (2) re-
quired by the second lower bound. However, intuitively, a
lower bound of the form V

1

/n can only hold when R
max

is large compared to at least V
1

/n since the minimax MSE
over  �2,R

max

converges to zero as R
max

! 0. Indeed, a
minimax estimator for the class �2,R

max

may well use the
knowledge of R

max

to limit its loss by exploiting that the
value to be estimated lies in the interval [0, R

max

], hence,
only estimates that belong to this interval make sense. A
well known technique to exploit such knowledge is to trun-
cate a preliminary estimate to this interval. However, in this
paper we focus on estimators that have no a priori knowl-
edge of an upper bound on the range of rewards, hence we
will not consider this problem. On a related note, it is pos-
sible to extend the proof to remove condition (2) at the ex-
pense of a more complicated lower bound. We also leave
this to future work.

Proof sketch. Full proofs for the three parts are given in
Appendices A.1–A.3, respectively. The first part’s proof
follows the intuition already given in the text. The second
part is proved by standard lower bounding techniques: We
choose two problems with similar reward distributions, �

1

and �
2

, so that achieving " MSE within {�
1

,�
2

} is equiv-
alent to telling which of �

1

and �
2

is the true distribution
that generated data Dn. Fano’s inequality is then applied
to yield the desired result. The third part is proved directly
by the Cramer-Rao lower bound.

A simple corollary of the previous theorem is that the mini-
max risk is constant when the number of samples is “small”
and the worst target policy is chosen:
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Corollary 1. For K � 2, n 
p
K,

sup⇡ R
⇤
n(⇡,⇡D, R

max

,�2

) = ⌦(R2

max

).

Proof. Choose B ⇢ A to minimize ⇡D(B) subject to the
constraint |B| = b

p
Kc. Note that P (A

1

, . . . , An 62 B) =

(1�⇡D(B))

n � (1� |B|
K )

n � (1� 1p
K
)

p
K � (1� 1p

2

)

p
2.

Choosing ⇡ such that ⇡(B) = 1 gives the result.

In particular, the result means that in a worst-case sense,
no estimator can achieve a nontrivial MSE for small sam-
ple sizes, or alternatively, all estimators are equally poor
in this regime, at least in the above worst-case sense. The
proof also reveals that the worst-case target policy is sup-
ported on the subset of ⇥(

p
K) actions that ⇡D is the least

likely to sample from. We conjecture that the result can be
strengthened by increasing the upper limit on n.

2.3 Importance Sampling Estimators

One of the most popular estimators is known as the propen-
sity score estimator in the statistical literature (Rosenbaum
and Rubin, 1983, 1985), or the importance weighting es-
timator (Bottou et al., 2013). We call it the importance
sampling (IS) estimator, as it estimates the unknown value
using likelihood ratios, or importance weights:

bv
IS

(⇡,⇡D, Dn
) :=

1

n

n
X

i=1

⇡(Ai)

⇡D(Ai)
Ri.

This estimator is unbiased: E[bv
IS

(⇡,⇡D, Dn
)] = v⇡

�

, im-
plying that the MSE is purely contributed by the variance of
the estimator. The main result in this subsection shows that
this estimator does not achieve the minimax lower bound
up to any constant. The proof (given in Appendix A.4) is
based on a direct calculation using the law of total variance.

Proposition 1. MSE (bv
IS

(⇡,⇡D, Dn
)) = (V

1

+ V
2

)/n .

In the next section, we will see that

lim

n!1

R⇤
n(⇡,⇡D, R

max

,�2

)

V
1

/n
= 1 , (4)

showing that bv
IS

(⇡,⇡D,Dn
)

R⇤
n(⇡,⇡D,R

max

,�2

)

= 1 +

V
2

V
1

+ !(1), i.e., the
risk of IS is (asymptotically) 1+ V

2

V
1

times the optimal risk;
the larger V

2

and the smaller V
1

are, the worse is the risk of
IS in the limit compared to the optimum.

A modification of the IS estimator, known as the weighted

importance sampling estimator, is meant to overcome this
weakness. This estimator is given by

bv
WIS

=

n
X

i=1

⇡(Ai)

⇡D(Ai)

Pn
j=1

⇡(Aj)

⇡D(Aj)

Ri .

By the law of large numbers, 1

n

P

j
⇡(Aj)

⇡D(Aj)
!

E
h

⇡(Aj)

⇡D(Aj)

i

= 1 as n ! 1, showing that the WIS esti-
mator is consistent. Using the delta method, its asymptotic
MSE is given by: (Liu, 2001)

MSE (bv
IS

)+

(v⇡
�

)

2

n V
⇣

⇡(A)

⇡D(A)

⌘

� 2v⇡
�

n Cov

⇣

⇡(A)

⇡D(A)

, ⇡(A)R
⇡D(A)

⌘

,

where (A,R) ⇠ ⇡D ⌦ �. Therefore, when ⇡(A)

⇡D(A)

and
⇡(A)R
⇡D(A)

are highly correlated, as often seen in practice, WIS
is a more efficient estimator than IS. Unfortunately, WIS
still fails short of being asymptotically minimax optimal.
Appendix A.5 gives a full proof of the following theorem:
Theorem 2. Assume Gaussian reward distributions. Then,

for some constants (ca)a2A that depend on ⇡,⇡D only

but not on the reward variances or means, it holds that

MSE (bv
WIS

(⇡,⇡D, Dn
)) =

V
1

+

P
b cb⇡

2

(b)

n + !
�

1

n

�

.

Based on (4), we see that MSE(bv
WIS

(⇡,⇡D,Dn
))

R⇤
n(⇡,⇡D,R

max

,�2

)

= 1 +

P
b cb⇡

2

(b)

V
1

+ !( 1

V
1

). Since V
1

can be made arbitrarily
small while keeping

P

b cb⇡
2

(b) (which only depends on
⇡ and ⇡D) constant, we indeed see that even WIS fails to
be asymptotically minimax optimal.

2.4 Regression Estimator

For convenience, define n(a) :=

Pn
i=1

I(Ai = a) to be
the number of samples for action a in Dn, and R(a) :=

Pn
i=1

I(Ai = a)Ri the total rewards of a. The regression
estimator (REG) is given by

bv
Reg

(⇡, Dn
) :=

X

a

⇡(a)br(a),

where br(a) :=

(

0, if n(a) = 0;

R(a)
n(a) , otherwise .

For brevity, we will also write br(a) = I{n(a) > 0}R(a)
n(a) ,

where we take 0

0

to be zero. The name of the estimator
comes from the fact that it estimates the reward function,
and the problem of estimating the reward function can be
thought of as a regression problem.

Interestingly, as can be verified by direct calculation, the
REG estimator can also be written as

bv
Reg

(⇡, Dn
) =

1

n

n
X

i=1

⇡(Ai)

b⇡D(Ai)
Ri , (5)

where b⇡D(a) =

n(a)
n is the empirical estimate of ⇡D(a).

Hence, the only difference between the IS estimator and
REG is that the former uses ⇡D to reweight the data, while
the latter uses the empirical estimates b⇡D. It may appear
that IS is superior since it uses the “right” quantity. Sur-
prisingly, REG turns out to be much more robust, as will
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be shown shortly; see Appendix D for further discussions
of a related problem. The robustness of regression estima-
tors is also independently suggested by Nicol (2015).

For the next statement, the counterpart of Proposition 1, the
following quantities will be useful:

bn :=

X

a

⇡(a)r
�

(a)pa,n ,

V
0,n := b2n +

X

a

⇡2

(a)r2
�

(a) pa,n(1� pa,n) and

V
3,n :=

X

a

E


I{n(a) > 0}
b⇡D(a)

� 1

⇡D(a)

�

⇡2

(a)�2

(a) .

Note that bn = v⇡
�

� E [bv
Reg

] is the negative bias of bv
Reg

.
Proposition 2. Fix ⇡,⇡D and assume r

�

� 0. Then it

holds that MSE (bv
Reg

(⇡, Dn
))  V

0,n+
V
1

+V
3,n

n . Further-

more, if � consist of normal distributions, MSE (bv
Reg

) �
V
1

n + 4b2n
�

1 +

V
1

n

�

+

2

n

P

a
⇡2

(a)
⇡D(a)�

2

�

(a)pa,n.

A full proof is given in Appendix A.6.

Here comes the main result of this section that characterizes
the MSE of REG in terms of the minimax optimal MSE.
Theorem 3 (Minimax Optimality of the Regression Esti-
mator). Let Dn = {(Ai, Ri)}i=1,...,n be an i.i.d. sample

from (⇡D,�). Then, the following hold:

(i) For any ⇡,⇡D 2 �K , �2 2 RK
+

, R
max

> 0, � 2
 �2,R

max

, n > 0 such that (2) holds,

MSE (bv
Reg

(⇡, Dn))  {C + 250} R⇤
n , (6)

where R⇤
n = R⇤

n(⇡,⇡D, R
max

,�2

) and C =

min(4K2, 50Kmaxa
r2
�

(a)

�2

�

(a)
).

(ii) A suboptimality factor of ⌦(K) in the above result is

unavoidable: For K > 2, there exists (⇡,⇡D) such

that for any n � 1,

MSE (bv
Reg

(⇡, Dn))

R⇤
n(⇡,⇡D, R

max

, 0)
� ne�2n/(K�1) .

In particular, for n =

K�1

2

, this ratio is at least

K�1

2e .

(iii) bv
Reg

is asymptotically minimax optimal:

lim sup

n!1

MSE (bv
Reg

(⇡, Dn))

R⇤
n(⇡,⇡D, R

max

,�2

)

 1 .

While in the proof we will upper bound V
3,n in terms of

O(V
1

), there remains a gap between the lower and upper
bounds in this proposition as the second term in the defini-
tion of V

0,n cannot be matched by any of the terms in the
lower bound. Nevertheless, the result shows that for R

max

large (or n large), the MSE of REG is upper bounded by a
constant multiple of the minimax MSE over  �2,R

max

.

However, there are two limitations with the first result in
the theorem. First, it only holds for restricted values of
R

max

(or n) when (2) holds. This is because the lower
bound on the minimax MSE expressed in terms of V

1

/n
only holds for a restricted range of values, which as ex-
plained is due to that when R

max

is small, V
1

/n cannot be
a lower bound. As a result, for such small values of R

max

,
REG cannot be “near-minimax” over the class  �2,R

max

.
As mentioned earlier, if one is given the prior information
that the problem instance belongs to  �2,R

max

, this can be
exploited by introducing a truncation. In the case of REG,
this could be done by truncating the estimates of the mean
reward to lie in [0, R

max

]. Although it would be interest-
ing to check whether with this modification REG becomes
near-minimax optimal, since here we are more interested
in the case when no upper bound on the range of rewards
is known, we do not pursue this direction. The second is-
sue with the first bound is that the constant multiplier of the
minimax optimal MSE that allows us to bound the MSE of
REG in terms of the minimax optimal MSE scales with the
number of actions K. In fact, the multiplier scales quadrat-
ically with K. In the second part of the theorem we show
that a linear scaling of the multiplier as a function of K is
inevitable: For n = ⇥(K), the MSE of REG will be at
least ⌦(K) times larger than the minimax optimal MSE.

Finally, the last part of the result shows that although for
small values of n, the MSE of REG can be significantly
larger than the minimax optimal MSE, asymptotically, as
n ! 1, the MSE of REG is optimal. This result also
shows that the minimax optimal MSE is asymptotically
equal to V

1

/n.

Proof sketch of Theorem 3. Full proofs for the three parts
are given in Appendix A.7. For the first part, we use Propo-
sition 2: MSE (bv

Reg

(⇡, Dn))  V
0,n +

V
1

+V
3,n

n . We then
prove that V

3,n  4V
1

and that V
0,n is upper bounded by

min

⇣

K2

maxa ⇡2

(a)r2
�

(a)pa,n,Kmaxa2A

⇣

r2
�

(a)
�2

(a)

⌘

V
1

n

⌘

.
We conclude by using Theorem 1 to upper bound each
term in the previous min by O(R⇤

n) provided that (2) holds.

For the second part, we choose ⇡(a) = ⇡D(a) =

1/K, r
�

(a) = 1. For K � 2, pa,n = (1 �
1/K)

n
= e�n log(1/(1�1/K))

= e�n log(1+1/(K�1)) �
e�n/(K�1). Hence, MSE (bv

Reg

) � (E [bv
Reg

� v⇡
�

])

2

=

(

P

a ⇡(a)r�(a)pa,n)
2 � e�2n/(K�1). Now consider IS.

Choosing �2

= 0, we have V
1

= 0 and so by Proposition 1,

sup

�:0r
�

1,�2

�

=0

MSE (bv
IS

) = sup

�:0r
�

1,�2

�

=0

V
2

n
 1

n
.

Hence, MSE(bv
Reg

)

R⇤
n(⇡,⇡D,1,0) � e�2n/(K�1)

sup

�:0r
�

1,�2

�

=0

MSE(bv
IS

)

�

ne�2n/(K�1).

Finally, for the last part, we derive a refined bound V
3,n =

O(V
1

p

log(n)/n) to derive that for any ⇡,⇡D, �2, � such
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Figure 1: nMSE of IS, WIS and REG in the first synthetic
experiment. IS(a) and WIS(a) are almost identical.

that �2

�

 �2, we have, for n large enough, MSE (bv
Reg

) 

V
0,n+

V
1

+V
3

n  ce�n/c
+

V
1

n

✓

1 + c
q

lnn
n

◆

, where c > 0

is a problem dependent constant. Combining this with (3)
of Theorem 1 gives the desired result.

Summary. The results so far can be summarized as fol-
lows: The asymptotic MSE of REG is V

1

/n, which is op-
timal in an asymptotic sense for any instance � 2  . The
REG estimator is minimax optimal up to a constant multi-
plier of O(K2

) starting from a well defined range of val-
ues for R

max

(or n). In this bound, the constant cannot
be reduced below ⌦(K), thus for an intermediate range of
sample sizes, REG will work worse as the number of ac-
tions K becomes large. No algorithm can achieve nontriv-
ial MSE in a worst-case sense for small value of n, i.e.,
when n = O(

p
K). The IS/WIS estimators are subopti-

mal, even in an asymptotic sense. Both IS and WIS will
have a positive MSE even when the variance of the reward
distribution for each action is zero. The MSE of IS is neg-
atively impacted by the variability of the scaled mean re-
ward. While WIS improves most of the time on IS, this re-
lies on the correlation between the importance weights and
the importance weights multiplied by the random reward.

2.5 Simulation Results

This subsection corroborates our analysis with simula-
tion results that empirically demonstrate the impact of key
quantities on the MSE of the three estimators. We will first
use a synthetic setup to demonstrate the behavior of various
estimators that is predicted by our analysis above. Then,
we use a real dataset to show such phenomena can indeed
happen in realistic problems. In all experiments, we repeat
the data-generation process (with ⇡D) 10, 000 times, and
compute the MSE of each estimator.

2.5.1 Synthetic Data

Two sets of synthetic experiments are done. All reward
distributions are normal distributions with �2

= 0.01 and
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Figure 2: nMSE of REG in the second synthetic experi-
ment. The curves correspond to different numbers of arms.

different means. We then plot normalized MSE (MSE mul-
tiplied by sample size n), or nMSE, against n.

The first experiment is to compare the finite-time as well
as asymptotic accuracy of bv

IS

, bv
WIS

and bv
Reg

. We choose
K = 10, r

�

(a) = a/K, ⇡(a) / a. Three choices of
⇡D are used: (a) ⇡D(a) / a, (b) ⇡D(a) = 1/K, and (c)
⇡D(a) / (K � a). These choices lead to increasing values
of V

2

(with V
1

approximately fixed).

As seen in Figure 1, the nMSE of bv
IS

remains constant as
n increases, equal to V

1

+V
2

, as predicted in Proposition 1.
The nMSE of bv

WIS

is much smaller and remains roughly
unchanged as well. In contrast, the nMSE of bv

Reg

is large
when n is small, because of the high bias, and then quickly
converges to the asymptotic minimax rate V

1

(Theorem 3,
part iii). As V

2

can be arbitrarily larger than V
1

, it fol-
lows that bv

Reg

is preferred over bv
IS

, as least for sufficiently
large n that is needed to drive the bias down.1 Furthermore,
although bv

WIS

can be most efficient when sample size is
small, it is inferior to bv

Reg

asymptotically.

The second experiment is to study how K affects the nMSE
of bv

Reg

. Here, we choose ⇡D = 1/K, r
�

(a) = a/K,
⇡(a) / a, and vary K 2 {50, 100, 200, 500, 1000}. As
Figure 2 shows, a larger K presents a greater challenge to
bv
Reg

, which is consistent with Theorem 3 (part i). Not
only does the maximum nMSE grow approximately lin-
early with K, the number of samples needed for nMSE to
start decreasing also scales roughly as K/2, perfectly con-
sistent with part ii of Theorem 3.

2.5.2 Real-world Data

We now examine the performance of these popular estima-
tors in a more realistic scenario, using actual data collected
on a major commercial search engine. When a query is
submitted, the search engine returns a SERP (Search En-
gine Result Page) that contains an ordered list of URLs. If

1It should be noted that in practice, after Dn is generated, it is
easy to quantify the bias of bvReg simply by identifying the set of
actions a with n(a) = 0.
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Figure 3: nMSE for query “facebook” (K = 2178). The
asymptotic rates V
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and V
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are provided for reference.

the page contains useful results, the user clicks on the page
more likely. For the purpose here, each query defines a
multi-armed bandit, where actions are the possible SERPs,
and the reward is 1 if the page is clicked on and 0 otherwise.

Over a long period of time, due to constant engineering ef-
forts to improve it, the search engine inevitably displays
diversified results — for the same query it may return dif-
ferent SERPs in different time. We first choose a few popu-
lar queries such as “facebook” and “gmail”. Then, for each
of them, we collect all SERPs that have been returned by
the search engine in a six-month period, together with their
frequencies (i.e., how many times they were returned) and
average click probabilities. To avoid unreliable click prob-
abilities, SERPs with low frequencies are removed.

For a fixed query, the data above can be used to build a
bandit model (the actions and each action’s Bernoulli re-
ward distribution). The sampling probability, ⇡D(a), is the
relative frequency of a in the data. Finally, the target pol-
icy ⇡ is one that chooses uniformly at random the 10 arms
with highest frequencies. The off-policy evaluation prob-
lem is to estimate the click rate of ⇡, using data collected
by ⇡D. The setup above is intended to mimic realistic sce-
narios where (good) target policies tend to choose similar
arms, and we are interested in estimating click rates from
search log, without running expensive online experiments.

Results for query “facebook” is given in Figure 3, where
nMSE of the three estimators are compared as sample
size increases. Similar to the synthetic experiments, IS is
asymptotically non-optimal. The nMSE of REG is relative
large with intermediate sample size, but decreases very fast
to the asymptotic minimax optimum as n grows. The ac-
curacy of WIS is particularly strong in this case, enjoying
a very small nMSE with small sample size and is compet-
itive with REG in the limit. However, for another popular
query, “gmail”, as shown in Figure 4, nMSE of WIS fails to
converge to the asymptotic minimax optimum. Therefore,
despite the popularity of WIS in empirical studies, it is not
necessarily the most accurate estimator.

Results for the other popular queries we tried are quali-
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Figure 4: nMSE for query “gmail” (K = 648). The asymp-
totic rates V

1

and V
1

+ V
2

are provided for reference.

tatively similar to one of the two shown here. They sug-
gest our theoretical findings do provide useful insights and
predictions for both finite-time and asymptotic accuracy of
these popular estimators in real-world applications.

Finally, it is worth mentioning that we also ran prelimi-
nary experiments with an estimator that simply combines
IS/WIS and REG using bv

Reg

+ bv
WIS

P

a:n(a)=0

⇡(a) (or
replace bv

WIS

with bv
IS

) to obtain the best of both worlds.
The results were encouraging but due to space limitation
they are not reported here. It also remains for future work
to study the theoretical properties of such estimators.

3 Extensions

In this section, we consider extensions of our previous re-
sults to contextual bandits and Markovian Decision Pro-
cesses, while implications to semi-supervised learning are
discussed in the supplementary material.

3.1 Contextual Bandits

The problem setup is as follows: In addition to the finite
action set A = {1, 2, . . . ,K}, we are also given a con-
text set X = {1, 2, . . . ,M}. A policy now is a map ⇡ :

X ! [0, 1]A such that for any x 2 X , ⇡(x) is a probability
distribution over the action space A. For notational conve-
nience, we will use ⇡(a|x) instead of ⇡(x)(a). The set of
policies over X and A will be denoted by ⇧(X ,A). The
process generating the data Dn

= {(Xi, Ai, Ri)}1in is
described by the following: (Xi, Ai, Ri) are independent
copies of (X,A,R), where X ⇠ µ(·), A ⇠ ⇡D(·|X) and
R ⇠ �(·|A,X) for some unknown family of distributions
{�(·|a, x)}a2A,x2X and known policy ⇡D 2 ⇧(X ,A) and
context distribution µ. For simplicity, we fix R

max

= 1.

We are also given a known target policy ⇡ 2
⇧(X ,A) and want to estimate its value, v⇡,µ

�

:=

EX⇠µ,A⇠⇡(·|X),R⇠�(·|A,X)

[R] based on the knowledge of
Dn, ⇡D, µ and ⇡, where the quality of an estimate bv
constructed based on Dn (and ⇡,⇡D, µ) is measured by
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its mean squared error, MSE (bv) := E
⇥

(bv � v⇡,µ
�

)

2

⇤

,
just like in the case of contextless bandits. Let
�2

�

(x, a) = V(R) for R ⇠ �(·|x, a), x 2 X , a 2
A. An estimator A can be considered as a function
that maps (µ,⇡,⇡D, Dn

) to an estimate of v⇡,µ
�

, denoted
bvA(µ,⇡,⇡D, Dn

). Fix �2

:= (�2

(x, a))x2X ,a2A. The
minimax optimal risk subject to �2

�

(x, a)  �2

(x, a) for
all x 2 X , a 2 A is defined by R⇤

n(µ,⇡,⇡D,�2

) :=

infA sup

�:�2

�

�2

E
⇥

(bvA(µ,⇡,⇡D, Dn
)� v⇡,µ

�

)

2

⇤

.

The main observation is that the estimation problem for the
contextual case can actually be reduced to the contextless
bandit case by treating the context-action pairs as “actions”
belonging to the product space X⇥A. For any policy ⇡, by
slightly abusing notation, let (µ ⌦ ⇡)(x, a) = µ(x)⇡(a|x)
be the joint distribution of (X,A) when X ⇠ µ(·), A ⇠
⇡(·|X). (We also let µ⌦ ⇡(B) =

P

(x,a)2B(µ⌦ ⇡)(x, a)
for any B ⇢ X ⇥ A.) This way, we can map any contex-
tual policy evaluation problem defined by µ,⇡D, ⇡, � and a
sample size n into a contextless policy evaluation problem
defined by µ⌦ ⇡D, µ⌦ ⇡, � with action set X ⇥A.

Thus all results reported in previous sections apply to this
contextual bandit setting (see Theorem 5 of Appendix B).

3.2 Markov Decision Processes

The results in Section 2 can also be naturally extended to
fixed-horizon, finite Markov decision processes (MDPs).
An MDP is described by a tuple M = hX ,A, P,�, ⌫, Hi,
where X = {1, . . . , N} is the set of states, A =

{1, . . . ,K} the set of actions, P the transition kernel,
� : X ⇥ A 7! R the reward function, ⌫ the start-state
distribution, and H the horizon. A policy ⇡ : X 7! [0, 1]K

maps states to distributions over actions, and we use ⇡(a|x)
to denote the probability of choosing action a in state x.
Given a policy ⇡ 2 ⇧(X ,A), a trajectory of length H ,
denoted T = (X,A,R) (for X 2 XH , A 2 AH , and
R 2 RH ), is generated as follows: X(1) 2 ⌫(·); for h 2
{1, . . . , H}, A(h) ⇠ ⇡(·|X(h)), R(h) ⇠ �(·|X

(h), A(h)),
and X(h + 1) ⇠ P (·|X

(h), A(h)). The policy value is de-
fined by v⇡

�

:= ET [
PH

h=1

R(h)]. For simplicity, we again
assume R

max

= 1. The off-policy evaluation problem is
to estimate v⇡

�

from data Dn
= {Tt}1tn, where each

trajectory Tt is independently generated by an exploration
policy ⇡D 2 ⇧(X ,A). We assume an unknown reward
distribution �; other quantities including ⌫, P , H , ⇡, and
⇡D are all known. The quality of an estimate bv is measured
by its MSE: MSE (bv) :=

⇥

(bv � v⇡
�

)

2

⇤

.

By considering a length-H trajectory of state-actions as an
“action”, one can apply all the results from the previous
sections to this setting (see Theorem 6 of Appendix C).

Finally, us note that the exponential dependence of the min-
imax risk on the horizon H is unavoidable. An exam-
ple is the “combination lock” MDP with N states X =

{1, . . . , N} and K = 2 actions A = {L,R}; the start state
is x⇤ = 1. In any state x, action L takes the learner back to
the initial state x⇤, while action R takes the learner to state
x+ 1. Assume reward is always 0 except in state N where
it can be 0 or R

max

. It is easy to verify that, if there exists
constant p⇤ such that p⇤  ⇡D(L|x) for all x, then it takes
exponentially many steps to reach state N from x⇤ under
policy ⇡D. Consequently, it requires at least exponentially
many trajectories to evaluate a policy ⇡ that always takes
action R, no matter what evaluation algorithm is used.

4 Conclusions

We have studied the fundamental problem of off-policy
evaluation. We focused on the case when there is only one
state, also known as the problem of off-policy evaluation
problem in multi-armed bandits. Despite the simplicity of
this problem, we found that it has a surprisingly rich struc-
ture. Our paper is best viewed as making the first steps
towards exploring this structure.

In particular, we proved new results that reveal the weak-
nesses of both the simple “importance sampling” (IS) and
its more sophisticated weighted (WIS) version. These are
confirmed empirically on both synthetic and real-world
data. We have not found such results formally proved in the
literature, despite the popularity of these estimators. We
also considered another estimator, REG, which estimates
the mean reward for each action. Our analysis indicates
that REG has different qualities. While it less exposed to
the magnitude of importance ratios, it may suffer in the low
data regime (as compared to an ideal, optimal estimator),
which may happen in practice often when the number of
actions is large. This was also confirmed by the experi-
ments. In Section 2.5.2 we also proposed an estimator that
combines IS/WIS and REG to merge their strengths, but
it remains for future work to explore the properties of this
estimator. Another interesting problem is to design near-
minimax estimators for the case when a bound on the mean
reward function is known (the above methods do not use
this knowledge even if available).

Finally, in the paper, we focused on the simplest context-
less, finite setting, and showed that our results can be ex-
tended to more complex settings like contextual bandits and
MDPs. Under additional regularity assumptions, the off-
policy value estimation problem can be solved more effi-
ciently. Studying such structures and corresponding mini-
max estimators is another interesting future direction.
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