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Abstract

We study the use ofery sparse random projec-
tions[12, 11] for compressed sensing (sparse sig-
nal recovery) when the nonzero coordinates of
signals can be either positive or negative. In our
setting, the entries of a Gaussian design matrix
are randomly sparsified so that only a very small
fraction of entries are nonzero. Our proposed de-
coding algorithm is simple and efficient in that
the major cost is one linear scan of the coordi-
nates. Using our proposétle estimator”, we
are able to recover & -sparse signal of length
N usingl.551eK log K /0 measurements (where

60 < 0.05 is the confidence) in one scan. The
practical performance of our method, however,
can be substantially better than this bound. The
Gaussian design assumption is not essential al-
though it simplifies the analysis.

Prior studies have shown that existing one-scan
(or roughly one-scan) recovery algorithms us-
ing sparse matrices would require substantially
(e.g., one order of magnitude) more measure-
ments than L1 decoding by linear programming,
when the nonzero coordinates of signals can be
either negative or positive. In this paper, fol-
lowing a well-known experimental setup [1], we
show that, at the same number of measurements,
the recovery accuracies of our proposed method
are similar to the standard L1 decoding.
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The goal of compressed sensing is to recover a sparse Sig-
nalx € R from a small number of non-adaptive linear
measurements = xS, whereS ¢ RV*M s the “de-
sign” matrix (or “sensing” matrix). Typically, the signal

x is assumed to bé& -sparse (i.e./X nonzero entries) and
neither the magnitudes nor locations of the nonzero coor-
dinates are known. Many streaming/database applications
can be naturally formulated as compressed sensing prob-
lems [4, 6, 16]. The idea of compressed sensing may be
traced back to many prior papers, for example [9, 7].

In the literature of compressed sensing, entries of the de-
sign matrixS are often sampled i.i.d. from a Gaussian dis-
tribution (or Gaussian-like distribution, e.g., a distrilon

with a finite second moment). Well-known recovery algo-
rithms are often based on linear programming (LP) (e.g.,
basis pursuif5] or L1 decoding) or greedy methods such
as orthogonal matching pursuit (OMP) [18, 15, 20, 19]. In
general, L1 decoding is computationally expensive. OMP
is often more efficient than L1 decoding but it can still be
expensive especially wheki is large.

1.1 Compressed Sensing with Very Sparse Random
Projections

The process of collecting measurements, ye= xS, is
often called “random projections”. [12, 11] studied thedde
of “very sparse random projections” by randomly sparsify-
ing the sensing matri® so that only a very small fraction

of the entries can be nonzero. In this paper, we will con-
tinue to investigate the idea of very sparse random projec-
tions in the context of compressed sensing.

Compressed Sensing (O8) 3] has become an important Qur work is related to “sparse recovery with sparse ma-
and popular topic in several fields, including Computer Sci-trices” [2, 10, 17], for example, the SMSarse Match-

ing Pursui) algorithm [2]. There is a well-known wiki

Appearing in Proceedings of th&'" International Conference on page [1], which summarizes the comparisons of L1 decod-
Artificial Intelligence and Statistics (AISTATS) 2015, SBiego,

CAthéJSA- JMLR: W&CP volume 38. Copyright 2015 by the shown that, in order to achieve similar recovery accuracies
au IS.

ing with count-min sketch [6] and SMP. Their results have

count-min sketch needs abol@l to 15 times more mea-
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surements than L1 decoding and SMP needs about half dfote thats;; has certain probability of being zero. If
the measurements of count-min sketch. ni; = 0, then — = z;. Thus, givenM mea-

. . . : ST Iy =1
In comparison, our experimental section (e.g., Figure 2xyrements, ifi; = 0 ﬁappens (at leastyvice (i.e., atie
demonstrates that the proposed method can be as accurgigcurs), we can exactly identify the value This key ob-

as L1 decoding, at the same number of measurements. Th@rvation motivates our proposal of the tie estimator.

major cost of our method is one linear scan of the coordi- o ) )
nates. like count-min sketch. Another key observation is that,if = 0, then we will not

see a nonzero tie (i.e., the probability of nonzero tie is 0).
Our work is also inspired by the prior work arery sparse  This is due to the fact that we use a Gaussian design ma-
compressed countinfl4], which was designed for re- trix, which excludes unwanted ties. It is also clear that the
covering nonnegative sparse signals, based on maximallyzaussian assumption is not needed, as long;dsllows a
skewed stable random projections. The method proposegbntinuous distribution. In this paper we focus on Gaussian

in [14] is much simpler than our proposed estimator in thiSdesign because it s|mp||f|es some ana|ysis_

paper. In addition, the use of heavy-tailed design makes the ) ) o _
method in [14] very resilient to measurement noise. Never 0 @n extent, the tie estimator studied in this paper might be

theless, the work of [14] is restricted to nonnegative signa Viewed as a special case of tgap estimatof13], i.e., the
gap estimator with zero gap. The work of [13] was based

on extremely heavy-tailed stable random projections. In
our study, we focus on Gaussian (or Gaussian-like) designs

In this paper, our procedure for compressed sensing firs¢hich might be more commonly used.
collectsM non-adaptive linear measurements

1.2 Linear Measurementsfrom Spar se Projections

1.4 TheAbsolute Minimum Estimator

N
Yi= in [sijrigl J=12..M (1) |ttumns out that, if we just need to detect whethgr= 0,
=1 the task is easier than estimating the value offor a par-
Here, s;; is the (i, j)-th entry of the design matrix with ticular coordinate. Given M measurements, if;; = 0
sij ~ N(0,1) i.i.d. Instead of using a dense design matrix, happens (at least)nce, we will be able to determine
we randomly sparsify1 — ~)-fraction of the entries of the whetherz; = 0. Note that unlike the tie estimator, this

design matrix to be zero, i.e., estimator will generate “false positives”. In other worifls,
_ we cannot be certain that = 0, then it is still possible
.. ) 1 withprob.y iid 2) thate; = 0indeed.
* 0 with prob.1 —~ o

From the practical perspective, at a particular coordinate
Note that any;; andr;; are also independent. it is preferable to first detect whether = 0 because that
Our proposed decoding scheme utilizes two simple estimaV-VOUId require_ fewer measurements than using the tie esti-
tors: (i) thetie estimatorand (ii) theabsolute minimum mator. Later in the paper, we can see that the performance

estimator For convenience, we will theoretically analyze can be_poteﬂtlally furltlr;:tr)lmlproveq py amore general esti-
them separately. In practice, these two estimators shoulfator I.e., the so-ca solute minimum estimator

be combined to form a powerful decoding framework. . . Yj
Ziminy = Zit, Wheret = argmin|z ;|, 2z =
1<G<M SijTij
1.3 TheTieEstimator (5)

The tie estimator is developed aCCOfding to the fO”OWingWe will also introduce a threshokdand provide a theoret-

interesting observation on thatio Statisticss_yi -. Condi- ical ana|ysis of the event; in - > ¢. Whene = 0. it
. . ij i 5 s il I
tional onr;; = 1, we can write becomes the “zero-detection” algorithm. Our analysis will
N show that by using > 0 we can exploit the prior knowl-
Yi _ Dop—1 TtStTtj 3) edge we have about the signal and improve the accuracy.
SijTij rij=1 Sij
N - .
SO sty 12 S 1.5 Combining Two Estimators
=i+ ———— =i + (1;j) S5 . . . .
Sij 1 For the convenience of theoretical analysis, we will sepa-
whereS;, S» ~ N(0,1), i.i.d., and ratgly analyze the tie estimator and the ab§olute minimum
estimator. However, we recommend a mixed procedure.
N N That s, we first run the absolute minimum estimator in one
2 2 . . .
i = > |wryg P = |zl ry (4)  scan of the coordinates,= 1 to N. Then we run the tie
t#1 71 estimator only on those coordinates which are possibly not
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zero. Recall that the absolute minimum estimator may genworst case bound (9) is convenient for theoretical analysis
erate false positives. In fact, it directly leads to theK log N complexity bound.

As an option, we can iterate this process for several rounds.
After one iteration (i.e., the absolute minimum estimatorProof of Lemma 1: For convenience, we define the
followed by the tie estimator), there might be a set of co-setT; = {j, 1 < j < M, r;; = 1}.

ordinates for which we cannot decide their values. We can
compute the residuals and use them as measurements for
the next iteration. Typically, a few (e.g., 3 or 4) iteration -B (Pr (
are sufficient and the major computational cost is comput-

ing the absolute minimum estimator in the first iteration.

Pr (|fi‘i,min 7| > €, = 0)

Y5 >e€, x; =0, jET|T>>

Sij

(12> o)
2 Analysisof the Absolute Minimum "i;

appee ()]
i§
(

JeT;
M
77;‘13'/2
9 M
i e
1 'yE{;tan (—1/2> }]
U

_EH

JET;

The important task is to analyze the false positive probabil

ity: Pr (|Z; min,~| > €, 2; = 0) for some chosen threshold —E
e > 0. Later we will see that is irrelevant if we only care

about the worst case.

Recall that, conditional on;; = 1, we can expre = —

i+ (:7)"* 22, whereSy, S, ~ N(0,1) ii.d. andn” is
defmed in (4) tis known that,/.S; follows the standard

Cauchy distribution. Therefore, =
pr (|22
Sy By noticing thatf(z) = tan—! % (wherea > 0), is a
convex function oft > 0, we obtain an upper bound by

We are ready to present the Lemma about the false positive€NSen's inequality.

< t) = %tan_l(t), t>0 (6)

probability, including a practically useful data-depente Pr (|£i,min~| > €, z; =0)
bound, as well as a data-independent bound (which is con- - M
venient for worst-case analysis). The proof heavily wtiz —|1-~E 2 tan—L €
(6) and also follows some ideas in [14]. 7r Z,lj/ 2
r M
2.1 TheFalse Positive Probability <|1-+ {2 tan~! ( €
> = Eni; 1/2
Lemma 1 Data-dependent bound: N (Bis) M
N 2
Pr (|Zimin,y| > €,2; =0) =]1—v{ =tan"! ¢
M ™ 2\ /2
2 € L (7 Zt;ﬁi Tt )
1—yE<{ =tan™? -7 (7 _ M
s /2
Nij |- z 1 €
= Y tan ———
i ™ VY2 T

M
2 €
< 1—v{—tan_1{7}}] (8)
[ g Yap a7 We can further obtain a worst case bound as follows. Note

. thatn;; has some mass at 0.
Data-independent (worst case) bound: i

Pr (|1A7i_’min’»y| > €, 1 = 0)

M

PI‘ (|ii,7nin,'y| > €,T; = O) S |:1 - (1 - ’Y)K:| (9) [ € M

= 1—WE{—tan 1(%)}]
Remark: The data-dependent bound (7) and (8) can _ N M
be numerically evaluated if we have information about the 1~ { Z tan—1 ( )} Pr(n; = 0)}
data. The bound will help us understand why empirically L ™ 0
the performance of our proposed algorithm is substantially ~[_ (1- )K} M 0
better than the worst-case bound. On the other hand, the R 7

IN

619



Compressed Sensing with Very Spar se Gaussian Random Projections

2.2 TheFalse Negative Probability special case of “ternary” signals, i.e;, € {—1,0,1}. The

. . _ exact expectation (7), i.e.,
Itis also necessary to control the false negative protigbili

Pr (|Zi min~| <€, z; # 0). See the proof in Appendix. Pr (|2, min,| > €, x; =0)

M
2
m
Pr (|ji,min,'y| <e€ x; # 0) =1- (20) M
1 fe+m\ 1 (wi—e\ ] which,inthe case of tenary data, becomes
1-— ’YE ; tan ,’,IIT — ; tan W N
) )
9 1 M Nij = Z |2¢[*rj ~ Binomial (K,~) (14)
<1—|1—- —ytan™ 11 i=1
< { 2y tan ] (11)

For convenience, we write

> €, lZZO)

Remark: Again, if we know information about the data, .
we might be able to numerically evaluate the exact false Pr (|Zimin.»

negative probability (10). The (loose) upper bound (11) 1 9 . M

is also insightful because it means this probabity0 if =|1- 74 (vK)E {— tan~! (T) H

e — 0. Note that in Lemma 1, the worst case bound is g M5

actually independent of. This implies that, if we only 1 M

care about the worst case, we do not have to worry about = {1 - HE K, 7)] (15)
the false positive probability since we can choese 0.

where
2.3 TheWorst Case Complexity Bound H(e,K,7v) = (YK)E {2 tan~! (%) } . (16)
™ A
From the worst-case false positive probability bound: Z ~ Binomial (K, ~)

M
. o < _ Y ¢
Pr('%’m”’”‘ > 6 =0) < [1 7 =) I by. which can be easily computed numerically for givenk’,
choosingy = 1/K (ande — 0), we can easily obtain  anq s, In order forPr (|i; minn| > €, x; =0) < 6 for
the following Theorem regarding the sample complexity of 5 ; we should have T

only using the absolute minimum estimator, by solving for

KM K

Theorem 1 Using the absolute minimum estimator and ¢ \yould be much more convenient if we do not have to
v = 1/K, for perfect support recovery (with probability oy ahout all combinations of and K. In fact, we can

> 1-19), itsuffices to use resort to the well-studiepoisson approximatiohy consid-
ering\ = vK and definingZ ~ Poisson(\) and
le 10gN1/5 (12) (M)
08 1-+(1-4)" h(e, \)
~ 2
cKlog N/o (13) =\F {— tan~! (L>} , Z ~ Poisson(\) (18)
U V7
measurements. - .
2 € e "\
: L - :)\ {_ tan71 <_> } R
Remark: The terrTw 7=/ log N L appr.oaches k; T VE k!
e = 2.7183... very quickly. For example, the difference > (9 . \K
is only 0.1 whenk = 10. =Xe N e {— tan ™! (—) } - 19
y ; - 7)1 w (19)

3 Analysisof the Absolute Minimum _ _ _
Estimator on Ternary Signals Figure 1 pIotsH(QlKﬂ) and h(el,)\) to confirm that the Pois-
son approximation is very accurate (as one would expect).
Although the complexity result in Theorem 1 can be the-At 7 = 1/K (i.e., A = 1), the two termsz—— and
oretically exciting, we would like to better understand 5.5y are upper bounded by However, wher is not too
why empirically we only need substantially fewer measure-small, the constant can be conservative. Basically, the
ments. In this section, for convenience, we consider thehoice ofe reflects the level of prior information about the
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signal. If the signals are significantly away from 0, then4 Analysisof the Absolute Minimum

we can choose a largeand hence the algorithm would re- Estimator with M easurement Noise
quire less measurements. For example, if we know the sig-

nals are ternary, we can perhaps choose 0.5 or larger.  \We can also analyze the absolute minimum estimator when
Also, we can notice thay = 1/K is not necessarily the measurement noise is present, i.e.,

optimum choice for a given. In general, the performance
is not too sensitive to the choiee= A\/K as long ag is
not too small and the is reasonably large. This might be

N
yj =y +n; = Z x; [sij7i5] + 1y, (20)
. =1
good news for practitioners. '

wheren; ~ N(0,0%), j=1,2,...,M

Again, we compute the ratio statistic

4 yi +ny _ il misyry g
SijTij |y . —1 Sij
3.5 i
N
i TSty TNy - S
3» —z; + Zt;ﬁ totglty J - + (mj)l/z o2 (21)
=== AN g . Sij Sl
s L . . X P .
= 2.5 whereS;, Se ~ N(0,1),i.i.d., and
T 2f N N
= 1.5} i =Y oy + 02 = |l ry +0° (22)
K =100 t#i t#i
1 # #
0.5 —Exact Lemma 3 Data-dependent bound:
" |- -Poisson £=10 Pr (& min| > €25 = 0)
10° 107 107 10° 2 < \\1"
Yy ™ 7]
M
Y oo Ny < [1 7{2tan_1{ ‘ }H (24)
=0. €=0. > - -
35 * ™ (02 +7 Y, a3)"
3l £=0.2) Data-independent bound:
25 T . Pr (| miny| > €, i = 0)
e \ 7 £:O.37 9 . M
S 2 £=0.4 < [1 - {; tan ™! (;)} (1- V)K} (25)
1.5} =0
Data-independent complexity boundWith~ = 1/K, in
1; . order to achievePr (|Z; ymin~| > €, x; = 0) < ¢ forall 4,
I e=1.0 it suffices to use
0.5
0 M>e {3 tan—! (5) } Klog N/§ (26)
m g

0 05 1 15 2 25 3 35 4
}\ measurements.

. L ) 1 Proof of Lemma 3:
Figure 1: Upper Panel: yiicveec) (solid) andm

(dashed), forx = 100 ande € {0.01,0.1,0.2,0.5,1.0}. Pr (|Zi,min| > € 2; = 0)
This plot confirms that the Poisson approximation is indeed r 9 . M
very accurate (as expected). =|1—~F {— tan ™! (W) H
Bottom Panel: Poisson approximatioqb(elT) for e € L g U
{0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. In both r 9 ] M
panels, we use the horizontal line to indicate 2.7183.... <|1-7v {; tan~! <~71/2> H
Wheny = 1/K, i.e., A = 1, both 5— and ;15 are I (E7i5)
upper bounded by. i 9 . M
= 1—7{—tan_1{ 1/2}}]
i T (0% +732a7)
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which is still expressed in terms of the summary of the sig-lt is easy to see that this choiceif suffices for recovering
nal. To obtain a data-independent bound, we have the entire signal, not just the nonzero entries. This is due
to the nice property of the tie estimator, which has no false
" positives. That is, if there is a tie, we know for sure that it

2 € reveals the true value of the coordinate. For any zero coor-
1—9F {; tan~! <T/2> }]

Pr(|:i:i,min,,y| > €, T = 0)

dinate, either there is no tie or the tie is zero. Therefare, i
suffices to choos@/ to ensure all the nonzero coordinates
are recovered.

)

2 € M
< {1 - {—tan_l (—)} (1- W)K}

Tr O— . B .
Theorem 2 Using the tie estimator ang = % for perfect
signal recovery (with probability>- 1 — ), it suffices to
_ _ . choose the number of measurements to be
5 Analysisof the Tie Estimator

M >1.551eKlog K/6, § <0.05 (30)

To construct théie estimatoywe first compute;; = Y

SijTij

which is anyway needed for the absolute minimum estima- S
tor. At eachi of interest, we sort thosa/ z,; values and ~Proof of Theorem 2:  The recovery task is trivial when

. .. . K—-1
examine the order statistics, 1y < 2 (2) < ... < zi(a), K = 1. ConsiderkK > 2andp = % (1—- %)
and their consecutive differences, ;1) — z; ;) forj = e, p < 1/4. We need to choosel/ such that
1,2,...,M — 1. Then we have K((1=p)™+ Mp(1—p)M-1) < 4. Let My be such

. My P _ logé/K __ logK/é
Fitiery = 20 1f 20 — Gy = 0@ndlz, | £ oo MAKL=p)T =0 18, My = 555 = jo 7

Suppose we choosd = (1 + a)M;. Then.

Recall K ((1 —p) M (1 4 @) Mip(1 - P)(Ho‘)Mrl)
N N o
i it TtSTt
i | Mty STt ea o) s K8 07K
8ijTij |p;=1 Sij Sij log— 1-»p
1/2 S2 _
=z; + (1i5) S, Therefore, we need to find theso that
whereSy, Sy ~ N(0,1), iid., andn; = S0, |2:|* 7, T, K, 0) = (6/K)" + (1 +a)log(K/6) (6/K)" _
which has a certain probability of being zero.nlf = 0, Y log(1—p)(1—1/p) —
v, _ . . .
then -~ oy T To reliably estimate the magnitude Sincep < 1/4, we havea%log(l S - 1/p) =

of z;, we neédyij = 0'to happen more than once, i.e., there (log(1 —p) +p) /p> < 0. Because is decreasing irk,
should be a tie. Note that we know thatm is decreasing in. Also,
Pr(ny = 0,7 = 1) = y1-mfif ;=0 note that
771] — Ys iy — - ’Y(l _’y)[(,l |f T # 0 a
@7) o Nog(K/6) (5/K)") = (6/K)" /K (1 — alog K/5)

For a given nonzero coordinatewe would like to have 9 llog(K/d) (0/K)*] = (6/K)* /6 (—1 + alog K/6)
n:;; = 0 more than once amont/ measurements. This is

a binomial problem, and the error probability is simply As we considefs > 2 ands < 0.05, we know that, as long

X . Ko11M g 35> 1/log 5% = 1/log40, the termlog K /5 (6/K)*

{ —7(1=7) } (28) is increasing i and decreasing iK’. Combining the cal-
K1 K_1]M-1 culations, we know thdf' (4, K, «) is decreasing ik’ and

+M (7 1=7) ) [1 (1 =) increasing ind, for a > 1/log40. It is thus suffices to

_ . considers = 0.05 and K’ = 2. Becausel'(0.05,2, «) is
Suppose we use = 1/K. To ensure this error is smaller decreasing irv, we only need to numerically find theso
thang for all K nonzero coordinates, it suffices to choosethat7'(0.05, 2, a) = 1, which happens to b&5508...
M so that

o Therefore, it suffices to choos&/ = 1.551M; =
K [1 - 7)1@1} (29) 1.55110g1‘)g—K1/‘S measurements. It remains to show
1,L(1,L)K_l
M—1 K K
KM (1= ) 1oy =) ] <s that g < e. Duetolog l >

K—1
1 1
-4 (1-4)
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V0 <z<1,we have

Klog 1— (11L)K—1
K
- 1 1
=75 K—1
K&(-%)

Readers probably have noticed that the tie estimator could
be sensitive to measurement noises. It appears that cer-
tain important applications such as databases and networks
mainly focus on the noiseless case. It is nevertheless an
interesting problem to study estimators which are more ro-
bust to measurement noises. If possible, we can use the
heavy-tailed design [13]. If we must use Gaussian (or
Gaussian-like) designs, we might consider modifying the
tie estimator by allowing some (nonzero) gaps. We leave it
for future work to systematically analyze this more gener-
alized estimator.

6 An Experimental Study

Compressed sensing is an important problem of broad in-
terest, and itis crucial to experimentally verify that thep
posed method performs well as predicted by our theoreti-
cal analysis. In this study, we closely follow the experi-
mental setting as in the well-known wiki page (see [1]),
which compared count-min sketch, SMP, and L1 decoding,
on ternary (i.e.{—1,0,1}) signals. In particular, the re-
sults for N = 20000 are available for all three algorithms.
Their results have shown that, in order to achieve similar
recovery accuracies, count-min sketch needs aboub

15 times more measurements than L1 decoding and SMP
only needs about half of the measurements of count-min
sketch.

As shown in the success probability contour plotin Figure 2
(for v = 1/K), the accuracy of our proposed method is
similar to the accuracy of L1 decoding (based on [1]). This
should be exciting because, at the same number of mea-
surements, the decoding cost of our proposed algorithm is
roughly the same as count-min sketch.

7 Conclusion

Compressed sensing has become a popular and impor-

1000

9007
800
7007
6007
5007
4007
300}

200

B

1000

900
800
7007
6007
5007
4007
3007
2007

18%

1000

9007
800
7001
6007
5007
4007
300¢

2007

B

1000

N =:2000

s
10 20 30 40 50 60 70 80 90 100

N-=20000

/
/r

//—0.0
0 20 30 40 50 60 70 80 90 100
K

N =200000

/
P /

10 20 30 40 50 60 70 80 90 100
K

\

900y
8007
700y
600
5007
4007
3007

N =:2000000

581

/Q /—0
0 20 30 40 50 60 70 80 90 100
K

tant research topic. Using a sparse design matrix has Rigure 2: Contour plot of the empirical success proba-
significant advantage over dense design. For example, ibilities of our proposed method, fa¥ = 2000, 20000,
sensing networks, we can replace a dense constellation @60000, and2000000. For each combinatiofV, M, K),
sensors by a randomly sparsified one, which may resulive repeated the simulation 100 times. Bor= 20000, we
in substantially saving of sensing hardware and labokan see from the wiki page [1] that our prosed method pro-
costs. In this paper, we show another advantage from theides accurate recovery results compared to L1 decoding.
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computational perspective of the decoding step. It turns
out that using a very sparse design matrix can lead to a
computationally very efficient recovery algorithm without

losing accuracies (compared to L1 decoding).
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Appendix Proof of Lemma 2:
Pr (|i'i,’min,'y| <e€x; # O)

=1-Pr (‘fii,min,'y‘ > €, 7é 0)

Yils xﬁéo,jenm))

i (o |

(]

S
=1-F H {Pr < 4 +17i1j/25_i > €,x; £ 0)}
JET;
1 [ €—x 1 [ e+t
:1—EH I—Etan (T>—;tan < 172
JET; i i

—1-B{[1 - B{A,})"™"}
=1—[1—y+7{1-E{A5}}]"
=1—[1—yE{4; "
e+x;

/2
i

> —Ltan™! (‘f]lj/f)
Note thattan =1 (z 4 ¢) — tan~!(z — ¢) < 2tan"'e < 2,
for e > 0. Therefore,

wered;; = < tan™! (

Pr(|i'i,min,'y| <e€x; # O) =1—

1
lny{

1 [ e+ 1 _1<a:¢—e

—— | — —tan —
1/2 1/2
(m/ ) i m)

ij
9 M
<1- {1 — Zytan~? e]
0

—tan—
s

which approaches zero as- 0.
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