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Abstract

We study the use ofvery sparse random projec-
tions[12, 11] for compressed sensing (sparse sig-
nal recovery) when the nonzero coordinates of
signals can be either positive or negative. In our
setting, the entries of a Gaussian design matrix
are randomly sparsified so that only a very small
fraction of entries are nonzero. Our proposed de-
coding algorithm is simple and efficient in that
the major cost is one linear scan of the coordi-
nates. Using our proposed“tie estimator”, we
are able to recover aK-sparse signal of length
N using1.551eK logK/δ measurements (where
δ ≤ 0.05 is the confidence) in one scan. The
practical performance of our method, however,
can be substantially better than this bound. The
Gaussian design assumption is not essential al-
though it simplifies the analysis.

Prior studies have shown that existing one-scan
(or roughly one-scan) recovery algorithms us-
ing sparse matrices would require substantially
(e.g., one order of magnitude) more measure-
ments than L1 decoding by linear programming,
when the nonzero coordinates of signals can be
either negative or positive. In this paper, fol-
lowing a well-known experimental setup [1], we
show that, at the same number of measurements,
the recovery accuracies of our proposed method
are similar to the standard L1 decoding.

1 Introduction

Compressed Sensing (CS)[8, 3] has become an important
and popular topic in several fields, including Computer Sci-
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ence, Engineering, Applied Mathematics, and Statistics.
The goal of compressed sensing is to recover a sparse sig-
nalx ∈ R

1×N from a small number of non-adaptive linear
measurementsy = xS, whereS ∈ R

N×M is the “de-
sign” matrix (or “sensing” matrix). Typically, the signal
x is assumed to beK-sparse (i.e.,K nonzero entries) and
neither the magnitudes nor locations of the nonzero coor-
dinates are known. Many streaming/database applications
can be naturally formulated as compressed sensing prob-
lems [4, 6, 16]. The idea of compressed sensing may be
traced back to many prior papers, for example [9, 7].

In the literature of compressed sensing, entries of the de-
sign matrixS are often sampled i.i.d. from a Gaussian dis-
tribution (or Gaussian-like distribution, e.g., a distribution
with a finite second moment). Well-known recovery algo-
rithms are often based on linear programming (LP) (e.g.,
basis pursuit[5] or L1 decoding) or greedy methods such
as orthogonal matching pursuit (OMP) [18, 15, 20, 19]. In
general, L1 decoding is computationally expensive. OMP
is often more efficient than L1 decoding but it can still be
expensive especially whenK is large.

1.1 Compressed Sensing with Very Sparse Random
Projections

The process of collecting measurements, i.e.,y = xS, is
often called “random projections”. [12, 11] studied the idea
of “very sparse random projections” by randomly sparsify-
ing the sensing matrixS so that only a very small fraction
of the entries can be nonzero. In this paper, we will con-
tinue to investigate the idea of very sparse random projec-
tions in the context of compressed sensing.

Our work is related to “sparse recovery with sparse ma-
trices” [2, 10, 17], for example, the SMP (Sparse Match-
ing Pursuit) algorithm [2]. There is a well-known wiki
page [1], which summarizes the comparisons of L1 decod-
ing with count-min sketch [6] and SMP. Their results have
shown that, in order to achieve similar recovery accuracies,
count-min sketch needs about10 to 15 times more mea-
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surements than L1 decoding and SMP needs about half of
the measurements of count-min sketch.

In comparison, our experimental section (e.g., Figure 2)
demonstrates that the proposed method can be as accurate
as L1 decoding, at the same number of measurements. The
major cost of our method is one linear scan of the coordi-
nates, like count-min sketch.

Our work is also inspired by the prior work onvery sparse
compressed counting[14], which was designed for re-
covering nonnegative sparse signals, based on maximally-
skewed stable random projections. The method proposed
in [14] is much simpler than our proposed estimator in this
paper. In addition, the use of heavy-tailed design makes the
method in [14] very resilient to measurement noise. Never-
theless, the work of [14] is restricted to nonnegative signals.

1.2 Linear Measurements from Sparse Projections

In this paper, our procedure for compressed sensing first
collectsM non-adaptive linear measurements

yj =

N
∑

i=1

xi [sijrij ] , j = 1, 2, ...,M (1)

Here, sij is the (i, j)-th entry of the design matrix with
sij ∼ N(0, 1) i.i.d. Instead of using a dense design matrix,
we randomly sparsify(1− γ)-fraction of the entries of the
design matrix to be zero, i.e.,

rij =

{

1 with prob.γ
0 with prob.1− γ

i.i.d. (2)

Note that anysij andrij are also independent.

Our proposed decoding scheme utilizes two simple estima-
tors: (i) the tie estimatorand (ii) theabsolute minimum
estimator. For convenience, we will theoretically analyze
them separately. In practice, these two estimators should
be combined to form a powerful decoding framework.

1.3 The Tie Estimator

The tie estimator is developed according to the following
interesting observation on theratio statistics yj

sijrij
. Condi-

tional onrij = 1, we can write

yj
sijrij

∣

∣

∣

∣

rij=1

=

∑N
t=1 xtstjrtj

sij
(3)

=xi +

∑N
t6=i xtstjrtj

sij
= xi + (ηij)

1/2 S2

S1

whereS1, S2 ∼ N(0, 1), i.i.d., and

ηij =

N
∑

t6=i

|xtrtj |2 =

N
∑

t6=i

|xt|2 rtj (4)

Note thatηij has certain probability of being zero. If

ηij = 0, then yj

sijrij

∣

∣

∣

rij=1
= xi. Thus, givenM mea-

surements, ifηij = 0 happens (at least)twice (i.e., atie
occurs), we can exactly identify the valuexi. This key ob-
servation motivates our proposal of the tie estimator.

Another key observation is that, ifxi = 0, then we will not
see a nonzero tie (i.e., the probability of nonzero tie is 0).
This is due to the fact that we use a Gaussian design ma-
trix, which excludes unwanted ties. It is also clear that the
Gaussian assumption is not needed, as long assij follows a
continuous distribution. In this paper we focus on Gaussian
design because it simplifies some analysis.

To an extent, the tie estimator studied in this paper might be
viewed as a special case of thegap estimator[13], i.e., the
gap estimator with zero gap. The work of [13] was based
on extremely heavy-tailed stable random projections. In
our study, we focus on Gaussian (or Gaussian-like) designs
which might be more commonly used.

1.4 The Absolute Minimum Estimator

It turns out that, if we just need to detect whetherxi = 0,
the task is easier than estimating the value ofxi, for a par-
ticular coordinatei. GivenM measurements, ifηij = 0
happens (at least)once, we will be able to determine
whetherxi = 0. Note that unlike the tie estimator, this
estimator will generate “false positives”. In other words,if
we cannot be certain thatxi = 0, then it is still possible
thatxi = 0 indeed.

From the practical perspective, at a particular coordinatei,
it is preferable to first detect whetherxi = 0 because that
would require fewer measurements than using the tie esti-
mator. Later in the paper, we can see that the performance
can be potentially further improved by a more general esti-
mator, i.e., the so-calledabsolute minimum estimator:

x̂i,min,γ = zi,t, wheret = argmin
1≤j≤M

|zi,j|, zij =
yj

sijrij
(5)

We will also introduce a thresholdǫ and provide a theoret-
ical analysis of the event̂xi,min,γ ≥ ǫ. Whenǫ = 0, it
becomes the “zero-detection” algorithm. Our analysis will
show that by usingǫ > 0 we can exploit the prior knowl-
edge we have about the signal and improve the accuracy.

1.5 Combining Two Estimators

For the convenience of theoretical analysis, we will sepa-
rately analyze the tie estimator and the absolute minimum
estimator. However, we recommend a mixed procedure.
That is, we first run the absolute minimum estimator in one
scan of the coordinates,i = 1 to N . Then we run the tie
estimator only on those coordinates which are possibly not

618



Ping Li, Cun-Hui Zhang

zero. Recall that the absolute minimum estimator may gen-
erate false positives.

As an option, we can iterate this process for several rounds.
After one iteration (i.e., the absolute minimum estimator
followed by the tie estimator), there might be a set of co-
ordinates for which we cannot decide their values. We can
compute the residuals and use them as measurements for
the next iteration. Typically, a few (e.g., 3 or 4) iterations
are sufficient and the major computational cost is comput-
ing the absolute minimum estimator in the first iteration.

2 Analysis of the Absolute Minimum
Estimator

The important task is to analyze the false positive probabil-
ity: Pr (|x̂i,min,γ | > ǫ, xi = 0) for some chosen threshold
ǫ > 0. Later we will see thatǫ is irrelevant if we only care
about the worst case.

Recall that, conditional onrij = 1, we can expressyj

sijrij
=

xi + (ηij)
1/2 S2

S1

, whereS1, S2 ∼ N(0, 1) i.i.d. andηij is
defined in (4). It is known thatS2/S1 follows the standard
Cauchy distribution. Therefore,

Pr

(∣

∣

∣

∣

S2

S1

∣

∣

∣

∣

≤ t

)

=
2

π
tan−1(t), t > 0 (6)

We are ready to present the Lemma about the false positive
probability, including a practically useful data-dependent
bound, as well as a data-independent bound (which is con-
venient for worst-case analysis). The proof heavily utilizes
(6) and also follows some ideas in [14].

2.1 The False Positive Probability

Lemma 1 Data-dependent bound:

Pr (|x̂i,min,γ | > ǫ, xi = 0)

=

[

1− γE

{

2

π
tan−1

(

ǫ

η
1/2
ij

)}]M

(7)

≤
[

1− γ

{

2

π
tan−1

{

ǫ
√

γ
∑

t x
2
t

}}]M

(8)

Data-independent (worst case) bound:

Pr (|x̂i,min,γ | > ǫ, xi = 0) ≤
[

1− γ (1− γ)
K
]M

(9)

Remark: The data-dependent bound (7) and (8) can
be numerically evaluated if we have information about the
data. The bound will help us understand why empirically
the performance of our proposed algorithm is substantially
better than the worst-case bound. On the other hand, the

worst case bound (9) is convenient for theoretical analysis.
In fact, it directly leads to theeK logN complexity bound.

Proof of Lemma 1: For convenience, we define the
setTi = {j, 1 ≤ j ≤ M, rij = 1}.

Pr (|x̂i,min,γ | > ǫ, xi = 0)

=E

(

Pr

(∣

∣

∣

∣

yj
sij

∣

∣

∣

∣

> ǫ, xi = 0, j ∈ Ti|Ti

))

=E
∏

j∈Ti

[

Pr

(

∣

∣

∣

∣

S2

S1

∣

∣

∣

∣

>
ǫ

η
1/2
ij

, xi = 0

)]

=E
∏

j∈Ti

[

1− 2

π
tan−1

(

ǫ

η
1/2
ij

)]

=E







[

1− E

{

2

π
tan−1

(

ǫ

η
1/2
ij

)}]|Ti|






=

[

1− γ + γ

{

1− E

{

2

π
tan−1

(

ǫ

η
1/2
ij

)}}]M

=

[

1− γE

{

2

π
tan−1

(

ǫ

η
1/2
ij

)}]M

By noticing thatf(x) = tan−1 a√
x

, (wherea > 0), is a
convex function ofx > 0, we obtain an upper bound by
Jensen’s inequality.

Pr (|x̂i,min,γ | > ǫ, xi = 0)

=

[

1− γE

{

2

π
tan−1

(

ǫ

η
1/2
ij

)}]M

≤
[

1− γ

{

2

π
tan−1

(

ǫ

(Eηij)
1/2

)}]M

=






1− γ











2

π
tan−1











ǫ
(

γ
∑

t6=i x
2
t

)1/2



























M

=

[

1− γ

{

2

π
tan−1

{

ǫ
√

γ
∑

t x
2
t

}}]M

We can further obtain a worst case bound as follows. Note
thatηij has some mass at 0.

Pr (|x̂i,min,γ | > ǫ, xi = 0)

=

[

1− γE

{

2

π
tan−1

(

ǫ

η
1/2
ij

)}]M

≤
[

1− γ

{

2

π
tan−1

( ǫ

0

)

}

Pr (ηij = 0)

]M

=
[

1− γ (1− γ)
K
]M

�
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2.2 The False Negative Probability

It is also necessary to control the false negative probability:
Pr (|x̂i,min,γ | ≤ ǫ, xi 6= 0). See the proof in Appendix.

Lemma 2

Pr (|x̂i,min,γ | ≤ ǫ, xi 6= 0) = 1− (10)
[

1− γE

{

1

π
tan−1

(

ǫ+ xi

η
1/2
ij

)

− 1

π
tan−1

(

xi − ǫ

η
1/2
ij

)}]M

≤1−
[

1− 2

π
γ tan−1 ǫ

]M

(11)

Remark: Again, if we know information about the data,
we might be able to numerically evaluate the exact false
negative probability (10). The (loose) upper bound (11)
is also insightful because it means this probability→ 0 if
ǫ → 0. Note that in Lemma 1, the worst case bound is
actually independent ofǫ. This implies that, if we only
care about the worst case, we do not have to worry about
the false positive probability since we can chooseǫ → 0.

2.3 The Worst Case Complexity Bound

From the worst-case false positive probability bound:

Pr (|x̂i,min,γ | > ǫ, xi = 0) ≤
[

1− γ (1− γ)K
]M

, by

choosingγ = 1/K (and ǫ → 0), we can easily obtain
the following Theorem regarding the sample complexity of
only using the absolute minimum estimator, by solving for

M fromN
[

1− γ (1− γ)
K
]M

≤ δ.

Theorem 1 Using the absolute minimum estimator and
γ = 1/K, for perfect support recovery (with probability
> 1− δ), it suffices to use

M ≥ logN/δ

log 1

1− 1

K (1− 1

K )K
(12)

≈eK logN/δ (13)

measurements.

Remark: The term 1
K / log 1

1− 1

K (1− 1

K )
K approaches

e = 2.7183... very quickly. For example, the difference
is only 0.1 whenK = 10.

3 Analysis of the Absolute Minimum
Estimator on Ternary Signals

Although the complexity result in Theorem 1 can be the-
oretically exciting, we would like to better understand
why empirically we only need substantially fewer measure-
ments. In this section, for convenience, we consider the

special case of “ternary” signals, i.e.,xi ∈ {−1, 0, 1}. The
exact expectation (7), i.e.,

Pr (|x̂i,min,γ | > ǫ, xi = 0)

=

[

1− γE

{

2

π
tan−1

(

ǫ

η
1/2
ij

)}]M

which, in the case of ternary data, becomes

ηij =

N
∑

i=1

|xt|2rtj ∼ Binomial(K, γ) (14)

For convenience, we write

Pr (|x̂i,min,γ | > ǫ, xi = 0)

=

[

1− 1

K
(γK)E

{

2

π
tan−1

(

ǫ

η
1/2
ij

)}]M

=

[

1− 1

K
H(ǫ,K, γ)

]M

(15)

where

H(ǫ,K, γ) = (γK)E

{

2

π
tan−1

(

ǫ√
Z

)}

, (16)

Z ∼ Binomial(K, γ)

which can be easily computed numerically for givenγ, K,
andM . In order forPr (|x̂i,min,γ | > ǫ, xi = 0) ≤ δ for
all i, we should have

M ≥ K

H(ǫ,K, γ)
logN/δ (17)

It would be much more convenient if we do not have to
worry about all combinations ofγ andK. In fact, we can
resort to the well-studiedpoisson approximationby consid-
eringλ = γK and definingZ ∼ Poisson(λ) and

h(ǫ, λ)

=λE

{

2

π
tan−1

(

ǫ√
Z

)}

, Z ∼ Poisson(λ) (18)

=λ

∞
∑

k=0

{

2

π
tan−1

(

ǫ√
k

)}

e−λλk

k!

=λe−λ + λe−λ
∞
∑

k=1

{

2

π
tan−1

(

ǫ√
k

)}

λk

k!
(19)

Figure 1 plots 1
H(ǫ,K,γ) and 1

h(ǫ,λ) to confirm that the Pois-
son approximation is very accurate (as one would expect).
At γ = 1/K (i.e., λ = 1), the two terms 1

H(ǫ,K,γ) and
1

h(ǫ,λ) are upper bounded bye. However, whenǫ is not too
small, the constante can be conservative. Basically, the
choice ofǫ reflects the level of prior information about the
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signal. If the signals are significantly away from 0, then
we can choose a largerǫ and hence the algorithm would re-
quire less measurements. For example, if we know the sig-
nals are ternary, we can perhaps chooseǫ = 0.5 or larger.
Also, we can notice thatγ = 1/K is not necessarily the
optimum choice for a givenǫ. In general, the performance
is not too sensitive to the choiceγ = λ/K as long asǫ is
not too small and theλ is reasonably large. This might be
good news for practitioners.
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Figure 1: Upper Panel: 1
H(ǫ,K,γ) (solid) and 1

h(ǫ,λ)

(dashed), forK = 100 andǫ ∈ {0.01, 0.1, 0.2, 0.5, 1.0}.
This plot confirms that the Poisson approximation is indeed
very accurate (as expected).
Bottom Panel: Poisson approximation 1

h(ǫ,λ) for ǫ ∈
{0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. In both
panels, we use the horizontal line to indicatee = 2.7183....
Whenγ = 1/K, i.e.,λ = 1, both 1

H(ǫ,K,γ) and 1
h(ǫ,λ) are

upper bounded bye.

4 Analysis of the Absolute Minimum
Estimator with Measurement Noise

We can also analyze the absolute minimum estimator when
measurement noise is present, i.e.,

ỹj = yj + nj =

N
∑

i=1

xi [sijrij ] + nj , (20)

wherenj ∼ N(0, σ2), j = 1, 2, ...,M

Again, we compute the ratio statistic

yj + nj

sijrij

∣

∣

∣

∣

rij=1

=

∑N
t=1 xtstjrtj + nj

sij

=xi +

∑N
t6=i xtstjrtj + nj

sij
= xi + (η̃ij)

1/2 S2

S1
(21)

whereS1, S2 ∼ N(0, 1), i.i.d., and

η̃ij =

N
∑

t6=i

|xtrtj |2 + σ2 =

N
∑

t6=i

|xt|2 rtj + σ2 (22)

Lemma 3 Data-dependent bound:

Pr (|x̂i,min,γ | > ǫ, xi = 0)

=

[

1− γE

{

2

π
tan−1

(

ǫ

η̃
1/2
ij

)}]M

(23)

≤
[

1− γ

{

2

π
tan−1

{

ǫ

(σ2 + γ
∑

t x
2
t )

1/2

}}]M

(24)

Data-independent bound:

Pr (|x̂i,min,γ | > ǫ, xi = 0)

≤
[

1− γ

{

2

π
tan−1

( ǫ

σ

)

}

(1 − γ)K
]M

(25)

Data-independent complexity bound:With γ = 1/K, in
order to achievePr (|x̂i,min,γ | > ǫ, xi = 0) ≤ δ for all i,
it suffices to use

M ≥ e

{

2

π
tan−1

( ǫ

σ

)

}

K logN/δ (26)

measurements.

Proof of Lemma 3:

Pr (|x̂i,min,γ | > ǫ, xi = 0)

=

[

1− γE

{

2

π
tan−1

(

ǫ

η̃
1/2
ij

)}]M

≤
[

1− γ

{

2

π
tan−1

(

ǫ

(Eη̃ij)
1/2

)}]M

=

[

1− γ

{

2

π
tan−1

{

ǫ

(σ2 + γ
∑

t x
2
t )

1/2

}}]M
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which is still expressed in terms of the summary of the sig-
nal. To obtain a data-independent bound, we have

Pr (|x̂i,min,γ | > ǫ, xi = 0)

=

[

1− γE

{

2

π
tan−1

(

ǫ

η̃
1/2
ij

)}]M

≤
[

1− γ

{

2

π
tan−1

( ǫ

σ

)

}

(1 − γ)K
]M

�

5 Analysis of the Tie Estimator

To construct thetie estimator, we first computezij =
yj

sijrij

which is anyway needed for the absolute minimum estima-
tor. At eachi of interest, we sort thoseM zij values and
examine the order statistics,zi,(1) ≤ zi,(2) ≤ ... ≤ zi,(M),
and their consecutive differences,zi,(j+1) − zi,(j) for j =
1, 2, ...,M − 1. Then we have

x̂i,tie,γ = zi,(ji), if zi,(ji+1) − zi,(ji) = 0 and|zi,(ji)| 6= ∞

Recall

yj
sijrij

∣

∣

∣

∣

rij=1

=

∑N
t=1 xtstjrtj

sij
= xi +

∑N
t6=i xtstjrtj

sij

=xi + (ηij)
1/2 S2

S1

whereS1, S2 ∼ N(0, 1), i.i.d., andηij =
∑N

t6=i |xt|2 rtj ,
which has a certain probability of being zero. Ifηij = 0,

then yj

sijrij

∣

∣

∣

rij=1
= xi. To reliably estimate the magnitude

of xi, we needηij = 0 to happen more than once, i.e., there
should be a tie. Note that

Pr (ηij = 0, rij = 1) =

{

γ(1− γ)K if xi = 0
γ(1− γ)K−1 if xi 6= 0

(27)

For a given nonzero coordinatei, we would like to have
ηij = 0 more than once amongM measurements. This is
a binomial problem, and the error probability is simply

[

1− γ (1− γ)
K−1

]M

(28)

+M
(

γ (1− γ)
K−1

) [

1− γ (1− γ)
K−1

]M−1

Suppose we useγ = 1/K. To ensure this error is smaller
thanδ for all K nonzero coordinates, it suffices to choose
M so that

K
[

1− γ (1− γ)
K−1

]M

(29)

+KM
(

γ (1− γ)
K−1

) [

1− γ (1− γ)
K−1

]M−1

≤ δ

It is easy to see that this choice ofM suffices for recovering
the entire signal, not just the nonzero entries. This is due
to the nice property of the tie estimator, which has no false
positives. That is, if there is a tie, we know for sure that it
reveals the true value of the coordinate. For any zero coor-
dinate, either there is no tie or the tie is zero. Therefore, it
suffices to chooseM to ensure all the nonzero coordinates
are recovered.

Theorem 2 Using the tie estimator andγ = 1
K , for perfect

signal recovery (with probability> 1 − δ), it suffices to
choose the number of measurements to be

M ≥1.551eK logK/δ, δ ≤ 0.05 (30)

Proof of Theorem 2: The recovery task is trivial when

K = 1. ConsiderK ≥ 2 and p = 1
K

(

1− 1
K

)K−1
,

i.e., p ≤ 1/4. We need to chooseM such that
K
(

(1 − p)M +Mp(1− p)M−1
)

≤ δ. Let M1 be such

that K(1 − p)M1 = δ, i.e., M1 = log δ/K
log(1−p) = logK/δ

log 1

1−p

.

Suppose we chooseM = (1 + α)M1. Then.

K
(

(1− p)(1+α)M1 + (1 + α)M1p(1− p)(1+α)M1−1
)

=δ

(

(δ/K)
α
+ (1 + α)

logK/δ

log 1
1−p

(δ/K)
α

1− p
p

)

Therefore, we need to find theα so that

T (δ,K, α) = (δ/K)
α
+

(1 + α) log(K/δ) (δ/K)α

log(1 − p)(1− 1/p)
≤ 1

Since p ≤ 1/4, we have ∂
∂p log(1 − p)(1 − 1/p) =

(log(1− p) + p) /p2 < 0. Becausep is decreasing inK,
we know that 1

log(1−p)(1−1/p) is decreasing inK. Also,
note that

∂

∂K
[log(K/δ) (δ/K)

α
] = (δ/K)

α
/K (1− α logK/δ)

∂

∂δ
[log(K/δ) (δ/K)

α
] = (δ/K)

α
/δ (−1 + α logK/δ)

As we considerK ≥ 2 andδ ≤ 0.05, we know that, as long
asα ≥ 1/ log 2

0.05 = 1/ log 40, the termlogK/δ (δ/K)
α

is increasing inδ and decreasing inK. Combining the cal-
culations, we know thatT (δ,K, α) is decreasing inK and
increasing inδ, for α > 1/ log 40. It is thus suffices to
considerδ = 0.05 andK = 2. BecauseT (0.05, 2, α) is
decreasing inα, we only need to numerically find theα so
thatT (0.05, 2, α) = 1, which happens to be0.5508...

Therefore, it suffices to chooseM = 1.551M1 =
1.551 logK/δ

log 1

1−
1

K (1− 1

K )K−1

measurements. It remains to show

that 1
K log 1

1−
1

K (1− 1

K )K−1

≤ e. Due to log 1
1−x ≥ x,
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∀ 0 < x < 1, we have

1

K log 1

1− 1

K (1− 1

K )
K−1

≤ 1

K

1

1
K

(

1− 1
K

)K−1

=
1

(

1− 1
K

)K−1
=

(

1 +
1

K − 1

)K−1

≤ e

�

Readers probably have noticed that the tie estimator could
be sensitive to measurement noises. It appears that cer-
tain important applications such as databases and networks
mainly focus on the noiseless case. It is nevertheless an
interesting problem to study estimators which are more ro-
bust to measurement noises. If possible, we can use the
heavy-tailed design [13]. If we must use Gaussian (or
Gaussian-like) designs, we might consider modifying the
tie estimator by allowing some (nonzero) gaps. We leave it
for future work to systematically analyze this more gener-
alized estimator.

6 An Experimental Study

Compressed sensing is an important problem of broad in-
terest, and it is crucial to experimentally verify that the pro-
posed method performs well as predicted by our theoreti-
cal analysis. In this study, we closely follow the experi-
mental setting as in the well-known wiki page (see [1]),
which compared count-min sketch, SMP, and L1 decoding,
on ternary (i.e.,{−1, 0, 1}) signals. In particular, the re-
sults forN = 20000 are available for all three algorithms.
Their results have shown that, in order to achieve similar
recovery accuracies, count-min sketch needs about10 to
15 times more measurements than L1 decoding and SMP
only needs about half of the measurements of count-min
sketch.

As shown in the success probability contour plot in Figure 2
(for γ = 1/K), the accuracy of our proposed method is
similar to the accuracy of L1 decoding (based on [1]). This
should be exciting because, at the same number of mea-
surements, the decoding cost of our proposed algorithm is
roughly the same as count-min sketch.

7 Conclusion

Compressed sensing has become a popular and impor-
tant research topic. Using a sparse design matrix has a
significant advantage over dense design. For example, in
sensing networks, we can replace a dense constellation of
sensors by a randomly sparsified one, which may result
in substantially saving of sensing hardware and labor
costs. In this paper, we show another advantage from the
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Figure 2: Contour plot of the empirical success proba-
bilities of our proposed method, forN = 2000, 20000,
200000, and2000000. For each combination(N,M,K),
we repeated the simulation 100 times. ForN = 20000, we
can see from the wiki page [1] that our prosed method pro-
vides accurate recovery results compared to L1 decoding.
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computational perspective of the decoding step. It turns
out that using a very sparse design matrix can lead to a
computationally very efficient recovery algorithm without
losing accuracies (compared to L1 decoding).
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Appendix Proof of Lemma 2:

Pr (|x̂i,min,γ | ≤ ǫ, xi 6= 0)

=1−Pr (|x̂i,min,γ | > ǫ, xi 6= 0)

=1− E

(

Pr

(
∣

∣

∣

∣

yj
sij

∣

∣

∣

∣

> ǫ, xi 6= 0, j ∈ Ti|Ti

))

=1− E
∏

j∈Ti

[

Pr

(∣

∣

∣

∣

xi + η
1/2
ij

S2

S1

∣

∣

∣

∣

> ǫ, xi 6= 0

)]

=1− E
∏

j∈Ti

[

1− 1

π
tan−1

(

ǫ − xi

η
1/2
ij

)

− 1

π
tan−1

(

ǫ+ xi

η
1/2
ij

)]

=1− E
{

[1− E {Aij}]|Ti|
}

=1− [1− γ + γ {1− E {Aij}}]M

=1− [1− γE {Aij}]M

wereAij =
1
π tan−1

(

ǫ+xi

η
1/2
ij

)

− 1
π tan−1

(

xi−ǫ

η
1/2
ij

)

.

Note thattan−1(z + ǫ)− tan−1(z − ǫ) ≤ 2 tan−1 ǫ ≤ 2ǫ,
for ǫ ≥ 0. Therefore,

Pr (|x̂i,min,γ | ≤ ǫ, xi 6= 0) = 1−
[

1− γE

{

1

π
tan−1

(

ǫ+ xi

η
1/2
ij

)

− 1

π
tan−1

(

xi − ǫ

η
1/2
ij

)}]M

≤1−
[

1− 2

π
γ tan−1 ǫ

]M

which approaches zero asǫ → 0. �
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