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Abstract

Standard multi-label learning methods as-
sume fully labeled training data. This as-
sumption however is impractical in many ap-
plication domains where labels are difficult
to collect and missing labels are prevalent.
In this paper, we develop a novel condi-
tional restricted Boltzmann machine model
to address multi-label learning with incom-
plete labels. It uses a restricted Boltzmann
machine to capture the high-order label de-
pendence relationships in the output space,
aiming to enhance the capacity of recover-
ing missing labels and learning high quality
multi-label prediction models. Moreover, it
also incorporates label co-occurrence infor-
mation retrieved from auxiliary resources as
prior knowledge. We perform model training
by maximizing the regularized marginal con-
ditional likelihood of the label vectors given
the input features, and develop a Viterbi style
EM algorithm to solve the induced optimiza-
tion problem. The proposed approach is eval-
uated on four real word multi-label data sets
by comparing to a number of state-of-the-art
methods. The experimental results show it
outperforms all the other comparison meth-
ods across the applied data sets.

1 Introduction

Multi-label learning is critical in many real world ap-
plication domains where an instances can be associ-
ated with multiple (possibly related) label concepts
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simultaneously. For example, one image can contain
multiple objects, such as “person”, “car”, and “road”,
and hence belong to multiple label categories. In the
past, multi-label learning has attracted intensive at-
tention and many algorithms have been developed in
the literature, including graphical model based meth-
ods [9, 10, 29]. These methods typically assume that all
the instances in the training data have complete labels
and learn a prediction model to map the instances from
the input feature space to the given label vectors. The
assumption of complete labels however is impractical
in many real world application domains, where it is
difficult to acquire a complete set of true label assign-
ments from the annotators. For example, annotators
for images or articles may only provide the most ob-
vious labels they found while ignoring the ambiguous
labels or the label concepts they are not familiar with.
Ignoring the missing labels in the training data how-
ever can significantly degrade the performance of the
learned multi-label classification model, since it will
build negative prediction patterns between the input
instances and their missing labels and further prop-
agate the mistakes into the prediction phase on new
data. This raises the significant challenge of multi-label
learning with incomplete labels.

A key for tackling multi-label learning with incom-
plete labels is to automatically and accurately fill the
missing labels such that a high quality multi-label pre-
diction model can be trained with the completed la-
bels. Comparing to the tremendous amount of work
on standard multi-label learning, there are relatively
fewer works recently developed for multi-label learning
with incomplete labels [2, 3, 4, 15, 20, 23, 28]. These
works nevertheless are still limited in exploring the po-
tential complex label dependence information in the
label space. None of them have considered incorporat-
ing auxiliary label co-occurrence information into the
learning process to improve the quality of completed
labels and prediction models.

In this paper, we develop a conditional restricted
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Boltzmann machine (CRBM) model to address multi-
label learning with incomplete labels. Different from
the typical probabilistic graphical models, e.g., con-
ditional random fields, used for multi-label learning,
which only consider explicit and pre-fixed low-order
label dependence relationships for tractable inference,
we build a latent layer above the label layer and form
a restricted Boltzmann machine model in the out-
put space conditioning on the observed input features.
Restricted Boltzmann machines (RBMs) have been
shown to be effective in learning high-level features
and capturing high-order correlations of the observed
variables. We hence expect the CRBM model can ef-
fectively encode the high-order label dependence re-
lationships to facilitate label recovery and multi-label
prediction model learning. In particular, we formulate
the label completion and multi-label prediction model
learning as a joint optimization problem, which max-
imizes the regularized marginal conditional likelihood
of the label vectors given the input features under the
CRBM model. Moreover, label co-occurrence statis-
tics can be estimated from a large text corpus such as
Wikipedia. We further extend our model to incorporate
such auxiliary label relatedness information as prior
knowledge. We develop a Viterbi style EM algorithm
to solve the optimization problem produced, which al-
ternatingly trains the CRBM model and recovers the
missing labels. To evaluate the proposed model, we
compare it with a number of related state-of-the-art
methods on four real world multi-label data sets. The
experimental results demonstrate the effectiveness of
the proposed model on addressing multi-label learning
with incomplete label assignments.

2 Related Work and Preliminaries

2.1 Related Work

In multi-label learning problems, each instance can be
associated with multiple labels simultaneously. Typi-
cally the labels are not independent of each other, but
rather demonstrate strong label correlation or depen-
dence patterns. Many multi-label learning works devel-
oped in the literature focused on exploiting the label
correlation or dependence information in a tractable
manner to improve the quality of multi-label predic-
tion, including a few probabilistic graphical model
based methods [9, 10, 29]. Recently, there are also a
set of label space transformation works developed for
multi-label learning [1, 5, 24]. These works induce al-
ternative label representations and perform multi-label
learning in the new and typically dimension reduced
label space. But none of these works address learning
with incomplete labels.

There are a limited number of works that tackled the

problem of multi-label learning with incomplete labels
[2, 3, 4, 15, 20, 23, 28]. [2] develops a probabilistic
model that exploits multi-label correlations and han-
dles missing labels. [3] formulates multi-label classifi-
cation as a bipartite ranking problem and exploits the
group lasso technique to handle incomplete label as-
signments. [4] presents a fast tagging method which
learns two linear mapping matrices from both the in-
put space and the original label space to recover the
missing labels. [15] applies stochastic gradient descent
to infer missing labels and then trains a stacked model
for the final prediction. [20] exploits the information
pertaining to partially annotated or unannotated im-
ages to achieve semi-supervised learning under a hier-
archical Dirichlet process structure. [23] proposes to
infer missing labels under transductive settings. [28]
presents a generic empirical risk minimization frame-
work for large-scale multi-label learning and accommo-
dates it to missing labels by only training prediction
models on known labels and ignoring unknown ones.
Different from these methods, our proposed approach
is an inductive learning approach. It addresses multi-
label learning with incomplete labels by using a latent
layer in the output space to capture high-order label
dependence relationships for label imputation while si-
multaneously permitting label prediction in the origi-
nal label space. Moreover, the previous methods do not
exploit free auxiliary resources to infer label related-
ness information, while our approach can incorporate
such information as model priors.

2.2 Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) [21] are spe-
cial form of undirected graphical models that use hid-
den variables to model high-order and non-linear reg-
ularities of the data. In particular, a RBM is a two-
layer bipartite graph with two types of units, the vis-
ible units v = [v1, · · · , vI ]> and hidden units h =
[h1, · · · , hJ ]>. The visible units in one layer correspond
to the components of an observation, while the hidden
units in the other layer model dependencies between
the components of observations. The restriction is that
there is no connection between units in the same layer.
The RBM represents probability distributions over the
random variables under an energy-based model. For an
energy function that captures the restricted unit inter-
action patterns, E(v,h) = −v>Wh−b>v− c>h, the
joint probability distribution over (v,h) can be easily
expressed as P (v,h) = 1

Z exp(−E(v,h)), where Z is
the normalization factor.

After learning, with the learned model parameters, a
RBM can provide a closed-form representation for the
distribution underlying the observations. The prob-
ability for any subsets of variables can be easily
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Figure 1: A conditional RBM model.

obtained through conditioning and marginalization.
Hence for a partial observation, given the observed vis-
ible units, one can sample the remaining visible units
to complete the observation [14]. Recently, RBMs have
received a lot of attention in deep learning networks;
in particular, deep belief networks can be formed
by stacking multiple RBMs [12]. Nevertheless, RBMs
have been mostly used in learning feature representa-
tions in the input feature space. Its potential in model-
ing the regularities in the output label space has only
received limited attention [13, 16, 17] and not yet been
well explored to address different learning problems.

3 Proposed Approach

In this section, we present a probabilistic graphical
model that uses a restricted Boltzmann machine model
to capture high-order label dependence relationships
in the output label space and perform effective multi-
label learning with incomplete labels. It has the con-
venient capacity of incorporating auxiliary label relat-
edness information into the learning framework.

3.1 A Conditional RBM Model

Given training data with incomplete labels for multi-
label classification, D = {(xi, zi)}Ni=1, where xi ∈ Rd is
the input feature vector for the i-th instance and zi ∈
{0, 1}L is the corresponding label indicator vector. We
assume that in the label indicator vector zi, an entry
value 1 indicates the existence of the corresponding
label, while an entry value 0 indicates an unknown
status with a possible missing label. In this work, we
use Ω to denote the index set of the observed labels
in the training data, such as (i, j) ∈ Ω if and only if
zij = 1. The existence of missing labels can greatly
exacerbate the support sparsity of the labels in the
training data and increase the difficulty of learning
accurate multi-label prediction models.

To tackle this problem, we propose a conditional re-
stricted Boltzmann machine (CRBM) model for multi-
label classification, which has a label layer y to rep-

resent the underlying true label vectors and adds an-
other latent layer h above the label layer to form a re-
stricted Boltzmann machine. In the literature, RBMs
have been effectively used to capture high-order regu-
larities in the input feature space. We expect a condi-
tional RBM in the output label space can effectively
capture high-order label dependence information to
automatically recover the underlying true label matrix
[y1, · · · ,yN ] and learn high-quality multi-label predic-
tion models. The CRBM model is illustrated in Fig-
ure 1, which has three layers: the input feature layer
x, the output label layer y and the latent layer h; con-
ditioning on x, the two layers y and h form a standard
RBM. This CRBM defines a conditional joint distribu-
tion over (y,h), P (y,h|x). The conditional marginal
distribution of the label vector y given the observed
input feature vector x is defined as

P (y|x) =
1

Z(x)

∑
h

exp (−Econd(y,x)− Erbm(y,h))

(1)

where Z(x) is the normalization factor, and
Econd(y,x) and Erbm(y,h) are two energy functions
such as

Z(x) =
∑
y

∑
h

exp (−Econd(y,x)− Erbm(y,h)) (2)

Econd(y,x) = −y>Wx (3)

Erbm(y,h) = −y>Gh− y>b− c>h. (4)

The energy function Econd(y,x) captures the condi-
tional predictive interactions between the input fea-
tures and the output labels, while the energy func-
tion Erbm(y,h) captures standard RBM interactions
between the label layer and the latent layer. Assume
there are J latent units in the h layer, we have
h ∈ {0, 1}J , while y ∈ {0, 1}L. Then the CRBM
model involves the following set of model parameters,
Θ = {W ∈ RL×d, G ∈ RL×J ,b ∈ RL×1, c ∈ RJ×1}.
Note under this CRBM model, we still have the condi-
tional independence properties of the standard RBM
models such as

P (h|y,x) =
J∏
j=1

P (hj |y,x), P (y|h,x) =
L∏
`=1

P (y`|h,x),

and the local conditional probabilities can be easily
computed as

P (hj = 1|y,x) = σ(y>G:j + cj), (5)

P (y` = 1|h,x) = σ(G`:h + b` +W`:x), (6)

where the σ(x) denotes the standard sigmoid function,
σ(x) = 1/(1 + exp(−x)).
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Given the training data D with missing labels, we will
simultaneously learn the true label vectors and train
the CRBM model by maximizing the following reg-
ularized conditional marginal likelihood of the labels
given the observed input data

max
Θ

max
{yi}

∑
i

logP (yi|xi)− γw
2
‖W‖2F−

γg
2
‖G‖2F − µ

∑
i

‖yi‖1 (7)

subject to yi ∈ {0, 1}L, yij = 1, ∀(i, j) ∈ Ω, ∀i

where γw, γg, µ are trade-off parameters, ‖yi‖1 denotes
the L1-norm regularizer, and ‖ · ‖F denotes the Frobe-
nius norm. It is easy to note that the label vectors
should be sparse since each instance is typically only
assigned very few positive labels from the overall la-
bel set. We hence use the L1-norm regularizer to pro-
mote label sparsity for the recovered label vectors. The
constraints enforce the label vectors to take indicator
binary values that are consistent with the label obser-
vations in the training data.

3.2 Incorporating Auxiliary Label
Relatedness Information

The multiple labels of the classification tasks typically
have semantic meanings that can expose some relat-
edness information, in particular co-occurrence infor-
mation, between the label concepts. To exploit such
relatedness information, we construct a label correla-
tion matrix Σ ∈ RL×L using the knowledge extracted
from free auxiliary resources such as Wikipedia. In
Wikipedia, each article is related to one topic and
hence we can express our label concept in terms of the
Wikipedia topics as discussed in [19]. Specifically, we
collect M topics from Wikipedia and represent each
label as a M -dim vector with each entry recording
the statistical occurrence information (e.g., occurrence
counts, tf-idf feature values) of the label phrase in the
articles with the corresponding topic. In our experi-
ments, we used the explicit semantic analysis proce-
dure in [8], which uses M = 389, 202 Wikipedia ar-
ticles. Then we compute the label correlation matrix
Σ by setting its entry Σij as the cosine similarity be-
tween the M -dim vectors of the two label concepts,
ci and cj , which naturally captures the co-occurrence
information of the labels in the Wikipedia data. Given
this label correlation matrix, we can compute a prior
distribution P0(y) over the label vector y such as

P0(y) ∝ exp(y>Σy) (8)

which encodes the prior probabilities of possible label
vector configurations based on the auxiliary label cor-
relation knowledge.

We incorporate this auxiliary label correlation matrix
into our probabilistic learning model as a regulariza-
tion term for each label vector yi. This leads to the
following optimization problem

max
Θ

max
{yi}

∑
i

logP (yi|xi) + β
∑
i

logP0(yi)−

γw
2
‖W‖2F −

γg
2
‖G‖2F − µ

∑
i

‖yi‖1 (9)

subject to yi ∈ {0, 1}L, yij = 1, ∀(i, j) ∈ Ω, ∀i

3.3 Learning Algorithm

The learning problem (9) formulated above has two
sets of variables, the set of model parameters Θ and
the latent label vector variables {yi}, and it is not
a joint convex optimization problem. Let L(Θ, {yi})
denote the objective function of (9). We propose to
perform learning using a Viterbi style expectation-
maximization (EM) algorithm, which alternatingly
maximizes the objective function L with respect to
one set of variables given the other set fixed. Specifi-
cally, there are two steps: the model parameter learning
step (maximization step), where we perform optimiza-
tion with respect to the set of model parameters Θ
given the current label vectors {yi}; and the label re-
covery step (Viterbi expectation step), where given the
current model parameters, we perform optimization to
recover the latent label vectors {yi}. We present these
two steps below.

3.3.1 Model Parameter Learning

Given the current recovery of the missing labels in each
label vector yi, the CRBM model is equivalent to an
extended standard RBM model; we can see the joint
energy function E(y,h,x) = Econd(y,x) +Erbm(y,x)
in Eq.(1) only extends the standard RBM model pa-
rameters by adding a Wx term to the original b pa-
rameter vector. A standard gradient ascent algorithm
for learning undirected graphical models can itera-
tively update the set of model parameters Θ with
θ = θ + ε∆θ for each θ ∈ Θ, where ε and ∆θ are the
learning rate and direction of the update respectively.
In the standard gradient ascent, the update direction
∆θ is simply the partial gradient of the objective func-
tion with respect to the model parameter θ:

∆θ =
∂L
∂θ

=−
∑
i

( ∑
h P (h|yi,xi)∂E(yi,h,xi)

∂θ

−
∑

h

∑
y P (y,h|xi)∂E(y,h,xi)

∂θ

)
− θ

(
γgI[θ∈G] + γwI[θ∈W ]

)
(10)

where I[·] denotes an indicator function which takes
value 1 when the given condition in the brackets is
true. However, the second term within the first set
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of brackets in (10) involves exponential complexity of
summation. To avoid this computational difficulty, we
hence use the standard k-step contrastive divergence
(CD-k) algorithm [11] to perform model parameter
learning in this extended RBM model. The CD-k al-
gorithm is a stochastic approximate gradient ascent
algorithm. For each i-th instance, it runs the MCMC
chain for k steps, starting from the pre-given y(0)i = yi

vector. In each r-th step, it samples {h(r)i
j } given the

previous y(r−1)i and then samples {y(r)i
` } given h(r)i

according to the individual binomial conditional dis-
tributions of hj and y` given in Eq.(5) and Eq.(6) re-
spectively. Finally it approximates the gradient ascent
direction with the samples obtained at the k-th step,
such that

∆θ =−
∑
i

( ∑
h P (h|yi,xi)∂E(yi,h,xi)

∂θ

−
∑

h P (h|y(k)i ,xi)∂E(y(k)i ,h,xi)
∂θ

)
− θ

(
γgI[θ∈G] + γwI[θ∈W ]

)
(11)

In our experiments, we used CD-1 algorithm with
k = 1, which has been shown to work well in previ-
ous studies on standard RBMs.

3.3.2 Latent Label Recovery

Given the current CRBM model parameters Θ, the
optimization problem in (9) can be decomposed into a
set of N independent sub-optimization problems, one
for each instance label vector yi:

yi = arg max
y

logP (y|xi) + βy>Σy − µ‖y‖1 (12)

subject to y ∈ {0, 1}L, yj = 1, ∀(i, j) ∈ Ω.

Let L(i,y) denote the objective function in (12). Note
the normalization factor Z(xi) (see its definition in
Eq.(2)) for computing P (y|xi) is independent of the y
variables, and hence the objective function L(i,y) can
be simplified into

L(i,y) =
∑J
j=1 log

(
1 + exp(y>G:j + cj)

)
+

y>b + y>Wxi + βy>Σy − µ‖y‖1 (13)

Moreover, given the constraint that y has nonnegative
values, the L1 norm regularizer ‖y‖1 is equivalent to
the sum of the vector entries and the objective func-
tion is a smooth function. We then relax the integer
constraint y ∈ {0, 1}L into 0 ≤ y ≤ 1, and use a pro-
jected gradient ascent algorithm with backtracking line
search to perform relaxed optimization.

In each iteration t of the projected gradient ascent
algorithm, given the current point y(t), the next point
y(t+1) can be reached by

y(t+1) = Proj
(
y(t) + η∗∇y(t)L(i,y)

)
, (14)

where ∇y(t)L(i,y) is the gradient vector value at the
current point, η∗ is the optimal step size found by
backtracking line search that maximizes the objective
function. The projection operator, Proj(·), projects
the input vector into the feasible region defined by the
constraints, and its j-th entry is defined as

Proj (ŷj) =

{
1 if (i, j) ∈ Ω
max(0,min(1, ŷj)) otherwise

(15)

After converging to a local optimal solution y∗, we can
round it back to {0, 1} values to recover the label vec-
tor yi. In this procedure, the label vector is recovered
by integrating both the predictive information from
the input features, the high-order label dependence
information captured in the CRBM model, and the
auxiliary label relatedness information.

Testing Phase In the test phase, given an instance
x, and the CRBM model learned in the training pro-
cess, we first initialize y = σ(Wx) by only considering
the input feature information. Then we infer the y la-
bels by using the latent label recovery step above with
an empty Ω set.

4 Experiment and Results

To evaluate the proposed conditional restricted Boltz-
mann machine (CRBM) model for multi-label learn-
ing with incomplete labels, we conducted experiments
on four diverse types of real-world multi-label data
sets: Corel5K, Mediamill, CLEF2010 and Delicious.
Corel5K [7] is an image data set, which contains 5000
instances and 374 labels, with an average of 3.5 labels
assigned to each instance. Mediamill [22] is a video re-
trieval data set with 43,907 instances and 101 labels.
On average, each instance in this data set has 4.4 la-
bels. CLEF2010 [25] contains 10,000 images and 93
labels, with an average of 11.7 labels for each image.
We rescaled each image to 256×256 and then extracted
512-dimension GIST [18] features to use. Delicious [26]
is a text data set, which contains 16,105 instances and
983 labels, with an average of 19.0 labels assigned to
each instance.

We compared the proposed CRBM approach with the
following state-of-the-art multi-label learning methods
that are tailored for incomplete label assignment sce-
narios: (1) A multi-label classification method with la-
bel correlations and missing labels (LCML) [2]. (2) A
multi-label ranking with group lasso (MLRGL) algo-
rithm [3]. (3) A fast tagging method (FastTag) [4]. The
proposed CRBM model has the capacity of incorpo-
rating auxiliary label relatedness information. In the
experiments, we exploited the auxiliary label informa-
tion from Wikipedia by computing label concepts with
the explicit semantic analysis method [8], as described
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Figure 2: Classification results on the four data sets in terms of the three evaluation measures: Each row presents
the results on each data set; each column presents the results in terms of each of the three measures.

in Section 3.2.

For each data set, we randomly selected 3, 000 in-
stances as training data while keeping the rest as test
data. We randomly selected a fraction, σ, of the ob-
served labels on the training data to drop and simu-
late the missing labels. To perform parameter selec-
tion for each experimented approach, we further split
the training data into a training set with 2, 400 in-
stances and a validation set with 600 instances. On

the training set, we randomly dropped 10% of the la-
bels to simulate the missing label scenario for the pa-
rameter selection process; we train each method on
the training set and evaluate its prediction perfor-
mance on the validation set for parameter selection.
For the proposed approach, we fixed γg = γw = 0.01
and performed parameter selection on µ and β with µ
chosen from {0.01, 0.05, 0.1, 0.5, 1} and β chosen from
{0.01, 0.05, 0.1, 0.5, 1, 5}. The number of hidden units,
J , was set roughly proportional to the original label di-
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mension of each data set: We used J=50 for Corel5K,
J=20 for Mediamill and CLEF2010, and J=100 for
Delicious. For the other comparison methods, we per-
formed parameter selection for their parameters from
the ranges of values suggested in their original papers.
We measured the prediction performance of all the
methods using three standard multi-label evaluation
metrics: Macro-F1, Micro-F1 and the AUC (area un-
der the curve) criteria. All the results reported in this
section are averages on five repeated runs with differ-
ent random data partitions.

4.1 Classification Results on the Test Data

To investigate the learning capacity of the compari-
son methods in the scenario of incomplete labels, we
conducted experiments with a range of different train-
ing label missing rates, σ ∈ {10%, 30%, 50%, 70%}. For
each given training label missing rate, the average test
performance over five runs were recorded on each data
set for each comparison method. The comparison re-
sults in terms of the three evaluation measures on the
four data sets are reported in Figure 2.

We can see that among the three comparison meth-
ods, LCML, MLRGL and FastTag, each of them ex-
hibits strength on different data sets and with dif-
ferent evaluation measures. LCML outperforms both
MLRGL and FastTag on Corel5K in terms of Macro-
F1 and Micro-F1 and on Delicious in terms of Macro-
F1, across the range of different training label missing
rates, but produces the worst results on CLEF2010 in
terms of Micro-F1. MLRGL produces the best results
among the three methods on CLEF2010 in terms of
Macro-F1 and Micro-F1 and on Mediamill in terms
of Macro-F1, across the range of different training la-
bel missing rates, but produces the worst results on
Corel5K and Delicious across all three measures and
on Mediamill in terms of Micro-F1 and AUC. FastTag
outperforms LCML and MLRGL across all the four
data sets in terms of AUC measure and on Mediamill
and Delicious in terms of Micro-F1, but produces the
worst results on CLEF2010 and Mediamill in terms of
Macro-F1. On the other hand, the proposed approach
CRBM consistently produces the best results and out-
performs all the three comparison methods across dif-
ferent label missing rates on all the four data sets in
terms of almost all the three evaluation measures, ex-
cept on Mediamill with σ = 10% in terms of Macro-
F1 and on Delicious with σ ∈ {10%, 30%} in terms
of AUC. Even in the three cases where CRBM fails
to produce the best results, it produces the second
best results that are very close to the best ones. These
results demonstrate the efficacy of the proposed ap-
proach on handling multi-label learning with missing
labels in different scenarios. We also noted in our ex-

periments that the proposed CRBM has comparable
training time with the other comparison methods.

4.2 Label Recovery on the Training Data

For all the comparison methods used in our experi-
ments, we have also investigated their capacity of re-
covering missing labels on the training data. Specif-
ically, for each method, after training a multi-label
prediction model on the training data that have in-
complete label assignments, we apply the prediction
model on each training instance to obtain a predicted
label vector, which is expected to recover the missing
labels in the original label vector. We then evaluate the
performance of missing label recovery using a missing
label recovery accuracy measure, which is defined as
the ratio between the number of correctly recovered
missing labels and the number of total missing labels
on the training data.

The average missing label recovery results for all the
comparison methods on the four data sets are reported
in Table 1.1 We can see that with the increase of the
label missing rate, the performance of all methods nat-
urally degrades. But in general all the methods pro-
duce reasonably good results, even with σ = 70%.
FastTag demonstrates a good label recovery capac-
ity by consistently outperforming LCML and MLRGL.
But our proposed method, CRBM, consistently out-
performs FastTag and produces the best results across
all the data sets and different label missing rates.

4.3 Impact of Auxiliary Knowledge

We have also further studied the impact of different
auxiliary knowledge within our proposed model on
the image data set Corel5K. In addition to exploiting
Wikipedia data based on the explicit semantic analy-
sis (ESA) technique, which we denote as CRBM-Wiki-
ESA here, we also tested two alternative methods of
extracting auxiliary knowledge from Wikipedia and
an image resource by learning word embedding and
co-occurrence statistics respectively. The word embed-
ding (WE) method exploits the Wikipedia resource as
well. But different from the explicit semantic analy-
sis method, we use the neural network word embed-
ding technique in [6] to learn word embedding vec-
tors from Wikipedia articles, which provides seman-
tic vector representations for all the labels we have
for Corel5K. In particular, we used 50-dimension vec-
tors for the labels. The label correlation matrix Σ
was computed based on the cosine similarity between
the label vectors. We denote this method as CRBM-

1Due to space limitation, we only reported the results
for missing rates σ ∈ {30%, 70%}. The comparison results
with σ ∈ {10%, 50%} are quite similar to the reported ones.
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Table 1: Missing label recovery accuracy results (mean±std) on the four data sets.

Label Missing Rate Methods Corel5K Mediamill CLEF2010 Delicious

30%

CRBM 0.941 ± 0.013 0.902 ± 0.013 0.904 ± 0.001 0.936 ± 0.011
LCML 0.897 ± 0.010 0.839 ± 0.005 0.807 ± 0.013 0.903 ± 0.000
MLRGL 0.874 ± 0.007 0.866 ± 0.010 0.828 ± 0.013 0.852 ± 0.006
FastTag 0.926 ± 0.008 0.900 ± 0.003 0.898 ± 0.011 0.914 ± 0.002

70%

CRBM 0.885 ± 0.007 0.847 ± 0.013 0.855 ± 0.002 0.886 ± 0.001
LCML 0.804 ± 0.003 0.754 ± 0.009 0.731 ± 0.010 0.842 ± 0.009
MLRGL 0.807 ± 0.007 0.819 ± 0.009 0.767 ± 0.002 0.804 ± 0.001
FastTag 0.877 ± 0.009 0.845 ± 0.012 0.847 ± 0.009 0.853 ± 0.001

Table 2: The classification results (mean±std) on Corel5K with different auxiliary knowledge.

Measure Label Missing Rate CRBM-Wiki-ESA CRBM-Wiki-WE CRBM-SUN-CS CRBM+ø

Macro-F1
30% 0.159 ± 0.001 0.138 ± 0.002 0.156 ± 0.002 0.125 ± 0.005
70% 0.131 ± 0.002 0.113 ± 0.005 0.127 ± 0.007 0.097 ± 0.005

Micro-F1
30% 0.319 ± 0.001 0.288 ± 0.012 0.307 ± 0.002 0.267 ± 0.011
70% 0.192 ± 0.002 0.165 ± 0.005 0.187 ± 0.006 0.153 ± 0.002

AUC
30% 0.629 ± 0.001 0.598 ± 0.008 0.617 ± 0.002 0.577 ± 0.002
70% 0.592 ± 0.002 0.505 ± 0.007 0.581 ± 0.011 0.496 ± 0.008

Wiki-WE. The co-occurrence statistics (CS) method
is used to extract knowledge from a more relevant
auxiliary resource, i.e., a large scale image data set
SUN [27], which contains 908 scene categories and
3,819 object categories. We calculated the label corre-
lation matrix Σ for labels in Corel5K based on the la-
bel co-occurrence information presented in SUN, such
as Σij = nij/(ni + nj), where ni and nj denote the
numbers of occurrences of the i-th and j-th label con-
cepts of Corel5K in SUN, and nij denotes the number
of co-occurrences of the two label concepts in SUN.
We denote this method as CRBM-SUN-CS. We com-
pared these three variants of the proposed model with
a baseline CRBM-ø model that ignores the auxiliary
label information. The results with two different label
missing rates are reported in Table 2.

We can see that the three variants of CRBM that ex-
ploit auxiliary knowledge all consistently outperform
the baseline model. This suggests that the label re-
latedness knowledge extracted from free auxiliary re-
sources is in general helpful for handling missing train-
ing labels and our proposed model provides the proper
capacity of exploiting such knowledge. Among the
three variants, the improvements achieved by CRBM-
Wiki-WE over the baseline CRBM-ø are much smaller
than the other two variant methods. This is reason-
able since the similarity between the label embed-
ding vectors extracted by CRBM-Wiki-WE in some
cases may not reflect the label co-occurrence informa-
tion. CRBM-Wiki-ESA and CRBM-SUN-CS outper-
form CRBM-ø with large margins across all the eval-
uations as they both incorporate label co-occurrence

information. Moreover CRBM-Wiki-ESA produces the
best results among all the methods across all the learn-
ing scenarios and evaluation measures. These results
again justified our proposed model in incorporating
auxiliary label correlation knowledge from Wikipedia.

5 Conclusion

In this paper, we proposed a novel conditional re-
stricted Boltzmann machine (CRBM) model to cap-
ture high-order label dependence relationships and fa-
cilitate multi-label learning with incomplete labels.
This model also incorporates label correlation infor-
mation extracted from auxiliary resources as prior reg-
ularization knowledge. Under this model, we formu-
lated the label completion and multi-label prediction
model learning as a joint optimization problem, which
maximizes the regularized marginal conditional like-
lihood of the label vectors given the input features.
We developed a Viterbi style EM algorithm to solve
the joint optimization problem produced. Experiments
were conducted over four real world multi-label data
sets to compare the proposed approach with a number
of state-of-the-art methods. The experimental results
demonstrated the efficacy of the proposed model on
addressing multi-label learning with incomplete labels.
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