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Abstract

A good measure of similarity between data
points is crucial to many tasks in machine
learning. Similarity and metric learning
methods learn such measures automatically
from data, but they do not scale well re-
spect to the dimensionality of the data. In
this paper, we propose a method that can
learn efficiently similarity measure from high-
dimensional sparse data. The core idea is to
parameterize the similarity measure as a con-
vex combination of rank-one matrices with
specific sparsity structures. The parame-
ters are then optimized with an approximate
Frank-Wolfe procedure to maximally satisfy
relative similarity constraints on the train-
ing data. Our algorithm greedily incorpo-
rates one pair of features at a time into the
similarity measure, providing an efficient way
to control the number of active features and
thus reduce overfitting. It enjoys very ap-
pealing convergence guarantees and its time
and memory complexity depends on the spar-
sity of the data instead of the dimension of
the feature space. Our experiments on real-
world high-dimensional datasets demonstrate
its potential for classification, dimensionality
reduction and data exploration.

1 INTRODUCTION

In many applications, such as text processing, com-
puter vision or biology, data is represented as very
high-dimensional but sparse vectors. The ability to
compute meaningful similarity scores between these
objects is crucial to many tasks, such as classification,
clustering or ranking. However, handcrafting a rele-
vant similarity measure for such data is challenging
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because it is usually the case that only a small, often
unknown subset of features is actually relevant to the
task at hand. For instance, in drug discovery, chem-
ical compounds can be represented as sparse features
describing their 3D properties, and only a few of them
play an role in determining whether the compound will
bind to a target receptor (Guyon et al., 2004). In text
classification, where each document is represented as a
sparse bag of words, only a small subset of the words is
generally sufficient to discriminate among documents
of different topics.

A principled way to obtain a similarity measure tai-
lored to the problem of interest is to learn it from data.
This line of research, known as similarity and distance
metric learning, has been successfully applied to many
application domains (see Kulis, 2012; Bellet et al.,
2013, for recent surveys). The basic idea is to learn the
parameters of a similarity (or distance) function such
that it satisfies proximity-based constraints, requiring
for instance that some data instance x be more similar
to y than to z according to the learned function. How-
ever, similarity learning typically requires estimating a
matrix with O(d2) entries (where d is the data dimen-
sion) to account for correlation between pairs of fea-
tures. For high-dimensional data (say, d > 104), this
is problematic for at least three reasons: (i) training
the metric is computationally expensive (quadratic or
cubic in d), (ii) the matrix may not even fit in memory,
and (iii) learning so many parameters is likely to lead
to severe overfitting, especially for sparse data where
some features are rarely observed.

To overcome this difficulty, a common practice is to
first project data into a low-dimensional space (using
PCA or random projections), and then learn a similar-
ity function in the reduced space. Note that the pro-
jection intertwines useful features and irrelevant/noisy
ones. Moreover, it is also difficult to interpret the re-
duced feature space, when we are interested in discov-
ering what features are more important than others
for discrimination.

In this paper, we propose a novel method to learn
a bilinear similarity function SM (x,x′) = xTMx′

directly in the original high-dimensional space while
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avoiding the above-mentioned pitfalls. The main idea
combines three ingredients: the sparsity of the data,
the parameterization of M as a convex combination
of rank-one matrices with special sparsity structures,
and an approximate Frank-Wolfe procedure (Frank
and Wolfe, 1956; Clarkson, 2010; Jaggi, 2013) to learn
the similarity parameters. The resulting algorithm it-
eratively and greedily incorporates one pair of features
at a time into the learned similarity, providing an ef-
ficient way to ignore irrelevant features as well as to
guard against overfitting through early stopping. Our
method has appealing approximation error guarantees,
time and memory complexity independent of d and
outputs extremely sparse similarity functions that are
fast to compute and to interpret.

The usefulness of the proposed approach is evaluated
on several datasets with up to 100,000 features, some
of which have a large proportion of irrelevant features.
To the best of our knowledge, this is the first time that
a full similarity or distance metric is learned directly
on such high-dimensional datasets without first reduc-
ing dimensionality. Our approach significantly outper-
forms both a diagonal similarity learned in the original
space and a full similarity learned in a reduced space
(after PCA or random projections). Furthermore, our
similarity functions are extremely sparse (in the order
of 0.0001% of nonzero entries), using a sparse subset
of features and thus providing more economical analy-
sis of the resulting model (for example, examining the
importance of the original features and their pairwise
interactions).

The rest of this paper is organized as follows. Section
2 briefly reviews some related work. Our approach is
described in Section 3. We present our experimental
results in Section 4 and conclude in Section 5.

2 RELATED WORK

Learning similarity and distance metric has attracted
a lot of interests. In this section, we review previ-
ous efforts that focus on efficient algorithms for high-
dimensional data – a comprehensive survey of existing
approaches can be found in (Bellet et al., 2013).

A majority of learning similarity has focused on learn-
ing either a Mahalanobis distance dM (x,x′) = (x −
x′)TM(x − x′) where M is a symmetric positive
semi-definite (PSD) matrix, or a bilinear similarity
SM (x,x′) = xTMx′ where M is an arbitrary d × d
matrix. In both cases, it requires estimating O(d2) pa-
rameters, which is undesirable in the high-dimensional
setting. Virtually all existing methods thus resort to
dimensionality reduction (such as PCA or random pro-
jections) to preprocess the data when it has more than
a few hundred dimensions, thereby incurring a po-

tential loss of performance and interpretability of the
resulting function (see e.g., Davis et al., 2007; Wein-
berger and Saul, 2009; Guillaumin et al., 2009; Ying
and Li, 2012; Wang et al., 2012; Lim et al., 2013; Qian
et al., 2014).

There have been a few solutions to this essential lim-
itation. The most drastic strategy is to learn a di-
agonal matrix M (Schultz and Joachims, 2003; Gao
et al., 2014), which is very restrictive as it amounts to
a simple weighting of the features. Instead, some ap-
proaches assume an explicit low-rank decomposition
M = LTL and learn L ∈ Rr×d in order to reduce
the number of parameters to learn (Goldberger et al.,
2004; Weinberger and Saul, 2009; Kedem et al., 2012).
But this results in nonconvex formulations with many
bad local optima (Kulis, 2012) and requires to tune r
carefully. Moreover, the training complexity still de-
pends on d and can thus remain quite large. Another
direction is to learn M as a combination of rank-one
matrices. In (Shen et al., 2012), the combining ele-
ments are selected greedily in a boosting manner but
each iteration has an O(d2) complexity. To go around
this limitation, Shi et al. (2014) generate a set of rank-
one matrices before training and learn a sparse combi-
nation. However, as the dimension increases, a larger
dictionary is needed and can be expensive to generate.
Some work have also gone into sparse and/or low-rank
regularization to reduce overfitting in high dimensions
(Rosales and Fung, 2006; Qi et al., 2009; Ying et al.,
2009) but those do not reduce the training complexity
of the algorithm.

To the best of our knowledge, DML-eig (Ying and Li,
2012) and its extension DML-ρ (Cao et al., 2012) are
the only prior attempts to use a Frank-Wolfe proce-
dure for metric or similarity learning. However, their
formulation requires finding the largest eigenvector of
the gradient matrix at each iteration, which scales in
O(d2) and is thus unsuitable for the high-dimensional
setting we consider in this work.

3 PROPOSED APPROACH

This section introduces hdsl (High-Dimensional Sim-
ilarity Learning), the approach proposed in this pa-
per. We first describe our problem formulation (Sec-
tion 3.1), then derive an efficient algorithm to solve it
(Section 3.2).

3.1 Problem Formulation

In this work, we propose to learn a similarity function
for high-dimensional sparse data. We assume the data
points lie in some space X ⊆ Rd, where d is large (d >
104), and are D-sparse on average (D � d). Namely,
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the number of nonzero entries is typically much smaller
than d. We focus on learning a similarity function
SM : X × X → R of the form SM (x,x′) = xTMx′,
where M ∈ Rd×d. Note that for any M , SM can be
computed in O(D2) time on average.

Feasible domain Our goal is to derive an algorithm
to learn a very sparse M with time and memory re-
quirements that depend on D but not on d. To this
end, given a scale parameter λ > 0, we will parame-
terize M as a convex combination of 4-sparse d × d
bases:

M ∈ Dλ = conv(Bλ), with Bλ =
⋃
ij

{
P

(ij)
λ ,N

(ij)
λ

}
,

where for any pair of features i, j ∈ {1, . . . , d}, i 6= j,

P
(ij)
λ = λ(ei + ej)(ei + ej)

T =

 · · · · ·· λ · λ ·· · · · ·
· λ · λ ·· · · · ·

 ,

N
(ij)
λ = λ(ei − ej)(ei − ej)

T =

 · · · · ·· λ · −λ ·· · · · ·
· −λ · λ ·· · · · ·

 .

The use of such sparse matrices was suggested by Jaggi
(2011). Besides the fact that they are instrumental to
the efficiency of our algorithm (see Section 3.2), we
give some additional motivation for their use in the
context of similarity learning.

First, any M ∈ Dλ is a convex combination of
symmetric PSD matrices and is thus also symmet-
ric PSD. Unlike many metric learning algorithms, we
thus avoid the O(d3) cost of projecting onto the PSD
cone. Furthermore, constraining M to be symmetric
PSD provides useful regularization to prevent overfit-
ting (Chechik et al., 2009) and allows the use of the
square root of M to project the data into a new space
where the dot product is equivalent to SM . Because
the bases in Bλ are rank-one, the dimensionality of
this projection space is at most the number of bases
composing M .

Second, each basis operates on two features only. In
particular, S

P
(ij)
λ

(x,x′) = λ(xix
′
i+xjx

′
j +xix

′
j +xjx

′
i)

assigns a higher score when feature i appears jointly in
x and x′ (likewise for j), as well as when feature i in
x and feature j in y (and vice versa) co-occur. Con-
versely, S

N
(ij)
λ

penalizes the co-occurrence of features

i and j. This will allow us to easily control the number
of active features and learn a very compact similarity
representation.

Finally, notice that in the context of text data rep-
resented as bags-of-words (or other count data), the
bases in Bλ are quite natural: they can be intuitively

thought of as encoding the fact that a term i or j
present in both documents makes them more similar,
and that two terms i and j are associated with the
same/different class or topic.

Optimization problem We now describe the opti-
mization problem to learn the similarity parameters.
Following previous work (see for instance Schultz and
Joachims, 2003; Weinberger and Saul, 2009; Chechik
et al., 2009), our training data consist of side informa-
tion in the form of triplet constraints:

T = {xt should be more similar to yt than to zt}Tt=1 .

Such constraints can be built from a labeled train-
ing sample, provided directly by a domain expert,
or obtained through implicit feedback such as clicks
on search engine results. For notational convenience,
we write At = xt(yt − zt)

T ∈ Rd×d for each con-
straint t = 1, . . . , T . We want to define an objective
function that applies a penalty when a constraint t
is not satisfied with margin at least 1, i.e. whenever
〈At,M〉 = SM (xt,yt)−SM (xt, zt) < 1. To this end,
we use the smoothed hinge loss ` : R→ R+:

`
(
〈At,M〉

)
=


0 if 〈At,M〉 ≥ 1
1
2 − 〈A

t,M〉 if 〈At,M〉 ≤ 0
1
2 (1− 〈At,M〉)2 otherwise

,

where 〈·, ·〉 denotes the Frobenius inner product.1

Given λ > 0, our similarity learning formulation aims
at finding the matrix M ∈ Dλ that minimizes the av-
erage penalty over the triplet constraints in T :

min
M∈Dλ

f(M) =
1

T

T∑
t=1

`
(
〈At,M〉

)
(1)

Due to the convexity of the smoothed hinge loss, Prob-
lem (1) involves minimizing a convex function over the
convex domain Dλ. In the next section, we propose a
greedy algorithm to solve this problem.

3.2 Algorithm

3.2.1 Exact Frank-Wolfe Algorithm

We propose to use a Frank-Wolfe (FW) algorithm
(Frank and Wolfe, 1956; Clarkson, 2010; Jaggi, 2013)
to learn the similarity. FW is a general procedure
to minimize a convex and continuously differentiable
function over a compact and convex set. At each iter-
ation, it moves towards a feasible point that minimizes
a linearization of the objective function at the current

1In principle, any other convex and continuously differ-
entiable loss function can be used in our framework, such
as the squared hinge loss, logistic loss or exponential loss.
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Algorithm 1 Frank Wolfe algorithm for problem (1)

1: initialize M (0) to an arbitrary B ∈ Bλ
2: for k = 0, 1, 2, . . . do

3: let B
(k)
F ∈ arg minB∈Bλ〈B,∇f(M (k))〉 and D

(k)
F = B

(k)
F −M (k) // compute forward direction

4: let B
(k)
A ∈ arg maxB∈S(k)〈B,∇f(M (k))〉 and D

(k)
A = M (k) −B

(k)
A // compute away direction

5: if 〈D(k)
F ,∇f(M (k))〉 ≤ 〈D(k)

A ,∇f(M (k))〉 then

6: D(k) = D
(k)
F and γmax = 1 // choose forward step

7: else
8: D(k) = D

(k)
A and γmax = α

(k)

B
(k)
A

/(1− α(k)

B
(k)
A

) // choose away step

9: end if
10: let γ(k) ∈ arg minγ∈[0,γmax] f(M (k) + γD(k)) // perform line search

11: M (k+1) = M (k) + γ(k)D(k) // update iterate towards direction

12: end for

iterate. Note that a minimizer of this linear function
must be at a vertex of the feasible domain. We will
exploit the fact that in our formulation (1), the ver-
tices of the feasible domain Dλ are the elements of Bλ
and have special structure.

The FW algorithm applied to (1) and enhanced with
so-called away steps (Guélat and Marcotte, 1986) is
described in details in Algorithm 1. During the course
of the algorithm, we explicitly maintain a representa-
tion of each iterate M (k) as a convex combination of
basis elements:

M (k) =
∑

B∈Bλ

α
(k)
B B, where

∑
B∈Bλ

α
(k)
B = 1, α

(k)
B ≥ 0.

We denote the set of active basis elements in M (k)

as S(k) = {B ∈ Bλ : α
(k)
B > 0}. The algorithm goes

as follows. We initialize M (0) to a random basis el-
ement. Then, at each iteration, we greedily choose
between moving towards a (possibly) new basis (for-
ward step) or reducing the weight of an active one
(away step). The extent of the step is determined by
line search. As a result, Algorithm 1 adds only one
basis (at most 2 new features) at each iteration, which
provides a convenient way to control the number of ac-
tive features and maintain a compact representation of
M (k) in O(k) memory cost. Furthermore, away steps
provide a way to reduce the importance of a poten-
tially “bad” basis element added at an earlier itera-
tion (or even remove it completely when γ(k) = γmax).
Note that throughout the execution of the algorithm,
all iterates M (k) remain convex combinations of basis
elements and are thus feasible. The following lemma
shows that the iterates of Algorithm 1 converge to an
optimal solution of (1) with a rate of O(1/k).

Lemma 1. Let λ > 0, M∗ be an optimal solution
to (1) and L = 1

T

∑T
t=1 ‖At‖2F . At any iteration

k ≥ 1 of Algorithm 1, the iterate M (k) ∈ Dλ satis-
fies f(M (k))−f(M∗) ≤ 16Lλ2/(k+2). Furthermore,

it has at most rank k+1 with 4(k+1) nonzero entries,
and uses at most 2(k + 1) distinct features.

Proof. The result follows from the analysis of the gen-
eral FW algorithm (Jaggi, 2013), the fact that f has
L-Lipschitz continuous gradient and observing that
diam‖·‖F (Dλ) =

√
8λ.

Note that the optimality gap in Lemma 1 is indepen-
dent from d. This means that Algorithm 1 is able
to find a good approximate solution based on a small
number of features, which is very appealing in the
high-dimensional setting.

3.2.2 Complexity Analysis

We now analyze the time and memory complexity of
Algorithm 1. Observe that the gradient has the form
∇f(M) = 1

T

∑T
t=1 G

t, where

Gt =

 0 if 〈At,M〉 ≥ 1
−At if 〈At,M〉 ≤ 0
(〈At,M〉 − 1)At otherwise

.

The structure of the algorithm’s updates is crucial to
its efficiency: since M (k+1) is a convex combination of
M (k) and a 4-sparse matrix B(k), we can efficiently
compute most of the quantities of interest through
careful book-keeping.

In particular, storing M (k) at iteration k requires
O(k) memory. We can also recursively compute
〈At,M (k+1)〉 for all constraints in only O(T ) time and
O(T ) memory based on 〈At,M (k)〉 and 〈At,B(k)〉.
This allows us, for instance, to efficiently compute the
objective value as well identify the set of satisfied con-
straints (those with 〈At,M (k)〉 ≥ 1) and ignore them
when computing the gradient. Finding the away di-
rection at iteration k can be done in O(Tk) time. For
the line search, we use a bisection algorithm to find a
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Table 1: Complexity of iteration k (ignoring logarith-
mic factors) for different variants of the algorithm.

Variant Time Memory

Exact Õ(TD2 + Tk) Õ(TD2 + k)

Mini-batch Õ(MD2 + Tk) Õ(T +MD2 + k)

Heuristic Õ(MD + Tk) Õ(T +MD + k)

root of the gradient of the 1-dimensional function of
γ, which only depends on 〈At,M (k)〉 and 〈At,B(k)〉,
both of which are readily available. Its time complex-
ity is O(T log 1

ε ) where ε is the precision of the line-
search, and requires constant memory.

The bottleneck is to find the forward direction. In-
deed, sequentially considering each basis element is in-
tractable as it takes O(Td2) time. A more efficient
strategy is to sequentially consider each constraint,
which requires O(TD2) time and O(TD2) memory.
The overall iteration complexity of Algorithm 1 is
given in Table 1.

3.2.3 Approximate Forward Step

Finding the forward direction can be expensive when
T and D are both large. We propose two strategies to
alleviate this cost by finding an approximately optimal
basis (see Table 1 for iteration complexity).

Mini-Batch Approximation Instead of finding
the forward and away directions based on the full gra-
dient at each iteration, we estimate it on a mini-batch
of M � T constraints drawn uniformly at random
(without replacement). The complexity of finding the
forward direction is thus reduced to O(MD2) time and
O(MD2) memory. Under mild assumptions, concen-
tration bounds such as Hoeffding’s inequality without
replacement (Serfling, 1974) can be used to show that
with high probability, the deviation between the “util-
ity” of any basis element B on the full set of con-
straints and its estimation on the mini-batch, namely:∣∣∣∣∣ 1

M

M∑
t=1

〈B,Gt〉 − 1

T

T∑
t=1

〈B,Gt〉

∣∣∣∣∣ ,
decreases as O(1/

√
M). In other words, the mini-

batch variant of Algorithm 1 finds a forward direction
which is approximately optimal. The FW algorithm
is known to be robust to this setting, and convergence
guarantees similar to Lemma 1 can be obtained fol-
lowing (Jaggi, 2013; Freund and Grigas, 2013).

Fast Heuristic To avoid the quadratic dependence
on D, we propose to use the following heuristic to

find a good forward basis. We first pick a feature
i ∈ {1, . . . , d} uniformly at random, and solve the lin-

ear problem over the restricted set
⋃
j{P

(ij)
λ ,N

(ij)
λ }.

We then fix j and solve the problem again over the set⋃
k{P

(kj)
λ ,N

(kj)
λ } and use the resulting basis for the

forward direction. This can be done in only O(MD)
time and O(MD) memory and gives good performance
in practice, as we shall see in the next section.

4 EXPERIMENTS

In this section, we present experiments to study the
performance of HDSL in classification, dimensionality
reduction and data exploration against competing ap-
proaches.

4.1 Experimental Setup

Datasets We report experimental results on several
real-world classification datasets with up to 100,000
features. Dorothea and dexter come from the NIPS
2003 feature selection challenge (Guyon et al., 2004)
and are respectively pharmaceutical and text data
with predefined splitting into training, validation and
test sets. They both contain a large proportion of
noisy/irrelevant features. Reuters CV1 is a popu-
lar text classification dataset with bag-of-words rep-
resentation. We use the binary version from the LIB-
SVM dataset collection2 (with 60%/20%/20% random
splits) and the 4-classes version (with 40%/30%/30%
random splits) introduced in (Cai and He, 2012). De-
tailed information on the datasets and splits is given
in Table 2. All datasets are normalized such that each
feature takes values in [0, 1].

Competing Methods We compare the proposed
approach (hdsl) to several methods:

• identity: The standard dot product as a base-
line, which corresponds to using M = I.

• diag: Diagonal similarity learning (i.e., a weight-
ing of the features), as done in Gao et al. (2014).
We obtain it by minimizing the same loss as in
hdsl with `2 and `1 regularization, i.e.,

min
w∈Rd

f(w) =
1

T

T∑
t=1

`
(
〈At,diag(w)〉

)
+ λΩ(w),

where Ω(w) ∈ {‖w‖22, ‖w‖1} and λ is the regu-
larization parameter. Optimization is done using
(proximal) gradient descent.

2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Table 2: Datasets used in the experiments.

Datasets Dimension Sparsity Training size Validation size Test size

dexter 20,000 0.48% 300 300 2,000
dorothea 100,000 0.91% 800 350 800

rcv1 2 47,236 0.16% 12,145 4,048 4,049
rcv1 4 29,992 0.26% 3,850 2,888 2,887

• rp+oasis: Similarity learning in random pro-
jected space. Given r � d, let R ∈ Rd×r be a
matrix where each entry rij is randomly drawn
from N (0, 1). For each data instance x ∈ Rd, we
generate x̃ = 1√

r
RTx ∈ Rr and use this reduced

data in OASIS (Chechik et al., 2009), a fast online
method to learn a bilinear similarity from triplet
constraints.

• pca+oasis: Similarity learning in PCA space.
Same as rp+oasis, except that PCA is used in-
stead of random projections to project the data
into Rr.

• svm: Support Vector Machines. We use linear
SVM, which is known to perform well for sparse
high-dimensional data (Caruana et al., 2008),
with `2 and `1 regularization. We also use non-
linear SVM with the polynomial kernel (2nd and
3rd degree) popular in text classification (Chang
et al., 2010). The SVM models are trained using
liblinear (Fan et al., 2008) and libsvm (Chang and
Lin, 2011) with 1vs1 paradigm for multiclass.

Training Procedure For all similarity learning al-
gorithms, we generate 15 training constraints for each
instance by identifying its 3 target neighbors (nearest
neighbors with same label) and 5 impostors (nearest
neighbors with different label), following Weinberger
and Saul (2009). Due to the very small number of
training instances in dexter, we found that better per-
formance is achieved using 20 constraints per instance
x, each of them constructed by randomly drawing a
point from the class of x and a point from a different
class. All parameters are tuned using the accuracy on
the validation set. For hdsl, we use the fast heuristic
described in Section 3.2.3 and tune the scale param-
eter λ ∈ {1, 10, . . . , 109}. The regularization parame-
ters of diag and svm are tuned in {10−9, . . . , 108} and
the “aggressiveness” parameter of OASIS is tuned in
{10−9, . . . , 102}.

4.2 Results

Classification Performance We first investigate
the performance of each similarity learning approach

in k-NN classification (k was set to 3 for all exper-
iments). For rp+oasis and pca+oasis, we choose
the dimension r of the reduced space based on the ac-
curacy of the learned similarity on the validation set,
limiting our search to r ≤ 2000 because OASIS is ex-
tremely slow beyond this point.3 Similarly, we use the
performance on validation data to do early stopping
in hdsl, which also has the effect of restricting the
number of features used by the learned similarity.

Table 3 shows the k-NN classification performance.
First, notice that rp+oasis often performs worse than
identity, which is consistent with previous observa-
tions that a large number of random projections may
be needed to obtain good performance (Fradkin and
Madigan, 2003). pca+oasis gives much better re-
sults, but is generally outperformed by a simple diag-
onal similarity learned directly in the original high-
dimensional space. hdsl, however, outperforms all
other algorithms on these datasets, including diag.
This shows the good generalization performance of the
proposed approach, even though the number of train-
ing samples is sometimes very small compared to the
number of features, as in dexter and dorothea. It also
shows the relevance of encoding “second order” infor-
mation (pairwise interactions between the original fea-
tures) in the similarity instead of simply considering a
feature weighting as in diag.

Table 4 shows the comparison with SVMs. Inter-
estingly, hdsl with k-NN outperforms all SVM vari-
ants on dexter and dorothea, both of which have a
large proportion of irrelevant features. This shows
that its greedy strategy and early stopping mecha-
nism achieves better feature selection and generaliza-
tion than the `1 version of linear SVM. On the other
two datasets, hdsl is competitive with SVM, although
it is outperformed slightly by one variant (svm-poly-3
on rcv1 2 and svm-linear-`2 on rcv1 4), both of which
rely on all features.

Feature Selection and Sparsity We now focus on
the ability of hdsl to perform feature selection and
more generally to learn sparse similarity functions. To

3Note that the number of PCA dimensions is at most
the number of training examples. Therefore, for dexter and
dorothea, r is at most 300 and 800 respectively.
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Table 3: k-NN test error (%) of the similarities learned with each method. The number of features used by each
similarity (when smaller than d) is given in brackets. Best accuracy on each dataset is shown in bold.

Datasets identity rp+oasis pca+oasis diag-`2 diag-`1 hdsl

dexter 20.1 24.0 [1000] 9.3 [50] 8.4 8.4 [773] 6.5 [183]
dorothea 9.3 11.4 [150] 9.9 [800] 6.8 6.6 [860] 6.5 [731]

rcv1 2 6.9 7.0 [2000] 4.5 [1500] 3.5 3.7 [5289] 3.4 [2126]
rcv1 4 11.2 10.6 [1000] 6.1 [800] 6.2 7.2 [3878] 5.7 [1888]

Table 4: Test error (%) of several SVM variants compared to hdsl. As in Table 3, the number of features is
given in brackets and best accuracies are shown in bold.

Datasets svm-poly-2 svm-poly-3 svm-linear-`2 svm-linear-`1 hdsl

dexter 9.4 9.2 8.9 8.9 [281] 6.5 [183]
dorothea 7 6.6 8.1 6.6 [366] 6.5 [731]

rcv1 2 3.4 3.3 3.5 4.0 [1915] 3.4 [2126]
rcv1 4 5.7 5.7 5.1 5.7 [2770] 5.7 [1888]
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(a) dexter dataset
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(b) rcv1 4 dataset

Figure 1: Number of active features learned by hdsl
as a function of the iteration number.

better understand the behavior of hdsl, we show in
Figure 1 the number of selected features as a function
of the iteration number for two of the datasets. Re-
member that at most two new features can be added
at each iteration. Figure 1 shows that hdsl incorpo-
rates many features early on but tends to eventually
converge to a modest fraction of features (the same ob-
servation holds for the other two datasets). This may
explain why hdsl does not suffer much from overfit-
ting even when training data is scarce as in dexter.

Another attractive characteristic of hdsl is its ability
to learn a matrix that is sparse not only on the diag-
onal but also off-diagonal (the proportion of nonzero
entries is in the order of 0.0001% for all datasets). In
other words, it only relies on a few relevant pairwise
interactions between features. Figure 2 shows two ex-
amples, where we can see that hdsl is able to exploit
the product of two features as either a positive or neg-
ative contribution to the similarity score. This opens
the door to an analysis of the importance of pairs of
features (for instance, word co-occurrence) for the ap-
plication at hand. Finally, the extreme sparsity of the

matrices allows very fast similarity computation.

Finally, it is also worth noticing that hdsl uses sig-
nificantly less features than diag-`1 (see numbers in
brackets in Table 3). We attribute this to the extra
modeling capability brought by the non-diagonal sim-
ilarity observed in Figure 2.4

Dimension Reduction We now investigate the po-
tential of hdsl for dimensionality reduction. Recall
that hdsl learns a sequence of PSD matrices M (k).
We can use the square root of M (k) to project the
data into a new space where the dot product is equiv-
alent to SM(k) in the original space. The dimension
of the projection space is equal to the rank of M (k),
which is upper bounded by k+1. A single run of hdsl
can thus be seen as incrementally building projection
spaces of increasing dimensionality.

To assess the dimensionality reduction quality of hdsl
(measured by k-NN classification error on the test set),
we plot its performance at various iterations during
the runs that gave the results in Table 3. We com-
pare it to two standard dimensionality reduction tech-
niques: random projection and PCA. We also evalu-
ate rp+oasis and pca+oasis, i.e., learn a similar-
ity with OASIS on top of the RP and PCA features.5

Note that OASIS was tuned separately for each projec-
tion size, making the comparison a bit unfair to hdsl.
The results are shown in Figure 3. As observed ear-

4Note that hdsl uses roughly the same number of fea-
tures as svm-linear-`1 (Table 4), but drawing any conclu-
sion is harder because the objective and training data for
each method are different. Moreover, 1-vs-1 SVM combines
several binary models to deal with the multiclass setting.

5Again, we were not able to run OASIS beyond a certain
dimension due to computational complexity.
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(a) dexter (20, 000 × 20, 000 matrix, 712 nonzeros) (b) rcv1 4 (29, 992 × 29, 992 matrix, 5263 nonzeros)

Figure 2: Sparsity structure of the matrix M learned by hdsl. Positive and negative entries are shown in blue
and red, respectively (best seen in color).
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(a) dexter dataset
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(b) dorothea dataset
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(c) rcv1 2 dataset
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(d) rcv1 4 dataset

Figure 3: k-NN test error as a function of the dimensionality of the space (in log scale). Best seen in color.

lier, random projection-based approaches achieve poor
performance. When the features are not too noisy (as
in rcv1 2 and rcv1 4), PCA-based methods are bet-
ter than hdsl at compressing the space into very few
dimensions, but hdsl eventually catches up. On the
other hand, PCA suffers heavily from the presence of
noise (dexter and dorothea), while hdsl is able to
quickly improve upon the standard similarity in the
original space. Finally, on all datasets, we observe
that hdsl converges to a stationary dimension with-
out overfitting, unlike pca+oasis which exhibits signs
of overfitting on dexter and rcv1 4 especially.

5 CONCLUSION

In this work, we proposed an efficient approach to
learn similarity functions from high-dimensional sparse
data. This is achieved by forming the similarity as
a combination of simple sparse basis elements that
operate on only two features and the use of an (ap-
proximate) Frank-Wolfe algorithm. Experiments on
real-world datasets confirmed the robustness of the ap-
proach to noisy features and its usefulness for classifi-
cation and dimensionality reduction. Together with

the extreme sparsity of the learned similarity, this
makes our approach potentially useful in a variety of
other contexts, from data exploration to clustering and
ranking, and more generally as a way to preprocess the
data before applying any learning algorithm.
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