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Abstract

We analyze the problem of regression when both
input covariates and output responses are func-
tions from a nonparametric function class. Func-
tion to function regression (FFR) covers a large
range of interesting applications including time-
series prediction problems, and also more gen-
eral tasks like studying a mapping between two
separate types of distributions. However, previ-
ous nonparametric estimators for FFR type prob-
lems scale badly computationally with the num-
ber of input/output pairs in a data-set. Given the
complexity of a mapping between general func-
tions it may be necessary to consider large data-
sets in order to achieve a low estimation risk. To
address this issue, we develop a novel scalable
nonparametric estimator, the Triple-Basis Esti-
mator (3BE), which is capable of operating over
data-sets with many instances. To the best of our
knowledge, the 3BE is the first nonparametric
FFR estimator that can scale to massive data-sets.
We analyze the 3BE’s risk and derive an upper-
bound rate. Furthermore, we show an improve-
ment of several orders of magnitude in terms of
prediction speed and a reduction in error over
previous estimators in various real-world data-
sets.

1 INTRODUCTION

Modern data-sets are growing not only in quantity of in-
stances but the instances themselves are growing in com-
plexity and dimensionality. The goal of this paper is to
perform regression with data-sets that are massive in both
the number of instances and also in the complexity of in-
stances; specifically, we consider functional data. We study
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function to function regression (FFR) where one aims to
learn a mapping f that takes in a general input functional
covariate p : Rl 7→ R and outputs a functional response
q = f(p) : Rk 7→ R. In general, functions are infinite di-
mensional objects; hence, the problem of FFR is not imme-
diately solvable by traditional regression methods on finite
vectors. Furthermore, unlike with typical regression prob-
lems, neither the covariate nor the response will be directly
observed (since it is infeasible to directly observe func-
tions). Previous nonparametric estimators for FFR do not
scale computationally to large data-sets. However, large
data-sets are often needed to achieve a low risk; to mitigate
this issue we introduce the Triple-Basis Estimator (3BE).

The FFR framework is quite general and includes many
interesting problems. For instance, one may consider in-
put/output functions that are probability distribution func-
tions (pdfs). An example of a financial domain related FFR
problem with density functions is learning the mapping that
takes in the pdf of stock prices in a specific industry and
outputs the pdf of stock prices in another industry. Addi-
tionally, in cosmology one may be interested in regress-
ing a mapping that takes in the pdf of simulated particles
from a computationally inexpensive but inaccurate simu-
lation and outputs the corresponding pdf of particles from
a computationally expensive but accurate simulation. In
essence, one would be enhancing the inaccurate simula-
tion using previously seen data from accurate simulations.
There are also many non-distributional FFR problems. For
example, one may view foreground/background segmen-
tation as a FFR problem that maps an image’s p function
to a segmentation’s q function, where p(x, y) is a function
that takes in a pixel’s (x, y) position and outputs the corre-
sponding pixel’s intensity, and q(x, y) is function that takes
in a pixel’s position and outputs 1 if the pixel is in the fore-
ground and 0 otherwise.

Moreover, several time-series tasks may be posed in the
FFR framework (see Figure 1). Suppose, for example,
that one is interested in predicting the next unit interval
of a time-series given the previous unit interval; then, one
may frame this as a FFR problem by letting input func-
tions p : [0, 1] 7→ R be the function representing the
time-series during the first unit interval and output func-
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Figure 1: (a) One may consider trying to predict a later
portion of a time-series when given the prior portion of a
time-series as a FFR problem. (b) One may try to predict
one co-occurring time-series when given another.

tions q : [0, 1] 7→ R be the function representing the time-
series during the next unit interval (Figure 1(a)). A re-
lated problem is that of predicting co-occurring functions
(Figure 1(b)). An interesting application of predicting co-
occurring functions is with motion capture data, where one
may be interested in predicting the movement of joints that
are occluded given the movement of observed joints.

As stated previously, the problem of FFR boils down to
the study of a mapping between infinite dimensional ob-
jects. Thus, the regression task would benefit greatly from
learning on data-sets with a large number of input/output
pairs. However, many nonparametric estimators for regres-
sion problems do not scale well in the number of instances
in a data-set. Thus, if the number of instances is in the many
thousands, millions, or even more, then it will be infeasi-
ble to use such estimators. This leads to a paradox: one
wants many instances in a data-set in order to effectively
learn the FFR mapping, but one also wants a low number
of instances in order to avoid a high computational cost.
We resolve this issue through the 3BE, which we will show
can perform FFR in a scalable manner.

The data-sets we consider are as follows. Since general
functions are infinite dimensional we cannot work over a
data-set D̄ = {(pi, qi)}Ni=1 where qi = f(pi). Instead
we shall work with a data-set of instances that are (in-
exact) observation pairs from input/output functions D =
{(Pi, Qi)}Ni=1 where Pi, and Qi are some form of empiri-
cal observations from pi and qi (see Figure 2). For exam-
ple, one may consider the functional observations to be a
set of n noisy function evaluations at uniformly distributed
points, or a sample of n points drawn from p and q respec-
tively (when p, q are distributions). Using D we will make
an estimate of D̄ as D̃ = {(p̃i, q̃i)}Ni=1 where p̃i, q̃i are
functional estimates created using Pi, Qi respectively. The
task then is to estimate q0 = f(p0) as q̂0 = f̂(p̃0) when
given a functional observation, P0, of an unseen function
p0.

Our approach will be as follows. First, we convert the in-
finite dimensional task of estimating the output function q0

into a finite dimensional problem by projecting q0 into a

Figure 2: We observe a data-set of input/output func-
tional observation pairs {(Pi, Qi)}Ni=1, where Pi, Qi are
some inexact observations of functions pi and qi such as
a set of noisy function evaluations at uniformly distributed
points. Pi, Qi then are used to make function approxima-
tions p̃i, q̃i, which in turn are used to predict the response
q0 for a unseen query input function p0.

finite number of basis functions (focusing on the crucial
characteristics of q0, roughly speaking). Then, to estimate
the projections onto the basis functions we embed the input
functions into a nonlinear space where linear operations are
approximately evaluations of a nonlinear mapping f in a
broad function class. Finally, f is estimated by minimiz-
ing the empirical risk of a linear operation in the nonlinear
embedding of input functions for predicting the basis pro-
jections of output functions in a data-set.

Our Contribution We develop the Triple-Basis Estima-
tor (3BE), a novel nonparametric estimator for FFR that
scales to large data-sets. The 3BE is the first estimator of
its kind, allowing one to regress functional responses given
functional covariates in massive data-sets. Furthermore,
we analyze the L2 risk of the 3BE under nonparametric
assumptions. Lastly, we show an improvement of several
orders of magnitude over existing estimators in terms of
prediction time as well as a reduction in error in various
real-world data-sets.

2 RELATED WORK

A previous nonparametric FFR estimator was proposed
by Kadri et al. (2010). Kadri et al. (2010) attempt to
perform FFR on a functional RKHS. That is, if we con-
sider F as a functional Hilbert space, where f ∈ F is
such that f : Gx 7→ Gy , then f is estimated by f∗ =

arg minf̂
∑N
i=1‖qi − f̂(pi)‖2Gy + λ‖f‖2F . However, when

each function is observed though n noisy function evalua-
tions this estimator will require the inversion of aNn×Nn
matrix, which will be computationally infeasible for data-
sets of even a modest size.

In addition, Oliva, Póczos, and Schneider (2013) pro-
vide an estimator for doing FFR, and analyze its risk
for the special case where both input and output func-
tions are probability distribution functions. The estima-
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tor, henceforth referred to as the linear smoother estimator
(LSE), works as follows when given a training data-sets of
D = {(Pi, Qi)}Ni=1 of empirical functional observations
and D̃ = {(p̃i, q̃i)}Ni=1 of function estimates and a function
estimate p̃0 of a new query input function:

f̂(p̃0) =
N∑
i=1

W (p̃i, p̃0)q̃i where (1)

W (p̃i, p̃0) =


K(D(p̃i,p̃0))
N∑
j=1

K(D(p̃j ,p̃0))

if
∑
j K(D(p̃j , p̃0)) > 0

0 otherwise .
(2)

Here K : R → [0,∞) is taken to be a symmetric ker-
nel with bounded support, and D is some metric over
functions. However, while such an estimator is useful for
smaller FFR problems, it may not be used in larger data-
sets. Clearly, the LSE must perform a kernel evaluation
with all input functions in one’s data-set to produce a pre-
diction, leading to a total computational cost of Ω(Nn)
when considering the cost of computing metrics D(p̃j , p̃0)
when |Pi| � |Qi| � n. This implies, for example, that
obtaining estimates for each training instance scales as
Ω(nN2), which will be prohibitive for big data-sets.

Previous work for nonparametric estimation in large data-
sets with functional inputs includes work by Oliva et al.
(2014a). There an estimator was proposed for scalable
learning of a distribution input covariate to real-value out-
put response regression problem. We note however that it
is not immediately clear how to achieve a scalable estima-
tor for regression functional responses with functional co-
variates, nor how to analyze such an estimator’s risk since
general functional responses are infinite dimensional.

We note further that work has been done in linear models
for FFR (Ramsay and Silverman 2006; Oliva et al. 2014b).
However, such models work over a strong assumption on
the linearity of the mapping f , and will not be able to
capture non-linear mappings. Moreover, FFR is a specific
case of general functional analysis (Ramsay and Silver-
man 2006; Ferraty and Vieu 2006; Ramsay and Silverman
2002).

3 MODEL

We expound upon our model of input/output functions and
the mapping between them. Later, we introduce the 3BE
and analyze its risk for the case when one has a data-set
of pairs of input/output functional observations that are a
set of noisy function evaluations at uniformly distributed
points. However, the following is generalizable for the
case where one observes function evaluations at a fixed grid
of points or function observations of samples from distri-
butions. In short, we assume smooth input/output func-
tions that are well approximated by a finite number of basis

functions. Further, we consider a nonparametric mapping
between them where the projection of the output function
onto each basis function may be written as an infinite linear
combination of RBF kernel evaluations between the input
function and unknown functions (see below).

We take our data-set to be input/output empirical function
observation pairs:

D = {(Pi, Qi)}Ni=1 where (3)
Pi = {pi(uij) + εij}nij=1 , Qi = {qi(vij) + ξij}mij=1 , (4)

with sample points uij
iid∼ Unif([0, 1]l), vij

iid∼
Unif([0, 1]k), and noise εij

iid∼ Ξε, ξij
iid∼ Ξξ. With

error distributions Ξξ,Ξε, s.t. E [εij ] = E [ξij ] = 0,
Var [εij ] ,Var [ξij ] ≤ ς < ∞. Furthermore, pi ∈ I,
pi : [0, 1]l 7→ R, qi ∈ O, qi : [0, 1]k 7→ R, qj = f(pj)

∗,

and pi
iid∼ Φ where I and O are some class of input/output

functions and Φ is some measure over I. Furthermore,
we shall assume that ni � n and mi � m. We shall
use D to make estimates of the true input/output functions
D̃ = {(p̃i, q̃i)}Ni=1, which will then be used to estimate the
output function q0 corresponding to an unseen input func-
tion p0.

3.1 Basis Functions and Projections

Let {ϕi}i∈Z be an orthonormal basis for L2([0, 1]). Then,
the tensor product of {ϕi}i∈Z serves as an orthonormal ba-
sis for L2([0, 1]d); that is, the following is an orthnormal
basis for L2([0, 1]d):

{ϕα}α∈Zd where ϕα(x) =

d∏
i=1

ϕαi(xi), x ∈ [0, 1]d.

So we have that ∀α, ρ ∈ Zd, 〈ϕα, ϕρ〉 = I{α=ρ}. Let
h ∈ L2([0, 1]d), then

h(x) =
∑
α∈Zd

aα(h)ϕα(x) where (5)

aα(h) = 〈ϕα, h〉 =

∫
[0,1]d

ϕα(z)h(z)dz ∈ R. (6)

As previously mentioned, a data-set of estimated in-
put/output function pairs, D̃ = {(p̃i, q̃i)}Ni=1, will be con-
structed from the data-set of input/output function evalua-
tion setsD = {(Pi, Qi)}Ni=1. Suppose function h has a cor-
responding set of evaluations H = {yj = h(uj) + εj}rj=1

where uj
iid∼ Unif([0, 1]d) and E [εj ] = 0, E

[
ε2j
]
< ∞.

∗Similarly, one may consider a model qi(x) = [f(pi)](x) +
ζwi(x), where wi is a standard Wiener process. This however
will be akin to adding variance to our noisy function evaluations,
hence we omit wi for simplicity.
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Then, h̃, the estimate of h, will be as follows:

h̃(x) =
∑
α∈M

aα(H)ϕα(x) where (7)

aα(H) =
1

r

r∑
j=1

yjϕα(uj), (8)

and M is a finite set of indices for basis functions.

3.1.1 Cross-validation

In practice, one would choose indices M in (7) through
cross-validation. The number of projection coefficients one
chooses will depend on the smoothness of the function h
as well as the number of points in H . Typically, a larger
|i| will correspond to a higher frequency 1-dimensional ba-
sis function ϕi; thus, a natural way of selecting M is to
consider sets

Mt = {α ∈ Zd : ‖α‖2 ≤ t} (9)

with t ∈ [0,∞). One would then choose the value of
t (setting M = Mt) that minimizes a loss, such as the
mean squared error between h̃(ui) and yi. We shall see
below that considering Mt in this manner corresponds to a
smoothness assumption on the class of input/output func-
tions.

3.2 Function to Function Mapping

Let p ∼ Φ and q = f(p), we have that:

q(x) = [f(p)](x) =
∑
α∈Zk

aα(f(p))ϕα(x) (10)

=
∑
α∈Zk

fα(p)ϕα(x), (11)

where fα(p) = aα(f(p)). Hence, we may think of f : I 7→
O as consisting of countably many functions {fα | fα :
I 7→ R, α ∈ Zk}, where each fα is responsible for the
mapping of p to the projection of q on to ϕα. We take
fα functions to be a nonparametric linear smoother on a
possibly infinite set of functions weighted by a kernel:

fα(p) =
∞∑
i=1

θαiKσ(gαi, p) where (12)

θαi ∈ R, gαi ∈ I. (13)

We shall consider the following class of functions:

Fσ = {f : ∀α ∈ Zk ‖θα‖1 ≤ Bα, fα as in (12)}. (14)

4 TRIPLE-BASIS ESTIMATOR

If the tail-frequency behavior of output functions are con-
trolled, then we may effectively estimate output functions

using a finite number of projection coefficients; thus, we
only need to estimate a finite number of the fα functions.
The 3BE consists of two orthonormal bases for estimat-
ing input and output functions respectively, and a random
basis to estimate the mapping between them. To effi-
ciently estimate the fα functions, we shall use random ba-
sis functions from Random Kitchen Sinks (RKS) (Rahimi
and Recht 2007). We shall show that to approximate fα,
we need only estimate a linear mapping in the random
RKS features. Rahimi and Recht (2007) show that if one
has a shift-invariant kernel K (in particular we consider
the RBF kernel K(x) = exp(−x2/2)), then for fixed
ωi

iid∼ N (0, σ−2Id), bi
iid∼ Unif([0, 2π]), we have that for

each x, y ∈ Rd:

K(‖x− y‖2 /σ) ≈ z(x)T z(y), where (15)

z(x) ≡
√

2
D

[
cos(ωT1 x+ b1) · · · cos(ωTDx+ bD)

]T
,

(16)

and D is the number of random basis functions (see
(Rahimi and Recht 2007) for approximation quality) . Let
U and V be a set of indices for basis functions to project
input and output functions respectively:

U = {α1, . . . , αs}, V = {β1, . . . , βr}. (17)

In practice one would choose U and V through cross-
validation (see §3.1.1). First note that:

〈p̃i, p̃j〉 =

〈∑
α∈U

aα(Pi)ϕα,
∑
α∈U

aα(Pj)ϕα

〉
(18)

=
∑
α∈U

∑
β∈U

aα(Pi)aβ(Pj) 〈ϕα, ϕβ〉 (19)

=
∑
α∈U

aα(Pi)aα(Pj) = 〈~aU (Pi),~aU (Pj)〉 , (20)

where ~aU (Pi) = (aα1
(Pi), . . . , aαs(Pi))

T . Thus,
‖p̃i − p̃j‖2 = ‖~aU (Pi)− ~aU (Pj)‖2 , where the norm on
the LHS is the L2 norm and the `2 on the RHS.

Consider a fixed σ, and let ωi
iid∼ N (0, σ−2Is), bi

iid∼
Unif[0, 2π], be fixed. Then

fα(p0) =
∞∑
i=1

θαiKσ(‖gαi − p0‖2) (21)

≈
∞∑
i=1

θαiKσ(‖~aU (gαi)− ~aU (P0)‖2) (22)

≈
∞∑
i=1

θαiz(~aU (gαi))
T z(~aU (P0)) (23)

= ψTα z(~aU (P0)), (24)

where ψα =
∑∞
i=1 θαiz(~aU (gαi)) ∈ Rs. Hence, by (24)

fα is approximately linear in z(~aU (·)); so, we consider lin-
ear estimators in the non-linear space induced by z(~aU (·)).
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In particular, we take the OLS estimator using the data-set
{(z(~aU (Pi)), aα(Qi))}Ni=1, and for each fα we estimate :

f̂α(P0) ≡ ψ̂Tα z(~aU (P0)) where (25)

ψ̂α ≡ arg min
ψ∈RD

‖ ~Aα − Zψ‖22 = (ZTZ)−1ZT ~Aα (26)

for ~Aα = (aα(Q1), . . . , aα(QN ))T , and Z the N ×D ma-
trix Z = [z(~aU (P1)) · · · z(~aU (PN ))]T . Suppose that the
indices of basis functions we project output function onto
is V (as in (17)), then the set of functions we estimate is
{f̂β : β ∈ V }. Let f̂1:r(P0) = (f̂β1

(P0), . . . , f̂βr (P0))T ,
A1:r = [ ~Aβ1 , . . . ,

~Aβr ] ∈ RN×r:

f̂1:r(P0) = Ψ̂T z(~aU (P0)) where (27)

Ψ̂ = (ZTZ)−1ZTA1:r. (28)

4.1 Evaluation Computational Complexity

We see that after computing Ψ̂, evaluating the estimated
projection coefficients for a new function p0 amounts to
performing a matrix multiplication of a r ×D matrix with
a D × 1 vector. Including the time required for comput-
ing z(~aU (P0)), the computation required for the evalua-
tion, (27), is: 1) the time for evaluating the projection co-
efficients ~aU (P0), O(sn); 2) the time to compute the RKS
features z(·), O(Ds); 3) the time to compute the matrix
multiplication, Ψ̂T z(~aU (P0)), O(rD). Hence, the total
time is O(rD +Ds+ sn).

We’ll see that we may choose D = O(n log(n)), s =
O(n), and r = O(m). If we assume further thatm � n, the
total runtime for evaluating f̂(p̃0) is O(n2 log(n)). Since
we are considering data-sets where the number of instances
N far outnumbers the number of points per sample set n,
O(n2 log(n)) is a substantial improvement over Ω(Nn)
for the LSE; indeed, the LSE requires a metric evalua-
tion with every training-set input function (2) where the
3BE does not. Furthermore, the space complexity is much
improved for the 3BE since we only need to store the
O(n2 log(n)) matrix Ψ and the O(n2 log(n)) total space
for the RKS basis functions {(ωi, bi)}. Contrast this with
the space required for the LSE, Ω(Nn), which is much
larger for our case of n � N . Lastly, note that to evaluate
q̂0(x) = [f̂(P0)](x) once one has computed f̂1:r(P0), one
only needs to compute q̂0(x) = 〈f̂1:r(P0), ~ϕ1:r(x)〉 where
~ϕ1:r(x) = (ϕβ1

(x), . . . , ϕβr (x)).

Triple-Basis Estimator We note that a straightforward
extension to the 3BE is to use a ridge regression estimate
on features z(~at(·)) rather than a OLS estimate. That is, for
λ ≥ 0 let

ψ̂αλ ≡ arg min
ψ∈RD

‖ ~Aα − Zψ‖22 + λ‖ψ‖22 (29)

= (ZTZ + λI)−1ZT ~Aα. (30)

The Ridge-3BE is still evaluated via a matrix multiplica-
tion, and our complexity analysis holds.

4.2 Algorithm

We summarize the basic steps for training the 3BE in prac-
tice given a data-set of empirical functional observations
D = {(Pi, Qi)}Ni=1, parameters σ and D (which may
be cross-validated), and an orthonormal basis {ϕi}i∈Z for
L2([0, 1]).

1. Determine the sets of basis functions U and V (17)
for approximating p, and q respectively. For each j
in a subset J ⊆ {1, . . . , N}∗ one can select a set
Mtj (9) to estimate pj by cross-validating a loss as
described in § 3.1.1. One may then set U = Mt̄ where
t̄ = 1

|J|
∑
j∈J tj . Similarly, one may set V = Mc̄ by

cross-validating Mcj ’s for qj’s.

2. Let s = |U |, draw ωi
iid∼ N (0, σ−2Is), bi

iid∼
Unif[0, 2π] for i ∈ {1, . . . , D}; keep the set
{(ωi, bi)}Di=1 fixed henceforth.

3. Let {β1, . . . , βr} = V . Generate the data-set of ran-
dom kitchen sink features, output projection coeffi-
cient vector pairs: {(z(~aU (Pi)),~aV (Qi))}Ni=1. Let
Ψ̂ = (ZTZ)−1ZTA1:r ∈ RD×r where Z =
[z(~aU (P1)) · · · z(~aU (PN ))]T ∈ RN×D, A1:r =

[ ~Aβ1 , . . . ,
~Aβr ] ∈ RN×r as in (28). Note that ZTA1:r

and ZTZ can be computed efficiently using paral-
lelism.

4. For all future query input functional observations P0,
estimate the projection coefficients of the correspond-
ing output function as f̂1:r(P0) = Ψ̂T z(~aU (P0)).

5 THEORY

We analyze the L2 risk for the 3BE estimator below. We
assume that input/output functions belong to a Sobolev El-
lipsoid function class and that the mapping between input
and output functions is in Fσ (14).

5.1 Assumptions

5.1.1 Sobolev Ellipsoid Function Classes

We shall make a Sobolev ellipsoid assumption for classes
I and O. Let a(h) ≡ {aα(h)}α∈Zd . Suppose that the
projection coefficients a(p) = {aα(p)}α∈Zl and a(q) =
{aα(q)}α∈Zk are as follows for p ∈ I, q ∈ O:

I = {p : a(p) ∈ Θl(νI, γI, AI), ‖p‖∞ ≤ AI} (31)
O = {q : a(q) ∈ Θk(νO, γO, AO), ‖q‖∞ ≤ AO} (32)
∗Empirically it has been observed that t̄ and c̄ perform well

even when |J | is much smaller than N
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where νI, γI ∈ Rl++, νO, γO ∈ Rk++, AI, AO ∈ R++,
R++ = (0,∞), and

Θd(ν, γ,A) =
{
{aα}α∈Zd :

∑
α∈Zd

a2
ακ

2
α(ν, γ) < A

}
(33)

κ2
α(ν, γ) =

d∑
i=1

(νi|αi|)2γi for νi, γi, A > 0. (34)

See Ingster and Stepanova (2011) and Laurent (1996) for
other work using similar Sobolev elipsoid assumptions.
The assumptions in (31) and (32) will control the tail-
behavior of projection coefficients and allow one to effec-
tively estimate p ∈ I and q ∈ O using a finite number of
projection coefficients on the empirical functional observa-
tion.

Suppose that function h is such that a(h) ∈ Θd(ν, γ,A)
has a corresponding set of evaluationsH = {yj = h(uj)+

εj}rj=1 where uj
iid∼ Unif([0, 1]d) and E [εj ] = 0, E

[
ε2j
]
<

∞. Then, h̃, the estimate of h, is:

h̃(x) =
∑

α : κα(ν,γ)≤t

aα(H)ϕα(x) where (35)

aα(H) =
1

r

r∑
j=1

yjϕα(uj). (36)

Choosing t optimally† can be shown to lead to E[‖h̃ −
h‖22] = O(r

− 2

2+γ−1 ), where γ−1 =
∑d
j=1 γ

−1
j , r → ∞.

Thus, we can represent h using a finite number of projec-
tion coefficients ~at(H) = (aα(H) : κα(ν, γ) ≤ t)T ; this
allows one to approximate the FFR problem as a regres-
sion problem over finite vectors ~at(P ) and ~at′(Q). Note
that our choice of sets Mt (9) in §3.1.1 corresponds to the
estimator in (35) with ν, γ = ~1. Varying t in this case will
still be adaptive to the smoothness of h, and the number of
points in H .

5.1.2 Function to Funcion Mapping

Recall that we take output functions to be:

q(x) = [f(p)](x) =
∑
α∈Zk

fα(p)ϕα(x)

where fα(p) = aα(f(p)). Our assumption of the class of
mappings is:

Fσ = {f : ∀α ∈ Zk ‖θα‖1 ≤ Bα, fα as in (12)}

Suppose further that:∑
α∈Zk

B2
ακ

2
α(νO, γO) ≤ AO. (37)

Hence, if f ∈ Fσ then q = f(p) =⇒ q ∈ O since
|fα(p)| ≤ ‖θα‖1 ≤ Bα and (37) holds.
†See appendix for details.

5.2 Risk Upperbound

Below we state our main theorem, upperbounding the risk
of the 3BE (with truncation).

Theorem 5.1. Let a small constant δ > 0 be fixed. Sup-
pose that q̂0(x) =

∑
α∈MOu

TBα(f̂α(P0))ϕα(x), TB(x) ≡
sign(x) min(|x|, B), and f̂α(P0) given by (25). Further-
more, suppose that (31) and (32) holds, and f ∈ Fσ is as
in (37). Moreover, assume that (4) holds and ni,mi � n.
Also, assume that the number of RKS features D (16) is
taken to be D � n log(n). Then,

E
[
‖q0 − q̂0‖22

]
(38)

≤ O

((
n−1/(2+γ−1

I ) +
n log(n) log(N)

N

)2/(2+γ−1
O )
)

(39)

with probability at least 1− δ.

See appendix for proof. The rate (39) yields consistency for
our estimator if n log(n) = o(N/ log(N)); that is, so long
as one is in the large data-set domain where the number
of instances is larger than the number of points in function
observations. Note that the first summand in (39) is similar
to typical functional estimation rates, and it stems from our
approximation with bases; the second summand is akin to a
linear regression rate, and it stems from our OLS estimation
(26).

6 EXPERIMENTS

Below we show the improvement of the 3BE over previous
FFR approaches in several real-world data-sets. Empiri-
cally, the 3BE proves to be the most general, quick, and
effective estimator. Unlike previous time-series FFR ap-
proaches, the 3BE easily lends itself to working over dis-
tributions. Moreover, unlike previous nonparametric FFR
estimators the 3BE does not need to compute pairwise ker-
nel evaluations, making it much more scalable. All dif-
ferences in MSE were statistically significant (p < 0.05)
using paired t-tests.

6.1 Rectifying 2LPT Simulations

Numerical simulations have become an essential tool to
study cosmological structure formation. Astrophysics use
N-body simulations to study the gravitational evolution
of collisionless particles like dark matter particles (Trac
and Pen 2006). Unfortunately, N-body simulations require
forces among particles to be recomputed over multiple time
intervals, leading to a large magnitude of time steps to com-
plete a single simulation. In order to mitigate the large
computational costs of running N-body simulations, often
simulations based on Second Order Lagrange Perturbation
Theory (2LPT) are used (Scoccimarro 1998). Although
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Figure 3: Slices of particle pdfs.

2LPT simulations are several orders of magnitude faster,
they prove to be inaccurate, especially at smaller scales.
In this experiment we bridge the gap between the speed of
2LPT simulations and the accuracy of N-body simulations
using FFR and the 3BE. Namely, we regress the mapping
between a distribution of particles in an area coming from
a 2LPT simulation and the distribution of the particles in
the same area under an equivalent N-body simulation.

Method MSE MPT
3BE 4.958 0.009
LSE 6.816 4.977
2LPT 6.424 NA
AD 9.289 NA

Table 1: MSE and MPT(s) results.

We regress the
distribution of 3d
(spatial) N-body
simulation parti-
cles in 16 Mpc3

cubes when given
the distribution of
particles of the
2LPT simulation in the same cube (note that each distribu-
tion is estimated through the set of particles in each cube).
A training-set of over 900K pairs of 2LPT cube sample-
set/N-body cube sample-set instances was used, along with
a test-set of 5K pairs. The number of projection coeffi-
cients used to represent input and output distributions was
365/401 respectively, chosen by cross-validating the den-
sity estimates. We chose the number of RKS features to be
15K based on rules-of-thumb. We cross-validated the σ and
λ parameters of the ridge variant 3BE (30), and the smooth-
ing parameter of the LSE and reported back the MSE and
mean prediction time (MPT, in seconds) of our FFR es-
timates to the distributions truly coming directly through
N-body simulation (Table 1); we also report the MSE of
predicting the average output distribution (AD).

We see that the 3BE is about 500× faster than the LSE in
terms of prediction time and achieved an improvement in
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Figure 4: Example audio predictions; segments separated
with vertical lines.

R2 of over 50% over using the distribution coming directly
from the 2LPT simulation (2LPT, Table 1). Note also that
the LSE does not achieve an improvement in MSE over
2LPT.

6.2 Time-series Data

We compared the performance of the 3BE in time-series
prediction problems to using the LSE and widely used
time-series prediction methods like Dynamics Mining with
Missing values (DynaMMo) (Li et al. 2009) and Kernel
Embedded HMMs (SHMM) (Song et al. 2010). DynaMMo
is a latent-variable probabilistic model trained with EM
aimed at predicting data that is missing in chunks and not
just in a single time-step (as we also attempt with our func-
tional responses).

6.2.1 Forward Prediction with Music Data

Music data presents a particularly interesting application
of forward prediction for time-series. That is, given a short
segment of audio data from a piece of music, can we pre-
dict the audio data in the short segment that follows? Uses
for forward prediction with music include compression and
music similarity.

In this experiment, we use a 30 second clip, sampled at 44.1
kHz from the song “I Turn To You” by the artist Melanie C.
We extract a mono signal of the sound clip and use the first
85% for training and hold-out, and the final 15% for testing.
To perform forward prediction in the test set, we take a 500
time-step segment of the (true) music time-series as input
and use it to predict the following 500 time-steps. We re-
peat this sequentially over consecutive disjoint segments in
the test set until we have made predictions for the entire test
set. In total our data-set consisted of about 2200 training in-
stances. For audio prediction with the 3BE we use the ridge
variant (30). We use 150 trigonometric basis functions for
both input and output functions, and 5000 RKS basis func-
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Figure 5: Example “duck” frames.

tions (both quantities chosen via rules of thumb). We then
cross-validate the bandwidth and λ penalty parameters.

Method MSE
3BE 0.0327
LSE 0.0351
Dyna 0.0492
SHMM 0.1082

Table 2: Audio MSE.

We cross-validated the num-
ber of dimensions for hidden-
states for DynaMMo, and the
bandwidth parameter for the
LSE. The mean squared er-
ror (MSE) on the test-set is
reported in Table 2 for each
method. The 3BE achieves
the lowest estimation error. Furthermore, looking at Figure
4 it is apparent that the 3BE outperforms the other meth-
ods in terms of capturing the structure of the audio data.
The quality of the audio predicted with the 3BE is also
superior to the other methods (hear predicted sound clips
in supplemental materials). Furthermore, DynaMMo takes
over 4 hours to learn a model given a fixed hidden state
dimensionality with no missing data (and even longer if
also predicting missing data), where as the 3BE takes only
about 2 minutes to cross-validate and perform predictions
(a speed-up of over 7000×). Similarly the 3BE was over
5000× faster than SHMM for predictions. Additionally,
even though the data-set is of a smaller scale, the 3BE still
enjoys a 3× speedup over LSE for prediction time.

6.2.2 Co-occurring Predictions with Joint Motion
Capture Data

Next, we explore predicting co-occurring time-series with
motion capture (MoCap) data. We use the MSRC-12 Data-
set (Fothergill et al. 2012). The 3d positions are provided
for 20 total joints. We look to predict the time-series of the
position of an unobserved joint over a T time-step segment
given time-series data (one function for each joint’s x, y, or
z position) for R observed joints for the segment.

We performed co-occurring time-series prediction with
MoCap data of a subject performing the gesture “duck”
(Figure 5). We randomly chose 10 joints to designate as
occluded, and used the other 10 as our non-occluded joints.
We then solved 30 separate FFR problems, where each of
the problems had one of the missing joints’ time-series as
the output response function (e.g. missing joint 1’s y po-
sition or missing joint 4’s x position). In each of the prob-
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Figure 6: Occluded joint predictions.

lems, the 30 functions corresponding to the time-series for
non-occluded joint spatial positions were used as inputs
(by concatenating the projection coefficients of each in-
put function) . We considered segments of 24 time-steps
for time-series functions. In total we used a training set
of about 1100 instances. The number of projection coeffi-
cients for functions was taken to be 10 while the number of
RKS features was 250. The same parameters for all esti-
mators were cross validated as before.

Method MSE
3BE 7.78E-4
LSE 1.3E-3
Dyna 2.40E-4

Table 3: MoCap MSE.

DynaMMo performs the best
(Table 3), which is perhaps
not surprising given that Mo-
Cap occlusion prediction was
a point of emphasis for Dy-
naMMo. However, the differ-
ences in prediction qualities
among the different methods is not as pronounced in this
data-set (Figure 6). We again see a speed up of over 1000x
using 3BE over DynaMMo, also there was a speed up of
over 30× in prediction time over LSE.

7 CONCLUSION

In conclusion, this paper presents a new estimator, the
Triple Basis Estimator (3BE), for performing function to
function regression in a scalable manner. Since functional
data is complex, it is important to have an estimator that
is capable of using massive data-sets in order to achieve
a low estimation risk. To the best of our knowledge, the
3BE is the first nonparametric FFR estimator that is ca-
pable to scaling to big data-sets. The 3BE achieves this
through the use of a basis representation of input and out-
put functions and random kitchen sink basis functions. We
analyzed the risk of the 3BE given non-parametric assump-
tions. Furthermore, we showed an improvement of several
orders of magnitude for prediction speed and a reduction in
error over previous estimators in various real-world data-
sets.

Acknowledgements

This work was supported in part by NSF grant IIS1247658.

724
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