Feature Selection for Linear SVM with Provable Guarantees

7 Supplementary Material

Input: VT = [vy,vs,..vg] € R*? with v; € R
and r > /.

Output: Matrices S € R¥™*" D € R"*".

1. Initialize Ag = Opxr, S = Ogxr, D = 0, %

2. Set constants d;, = 1 and

5U=(1+W)/<1—W).

3.forr=0tor—1do
o Let L, =7 —\rl; U, =6y <T+\/€7’).

e Pick index i € {1,2,..d} and number ¢, > 0,
such that

Z/{ (Vi,(5U7A-,—, UT) S E(Vi76L,AT7LT) .
o Lett ! =
LU vi, 60, AL UL) + L (v, 0, Ar, Ly))

e Update A,y = A, +t,v;v] ;set
Si.r+1=1land D,yq .41 =1/V/t,.

4. end for
5. Multiply all the weights in D by

\/rl (1- V).

6. Return S and D.

Algorithm 1: Single-set Spectral Sparsification

Lemma 3. BSS (Batson et al. (2009)): Given V €
R satisfying VIV = 1, and r > {, we can deter-
ministically construct sampling and rescaling matrices

S € R™" gnd D € R™" with R = SD, such that,
2 2
for ally € R : (1= /IJr)" |[Vy|l3 < HVTRyH2 <

(1+Var) IvylE.

We now present a slightly modified version of Lemma 3
for our theorems.

Lemma 4. Given V € R¥! satisfying VIV =1, and
r > {, we can deterministically construct sampling and
rescaling matrices S € R¥" and D € R™" such that

for R = SD, ‘VTV - VTRRTVH2 < 3/

Proof. From Lemma 3, it follows, oy (VTRRTV) >

(1- K/r)Q, o (V'RRV) < (1+W)2.

Thus, Ao (VTV _ VTRRTV) <
(1 - (1 - E/r)2> < 2y/¢/r.  Similarly,

Amin (VIV = VIRRTV) > (1 - (1+ \/E/T«)z) >

3y/¢/r. Combining these two results, we have
HVTV—VTRRTVH < 3./T]r. O
2

7.1 Proof That the Data Radius is preserved
by Unsupervised BSS-Feature Selection.

Theorem 3. Let ro = O (n/eQ), where € > 0 is an
accuracy parameter, n is the number of training points
and ro is the number of features selected. Let B be
the radius of the minimum ball enclosing all points in
the full-dimensional space, and let B be the radius of
the ball enclosing all points in the sampled subspace
obtained by using BSS in an unsupervised manner. For
R as in Lemma 4, B? < (1 + ¢)B2.

Proof. We consider the matrix Xp € R(+1)xd whose
first n rows are the rows of X** and whose last row
is the vector x%5; here xp denotes the center of the
minimum radius ball enclosing all n points. Then, the
SVD of Xpg is equal to Xpg = UBEBVE, where Upg €
R TDxps 315 € RPEXPE and V € R*P5. Here pp
is the rank of the matrix Xp and clearly pp < p + 1.
(Recall that p is the rank of the matrix X**.) Let B
be the radius of the minimal radius ball enclosing all n
points in the original space. Then, forany i =1,...,n,

2 2 T 2
B 2 |xi —=xpll = ||(ei —ens1)” Xp|| . (14)

Now consider the matrix XgR and notice that

2 2
[ o e

(i — enst)” (X5XE — XsRRTXE) (e — ens1)|

= ‘(ei —ens1) UpSpEpSpUL (e; — en+1)‘

2
2

IN

IEzsl, H(ei —eni1)’ UBEBH
T 2
[Exll, | (e — enr) X

In the above, we let Ep € RPBXPB be the matrix
that satisfies V5Vp = VLRR'Vp + Ep, and
we also used V5Vp = I. Now consider the ball
whose center is the (n + 1)-th row of the matrix
X R (essentially, the center of the minimal radius
enclosing ball for the original points in the sampled

. 2

space). Let ¢ = argmax;—1_, ||(e; — en+1)T XBR‘ ;

2

then, using the above bound and
2

eqn. (14), we get H(e; —enp1)” XBRH <
2

2

T
(1+ [Esly) | (e — ensn)" X | < (14 [Esl,) B2
Thus, there exists a ball centered at el ;XgR (the
projected center of the minimal radius ball in the
original space) with radius at most /1 + [|[Eg|,B
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that encloses all the points in the sampled space.
Recall that B is defined as the radius of the minimal
radius ball that encloses all points in sampled sub-
space; clearly, B2 < (1 + |Ep||,) B%. We can now use
Lemma 4 on Vg to conclude that (using pp < p+ 1)
5], <. O

Theorem 4. Given ¢ € (0,1), run supervised
Leverage-score sampling based feature selection on X*°
with 1, = O(p/€), to obtain the feature sampling and
rescaling matriz R. Let v* and ¥* be the margins ob-
tained by solving the SVM dual (2) with (X*°,Y*")
and (X*R, Y*") respectively. Then with probability at
least 0.99, 72 > (1 — €) v*2.

Theorem 5. Given ¢ € (0,1), run unsupervised
Leverage-score feature selection on the full data X'
with ro = O (p/€?), where p = rank(X"™), to obtain
the feature sampling and rescaling matrix R. Let ~*
and 7* be the margins obtained by solving the SVM
dual (2) with (X", Y"™) and (X"R,Y") respectively;
and, let B and B be the radii for the data matrices X'
and XR. respectively. Then with probability at least
0.99,

2

wal}

l1+¢€) B* B?
=072 = 1+ O(e))7*2.
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Proofs of Theorems 4 and 5 follow directly from The-
orems 1 and 2. In Theorems 1 and 2, we make use
of Lemma 1. For Theorems 4 and 5, we make use of
Lemma 2 to obtain the proof.

Proof of Lemma 2 can be found in Rudelson and Ver-
shynin (2007).

7.2 Other Feature Selection Methods

In this section, we describe other feature-selection
methods with which we compare BSS.

Rank-Revealing QR Factorization (RRQR):
Within the numerical linear algebra community, subset
selection algorithms use the so-called Rank Revealing
QR (RRQR) factorization. Let A be a n x d matrix
with (n < d) and an integer k (k < d) and assume par-
tial QR factorizations of the form

_ (R Ra
AP=Q < 0 Rzz) ’

where Q € R"*"™ is an orthogonal matrix, P €
R%*4 is a permutation matrix, Ri; € R**¥ Ry €
RF*(d=F) R,, € RE-F)*(d=kK) The above factoriza-
tion is called a RRQR factorization if 0., (R11) >
or (A) /p(k,d), omaz (R22) < 0min(A)p(k,d), where
p(k,d) is a function bounded by a low-degree polyno-
mial in k and d. The important columns are given

by A1 = Q ]3011 and ag; (Al) = 0; (RH) with
1 <i < k. We perform feature selection using RRQR
by picking the important columns which preserve the
rank of the matrix.

Random Feature Selection: We select features uni-
formly at random without replacement which serves as
a baseline method. To get around the randomness, we
repeat the sampling process five times.

Recursive Feature Elimination: Recursive Feature
Elimination (RFE), Guyon et al. (2002) tries to find
the best subset of features which leads to the largest
margin of class separation using SVM. At each itera-
tion, the algorithm greedily removes the feature that
decreases the margin the least, until the required num-
ber of features remain. At each step, it computes the
weight vector and removes the feature with smallest
weight. RFE is computationally expensive for high-
dimensional datasets. Therefore, at each iteration,
multiple features are removed to avoid the computa-
tional bottleneck.

LPSVM: The feature selection problem for SVM can
be formulated in the form of a linear program. LPSVM
Fung and Mangasarian (2004) uses a fast Newton
method to solve this problem and obtains a sparse so-
lution of the weight vector, which is used to select the
features.

Input: Support vector matrix X € RP*4 ¢ r.
Output: Matrices S € R¥*" D ¢ R"™*",

1. Generate a random Gaussian matrix,
G € R¥*P.

2. Compute X = GX.

3. Compute right singular vectors V of X
using SVD.

4. Run Algorithm 1 using V and r as inputs
and get matrices S and D as outputs.

5. Return S and D.

Algorithm 2: Approximate BSS
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Figure 2: Plots of out-of-sample error of Supervised and
Unsupervised BSS and leverage-score compared with other
methods for 49 TechTC-300 documents averaged over ten
ten-fold cross validation experiments. Vertical bars repre-
sent standard deviation.



