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Abstract

Many learning tasks, such as cross-validation,
parameter search, or leave-one-out analysis,
involve multiple instances of similar prob-
lems, each instance sharing a large part of
learning data with the others. We intro-
duce a robust framework for solving multi-
ple square-root LASSO problems, based on
a sketch of the learning data that uses low-
rank approximations. Our approach allows a
dramatic reduction in computational effort,
in effect reducing the number of observations
from m (the number of observations to start
with) to k (the number of singular values
retained in the low-rank model), while not
sacrificing—sometimes even improving—the
statistical performance. Theoretical analysis,
as well as numerical experiments on both syn-
thetic and real data, illustrate the efficiency
of the method in large scale applications.

1 Introduction

In many practical applications, learning tasks arise
not in isolation, but as multiple instances of similar
problems. A typical instance is when the same prob-
lem has to be solved, but with many different values
of a regularization parameter. Cross-validation also
involves a set of learning problems where the differ-
ent “design matrices” are very close to each other,
all being a low-rank perturbation of the same data
matrix. Other examples of such multiple instances
arise in sparse inverse covariance estimation with the
LASSO (Friedman et al. (2008)), or in robust subspace
clustering (Soltanolkotabi et al. (2014)). In such appli-
cations, it makes sense to spend processing time on the
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common part of the problems, in order to compress it
in certain way, and speed up the overall computation.

In this paper we propose an approach to multiple-
instance square root LASSO based on “robust sketch-
ing”, where the data matrix of an optimization prob-
lem is approximated by a sketch, that is, a simpler
matrix that preserves some property of interest, and
on which computations can be performed much faster
than with the original. Our focus is a square-root
LASSO problem:

min
w∈Rn

∥∥XTw − y
∥∥

2
+ λ‖w‖1 (1)

where X ∈ Rn×m and y ∈ Rm. Square-root LASSO
has pivotal recovery properties; also, solving a square-
root LASSO problem is as fast as solving an equivalent
LASSO problem with both first-order and second order
methods (Belloni et al. (2011)). We chose the square-
root version of the LASSO to make the derivations
simpler; these derivations can also be adapted to the
original LASSO problem, in which the loss function is
squared.

In real-life data sets, the number of features n and
the number of observations m can be both very large.
A key observation is that real data often has struc-
ture that we can exploit. Figure 1 shows that real-
life text data sets are often low-rank, or can be well-
approximated by low-rank structures.

Contribution. Our objective is to solve multiple in-
stances of square-root LASSO fast, each instance being
a small modification to the same design matrix. Our
approach is to first spend computational efforts in find-
ing a low-rank sketch of the full data. With this sketch,
we propose a robust model that takes into account the
approximation error, and explain how to solve that ap-
proximate problem one order of magnitude faster, in
effect reducing the number of observations from m (the
number of observations to start with) to k (the num-
ber of singular values retained in the low-rank model).
Together with our proposed model, we can perform
cross validation, for example, an order of magnitude
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Figure 1: Graphs of the top 100 singular values from
real-life text data sets.

faster than the traditional method, with the sketching
computation included in our approach.

This paper employs low-rank sketching for data ap-
proximation phase, for which an extensive body of al-
gorithmic knowledge exists, including power method,
random projection and random sampling, or Nyström
methods (Miranian and Gu (2003); Drineas and Ma-
honey (2005); Drineas et al. (2006); Halko et al. (2011);
Mahoney (2011); Liberty (2013)). Our framework
works with any approximation algorithms, thus pro-
vides flexibility when working with different types of
sketching methods, and remains highly scalable in
learning tasks.

Related work. Solving multiple learning problems
has been widely studied in the literature, mostly in
the problem of computing the regularization path
(Park and Hastie (2007)). The main task in this
problem is to compute the full solutions under differ-
ent regularization parameters. The most popular ap-
proach includes the warm-start technique, which was
first proposed in specific optimization algorithms (e.g.
Yildirim and Wright (2002)), then applied in vari-
ous statistical learning models, for example in (Kim
et al. (2007); Koh et al. (2007); Garrigues and Ghaoui
(2009)). Recent works (Tsai et al. (2014)) show strong
interest in incremental and decremental training, and
employ the same warm-start technique. These tech-
niques are all very specific to the multiple learning
task at hand, and require developing a specific algo-
rithm for each case.

In our approach, we propose a generic, robust,
and algorithm-independent model for solving multi-
ple LASSO problems fast. Our model can therefore
be implemented with any generic convex solver, pro-
viding theoretical guarantees in computational savings
while not sacrificing statistical performance.

Organization. The structure of our paper is as fol-
lows. In Section 2 we propose the robust square-root

LASSO with sketched data. In Section 3 we present a
simple method to reduce the dimension of the problem.
Section 4 studies the effects of a non-robust framework.
Section 5 provides a theoretical complexity analysis
and we conclude our paper with numerical experiments
in Section 6.

2 Robust Square-root LASSO

Low-rank elastic net. Assume we are given X̂ as
a sketch to the data matrix X, the robust square-root
LASSO is defined as follows:

φε,λ(X̂) := min
w∈Rn

max
X: ‖X−X̂‖2≤ε

‖XTw − y‖2 + λ‖w‖1
= min
w∈Rn

max
‖∆‖2≤ε

‖(X̂ + ∆)Tw − y‖2 + λ‖w‖1
(2)

where X, X̂ ∈ Rn×m, y ∈ Rm, y 6= 0 and both λ ≥
0, ε ≥ 0 are given as our parameters. El Ghaoui and
Lebret (1997) has shown that

max
‖∆‖≤ε

‖(X̂ + ∆)Tw − y‖2 ≤ ‖X̂Tw − y‖2 + ε‖w‖2

and the equality holds with the choice of ∆ as

∆ := εuvT

u :=

{
X̂Tw−y
‖X̂Tw−y‖ if X̂Tw 6= y

any unit-norm vector otherwise

v :=

{ w
‖w‖ if w 6= 0

any unit-norm vector otherwise

We also have rank(∆) = 1 and ‖∆‖F = ‖∆‖2 = ε,
which implies ∆ is the worst-case perturbation for
both the Frobenius and maximum singular value norm.
Problem (2) can therefore be rewritten as:

φε,λ(X̂) = min
w∈Rn

∥∥∥X̂Tw − y
∥∥∥

2
+ ε‖w‖2 + λ‖w‖1

(3)
Note the presence of an “elastic net” term (Zou and
Hastie (2005)), directly imputable to the error on the
design matrix.

In our model, we employ the low-rank approximation
of the original data matrix from any sketching algo-
rithm: X̂ = PQT , where P ∈ Rn×k, Q ∈ Rm×k, P
and Q have full rank k with k � min{m,n}. When
the full data matrix X ∈ Rn×m is approximated by
X ' PQT , for leave-one-out analysis, the low rank
approximation of the “design matrix” can be quickly
computed by: X\i ' PQT\i where \i means leaving out
the i-th observation.

Solving the problem fast. We now turn to a fast
solution to the low-rank elastic net problem (3), with
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X̂ = PQT . This “primal” problem is convex, and its
dual is:

φλ,ε =

min
w,z∈Rn

‖Qz − y‖2 + ε‖w‖2 + λ‖w‖1 : z = PTw

= min
w,z∈Rn

max
u∈Rk

‖Qz − y‖2 + ε‖w‖2 + λ‖w‖1

+uT (z − PTw)

= max
u∈Rk

min
w,z∈Rn

‖Qz − y‖2 + uT z +

ε‖w‖2 + λ‖w‖1 − (Pu)Tw

= max
u∈Rk

f1(u) + f2(u),

where f1(u) := min
z∈Rn

‖Qz − y‖2 + uT z and

f2(u) := min
w∈Rn

ε‖w‖2 + λ‖w‖1 − (Pu)Tw.

First subproblem. Consider the first term in f1(u):

‖Qz − y‖22 = zTQTQz − 2yTQz + yT y
= z̄T z̄ − 2cT z̄ + yT y

where z̄ := (QTQ)1/2z ∈ Rn

and c := (QTQ)−1/2QT y ∈ Rk

= ‖z̄ − c‖22 + yT y − cT c.

Note that cT c = yTQ(QTQ)−1QT y ≤ yT y since
Q(QTQ)−1QT � I is the projection matrix ontoR(Q).

Letting s :=
√
yT y − cT c ≥ 0 gives

f1(u) := min
z
‖Qz − y‖2 + uT z

= min
z

√
‖z̄ − c‖22 + s2 + ūT z̄

by letting ū := (QTQ)−1/2u

= ūT c+ min
x

√
‖x‖22 + s2 − ūTx

by letting x := c− z̄.

Now consider the second term min
x

√
‖x‖22 + s2− ūTx.

The optimal x∗ must be in the direction of ū. Letting
x := αū, α ∈ R, we have the expression

min
α∈R

√
α2‖ū‖22 + s2 − α‖ū‖22

When ‖ū‖2 ≥ 1, the problem is unbounded below.
When ‖ū‖2 < 1, the optimal solution is α∗ = s√

1−‖ū‖22
and the optimal value is thus s

√
1− ‖ū‖22. The closed-

form expression for f1(u) is therefore:

f1(u) = ūT c+ min
x

√
‖x‖22 + s2 − ūTx

= ūT c+ s
√

1− ‖ū‖22
= uT (QTQ)−1/2c+ s

√
1− uT (QTQ)−1u

= uTK−1/2c+ s
√

1− uTK−1u
by letting K := QTQ.

(4)

Second subproblem. Consider the function f2(u) :=
min
w∈Rn

ε‖w‖2 + λ‖w‖1 − (Pu)Tw. We observe that the

objective function is homogeneous. Strong duality
gives:

f2(u) = min
w

max
v,r

rTw + vTw − (Pu)Tw

s.t. ‖r‖2 ≤ ε, ‖v‖∞ ≤ λ
= max

v,r
min
w

(r + v − Pu)Tw

s.t. ‖r‖2 ≤ ε, ‖v‖∞ ≤ λ
= max

v,r
0

s.t. ‖r‖2 ≤ ε, ‖v‖∞ ≤ λ, Pu = v + r
(5)

Hence f2(u) = 0 if there exists v, r ∈ Rn satisfying the
constraints. Otherwise f2(u) is unbounded below.

Dual problem. From (4) and (5), the dual problem to
(3) can be derived as:

φλ,ε = max
u∈Rk,
v,r∈Rn

uTK−1/2c+ s
√

1− uTK−1u

s.t. ‖v‖∞ ≤ λ, ‖r‖2 ≤ ε, Pu = v + r

Letting R := PK1/2 ∈ Rn×k and replacing u by
K−1/2u, we have

φλ,ε = max
u∈Rk,
v,r∈Rn

uT c+ s
√

1− uTu

s.t. ‖v‖∞ ≤ λ, ‖r‖2 ≤ ε, Ru = v + r
= max

u,v,r,t
uT c+ st

s.t.

∥∥∥∥[ut
]∥∥∥∥

2

≤ 1, ‖v‖∞ ≤ λ, ‖r‖2 ≤ ε,
Ru = v + r

(6)
Bidual problem. The bidual of (3) writes

φλ,ε = min
w∈Rn

max
u,v,r,t

uT c+ st+ wT (v + r −Ru)

s.t.

∥∥∥∥[ut
]∥∥∥∥

2

≤ 1, ‖v‖∞ ≤ λ, ‖r‖2 ≤ ε

= min
w∈Rn

max
u,v,r,t

[
c−RTw

s

]T [
u
t

]
+ wT v + wT r

s.t.

∥∥∥∥[ut
]∥∥∥∥

2

≤ 1, ‖v‖∞ ≤ λ, ‖r‖2 ≤ ε

Therefore,

φλ,ε = min
w∈Rn

∥∥∥∥[c−RTws

]∥∥∥∥
2

+ ε‖w‖2 + λ‖w‖1
(7)

where R ∈ Rn×k, c ∈ Rk and s ∈ R. Note that
problem (7) still involves n variables in w, but now
the size of the design matrix is only n-by-k, instead of
n-by-m as the original problem.

Summary. To solve problem (3) with X = PQT

we first set c := (QTQ)−1/2QT y, s :=
√
yT y − cT c,
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R := P (QTQ)1/2, then solve the problem (7) above.
As discussed later, the worst-case complexity grows as
O(kn2+k3). This is in contrast with the original prob-
lem (3) when no structure is exploited, in which case
the complexity grows as O(mn2 +m3).

3 Safe Feature Elimination

In this section we present a method to reduce the di-
mension of (7) without changing the optimal value, as
proposed by El Ghaoui et al. (2012). Let us define

A :=

[
RT

0

]
∈ R(k+1)×n and b :=

[
c
s

]
∈ Rk+1, prob-

lem (7) becomes:

φλ,ε = min
w∈Rn

‖Aw − b‖2 + ε‖w‖2 + λ‖w‖1 (8)

Problem (8) is equivalent to:

φλ,ε = min
w∈Rn

max
α,β,γ

αT (Aw − b) + βTw + γTw

s.t. ‖α‖2 ≤ 1, ‖β‖2 ≤ ε, ‖γ‖∞ ≤ λ
= max

‖α‖2≤1
‖β‖2≤ε
‖γ‖∞≤λ

min
w∈Rn

wT (ATα+ β + γ)− αT b

= max
α,β,γ

−αT b
s.t. ‖α‖2 ≤ 1, ‖β‖2 ≤ ε, ‖γ‖∞ ≤ λ,

ATα+ β + γ = 0

= max
α,β,γ

−αT b
s.t. ‖α‖2 ≤ 1, ‖β‖2 ≤ ε,

|aTi α+ βi| ≤ λ,∀i = 1 . . . n

where ai’s are columns of A. If ‖ai‖2 ≤ λ−ε, we always
have |aTi α + βi| ≤ |aTi α| + |βi| ≤ λ. In other words,
we can then safely discard the i-th feature without
affecting our optimal value.

4 Non-robust square-root LASSO

In practice, a simple idea is to replace the data ma-
trix by its low rank approximation in the model. We
refer to this approach as the non-robust square-root
LASSO:

min
w∈Rn

‖QPTw − b‖2 + λ‖w‖1 (9)

For many learning applications, this approach first ap-
pears as an attractive heuristic to speed up the compu-
tation. Nevertheless, in problems with sparsity as the
main emphasis, care must be taken in the presence
of regularization involving the l1-norm. Figure 2(a)
shows an example of a non-robust square-root LASSO
with data replaced by its rank-1 approximation. The
optimal solution then always has a cardinality at most
1, and the tuning parameter λ does not provide any
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(a) Non-robust rank-1 square-root LASSO.
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(b) Robust rank-1 square-root LASSO.

Figure 2: Non-robust versus Robust square-root
LASSO under rank-1 approximated data. The y-axis
shows non-zero components of the optimal solution as
λ varies.

sparsity control, unlike the robust low-rank model in
Figure 2(b). In general, replacing our data with its
low-rank approximation will result in the lost of the
sparsity control from regularization parameters. We
provide an insight for this absence of sparsity control
in the following theorem.

Theorem 1 For the non-robust square-root LASSO
problem (9), with P ∈ Rn×k and Q ∈ Rm×k full rank
where k � min{m,n}, there exists a LASSO solution
with cardinality at most k.

Proof. Uniquely decomposing b into b = Qz+u where
u ⊥ R(Q) gives

min
w∈Rn

‖Q(PTw − z)− u‖2 + λ‖w‖1

= min
w∈Rn

√
‖Q(PTw − z)‖22 + ‖u‖22 + λ‖w‖1

Let w0 be any optimal solution to this problem, it
suffices to show that the problem

min
w∈Rn

‖w‖1 : PTw = PTw0

has an optimal solution with cardinality at most k. We
prove this in the following lemma:
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Lemma 1 The problem

min
x∈Rn

‖x‖1 : Ax = b (10)

with A ∈ Rk×n wide (k < n) and b ∈ R(A) has an
optimal solution with cardinality at most k.

Proof. Our proof is adapted from Tibshirani et al.
(2013) on the existence and uniqueness of the solution.
Let x ∈ Rn be an optimal solution to (10). Without
loss of generality, we can assume all components of xi
are non-zeros (if some components are zeros one can
discard the corresponding columns of A).

If card(x) > k, we provide a procedure to reduce the
cardinality of x, while keeping the same l1-norm and
constraint feasibility. Let s ∈ Rn be the (unique) sub-
gradient of ‖x‖1: si := sign(xi), i = 1, . . . , n. The
optimality condition of (10) shows that ∃µ ∈ Rk such
that ATµ = s. Since all the columns Ai’s are linearly
dependent, there exist i and cj such that

Ai =
∑
j∈E\{i} cjAj , where E := {1, . . . , n}

ATi µ =
∑
j∈E\{i} cjA

T
j µ

siµ =
∑
j∈E\{i} cjsj

Therefore 1 = s2
i =

∑
j∈E\{i} cjsjsi. Defining dj :=

cjsjsi gives
∑
j∈E\{i} dj = 1 and

siAi =
∑
j∈E\{i} cjsiAj

=
∑
j∈E\{i} cjsjsisjAj : since s2

j = 1

=
∑
j∈E\{i} djsjAj

Let us define a direction vector θ ∈ Rn as follows:
θi := −si and θj := djsj , j ∈ E\{i}. Then Aθ =
(−siAi) +

∑
j∈E\{i} djsjAj = 0. Thus letting

x(ρ) := x+ ρθ with ρ > 0

we have x(ρ) feasible and its l-1 norm stays unchanged:

‖x(ρ)‖1 = |x(ρ)
i |+

∑
j∈E\{i} |x

(ρ)
j |

= (|xi| − ρ) +
∑
j∈E\{i}(x

(ρ)
j + ρdj)

= ‖x‖1 + ρ
(∑

j∈E\{i} ρdj − 1
)

= ‖x‖1
Choosing ρ := min{t ≥ 0 : xj + tθj = 0 for some j}
we have one fewer non-zeros components in x(ρ). Note
that ρ ≤ |xi|. Therefore, repeating this process gives
an optimal solution x of at most k non-zeros compo-
nents.

Remark. An alternative proof is to formulate prob-
lem (10) as a linear program, and observe that the
optimal solution is at a vertex of the constraint set.
Our result is also consistent with the simple case when
the design matrix has more features than observations,
there exists an optimal solution of the LASSO problem
with cardinality at most the number of observations,
as shown by many authors (Tibshirani et al. (2013)).

5 Theoretical Analysis

Our objective in this section is to analyze the theoret-
ical complexity of solving problem (8):

min
x∈Rn

‖Ax− b‖2 + ε‖x‖2 + λ‖x‖1

where A ∈ Rk×n, b ∈ Rk, and the optimization vari-
able is now x ∈ Rn. We present an analysis for a
standard second-order methods via log-barrier func-
tions. We also remark that with a generic primal-dual
interior point method, our robust model can effectively
solve problems of 3×105 observations and 105 features
in just a few seconds. In practical applications, spe-
cialized interior-point methods for specific models with
structures can give very high performance for large-
scale problems, such as in Kim et al. (2007) or in Koh
et al. (2007). Our paper, nevertheless, does not fo-
cus on developing a specific interior-point method for
solving square-root LASSO; instead we focus on a gen-
eralized model and the analysis of multiple instances
with a standard method.

5.1 Square-root LASSO

In second-order methods, the main cost at each it-
eration is from solving a linear system of equations
involving the Hessian of the barrier function (Ander-
sen et al. (2003)). Consider the original square-root
LASSO problem:

min
x∈Rn

‖Ax− b‖2 = min
x∈Rn, s∈R

s : ‖Ax− b‖2 ≤ s

The log-barrier function is ϕγ(x, s) = γs −
log
(
s2 − ‖Ax− b‖22

)
. The cost is from evaluating the

inverse Hessian of

f := − log
(
s2 − (Ax− b)T (Ax− b)

)
(11)

Let g := − log
(
s2 − wTw

)
, we have ∇g = 2

−g

[
−w
s

]
and ∇2g = 2

−g

[
−I 0
0 1

]
+∇g(∇g)T . The Hessian ∇2g

is therefore a diagonal plus a dyad.

For (11), rearranging the variables as x̃ =

[
x
s

]
gives[

Ax− b
s

]
=

[
A 0
0 1

] [
x
s

]
−
[
b
0

]
= Ãx̃ − b̃ where Ã ∈

R(k+1)×n and:

∇2f

= ÃT ( 2
−f

[
−I 0
0 1

]
+ 4

f2

[
−Ax+ b

s

] [
−Ax+ b

s

]T
)Ã

= 2
−f Ã

T

[
−I 0
0 1

]
Ã

+ 4
f2

(
ÃT
[
−(Ax− b)

s

])(
ÃT
[
−(Ax− b)

s

])T
(12)

757



Robust sketching for multiple square-root LASSO problems

The Hessian ∇2f is therefore simply a (k + 2)-dyad.

5.2 Regularized square-root LASSO

For (8), decomposing x = p− q with p ≥ 0, q ≥ 0 gives

φ = min
w∈Rn

‖Ax− b‖2 + ε‖x‖2 + λ‖x‖1
= min

p,q∈Rn,
s,t∈R

s+ εt+ λ
(
1T p+ 1T q

)
s.t. ‖p− q‖2 ≤ t, ‖A(p− q)− b‖2 ≤ s,

p ≥ 0, q ≥ 0

The log-barrier function is thus

ϕγ(p, q, s, t) = γ
(
s+ εt+ λ

(
1T p+ 1T q

))
− log

(
t2 − ‖p− q‖22

)
− log

(
s2 − ‖A(p− q)− b‖22

)
−

n∑
i=1

log(pi)−
n∑
i=1

log(qi)

− log(s)− log(t).

First log term. Let l1 := − log
(
t2 − ‖p− q‖22

)
. Rear-

ranging our variables as x̃ =
[
p1, q1, · · · pn, qn, t

]T
, we

have

∇l1 = 2
−l1

[
p1 − q1, q1 − p1, · · · pn − qn, qn − pn, t

]T
∇2l1 = 2

−l1


B

. . .

B
1

+∇l1(∇l1)T

where there are n blocks of B :=

[
−1 1
1 −1

]
in the

Hessian ∇2l1.

Second log term. Let l2 :=
− log

(
s2 − ‖A(p− q)− b‖22

)
. Keeping the same

arrangement of variables x̃ =
[
p1, q1, · · · pn, qn, s

]T
,

we have [
A(p− q)− b

s

]
= Ãx̃

where Ã ∈ R(k+1)×(2n+1). Following (12), we have the
Hessian is a (k + 2)-dyad.

Third log term. Let l3 := −
n∑
i=1

log(pi)−
n∑
i=1

log(qi)−

log(s)− log(t). Every variable is decoupled; therefore
the Hessian is simply diagonal.

Summary. The Hessian of the log barrier function
ϕγ(p, q, s, t) is a block diagonal plus a (k + 2)-dyad.
At each iteration of second-order method, inverting
the Hessian following the matrix inversion lemma costs
O(kn2). For the original square-root LASSO problem
(1), using similar methods will cost O(mn2) at each
iteration (Andersen et al. (2003)).

Table 1: Data sets used in numerical experiments.

Data set #train #test #features Type
Gisette 6,000 1,000 5,000 dense

20 Newsgroups 15,935 3,993 62,061 sparse
RCV1.binary 20,242 677,399 47,236 sparse
SIAM 2007 21,519 7,077 30,438 sparse
Real-sim 72,309 N/A 20,958 sparse

NIPS papers 1,500 N/A 12,419 sparse
NYTimes 300,000 N/A 102,660 sparse
Random 1 500 N/A 100 dense
Random 2 625 N/A 125 dense
Random 3 750 N/A 150 dense

. . . . . . . . . . . . . . .
Random 19 2750 N/A 550 dense
Random 20 2875 N/A 575 dense
Random 21 3000 N/A 600 dense

6 Numerical Results

In this section, we perform experiments on both syn-
thetic data and real-life data sets on different learning
tasks. The data sets 1 are of varying sizes, ranging
from small, medium and large scales (Table 1). To
compare our robust model and the full model, we run
all experiments on the same workstation at 2.3 GHz
Intel core i7 and 8GB memory. Both models have an
implementation of the generic second-order algorithm
from Mosek solver (Andersen and Andersen (2000)).
For low-rank approximation, we use the simple power
iteration methods. To make the comparison impartial,
we do not use the safe feature elimination technique
presented in Section 3 in our robust model.

6.1 Complexity on synthetic data

Our objective in this experiment is to compare the
actual computational complexity with the theoretical
analysis presented in Section 5. We generated dense
and i.i.d. random data for n = 100 . . . 600. At each n,
a data set of size 5n-by-n is constructed. We keep k
fixed across all problem sizes, run the two models and
compute the ratio between the running time of our
model to that of the full model. The running time of
our model is the total computational time of the data
sketching phase and the training phase. The experi-
ment is repeated 100 times at each problem size. As
Figure 3 shows, the time ratio grows asymptotically
as O(1/n), a reduction of an order of magnitude in
consistent with the theorical result in Section 5.

6.2 Cross validation and leave-one-out

In this experiment, we focus on the classical 5-fold
cross validation on real-life data sets. Figure 4 shows
the running time (in CPU seconds) from k = 1 . . . 50
for 5-fold cross validation on Gisette data, the hand-

1All data sets are available at http://www.csie.ntu.
edu.tw/~cjlin/libsvmtools/datasets/.
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Figure 3: The ratio between the running time of our
robust model and the original model.

Table 2: Comparisons of 5-fold cross-validation on real
data sets (in CPU time).

Data set Original model Our model Saving
(seconds) (seconds) factor

Gisette 22,082 39 566
20 Newsgroups 17,731 65 272
RCV1.binary 17,776 70.8 251
SIAM 2007 9,025 67 134
Real-sim 73,764 56.3 1310

written digit recognition data from NIPS 2003 chal-
lenge (Guyon et al. (2004)). It takes our framework
less than 40 seconds, while it takes 22,082 seconds (500
times longer) for the full model to perform 5-fold cross
validation. Furthermore, with leave-one-out analysis,
the running time for the full model would require much
more computations, becoming impractical while our
model only needs a total of 7,684 seconds, even less
than the time to carry out 5-fold cross validation on
the original model. Table 2 reports the experimental
results on other real-life data sets.
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Figure 4: 5-fold cross validation on Gisette data with
robust approximation model.

6.3 Statistical performance

We further evaluate our model on statistical learning
performance with binary classification task on both
Gisette and RCV1 data sets. RCV1 is a sparse text
corpus from Reuters while Gisette is a very dense pixel
data. For evaluation metric, we use the F1-score on the
testing sets. As Figure 5 and Figure 6 show, the clas-
sification performance is equivalent to the full model.
As far as time is concerned, the full model requires
5,547.1 CPU seconds while our framework needs 18
seconds for k = 50 on RCV1 data set. For Gisette
data, the full model requires 991 seconds for training
and our framework takes less than 34 seconds.

6.4 Topic imaging

One application of solving multiple learning prob-
lems is topic imaging. Topic imaging is analogous in
spirit to leave-one-out analysis. Instead of leave-one-
observation-out, topic imaging removes a feature and
runs a LASSO model on the remaining so as to explore
the “neighborhood” (topic) of the query feature. Data
sketching is computed only once for each data set and
is shared to answer all queries in parallel.

We experiment our robust sketching model on two
large text corpora: NIPS full papers and New York
Times articles (Bache and Lichman (2013)). Table 3
and Table 4 show the results to sample queries on NIPS
and NYTimes as well as the computational time our
model takes to answer these queries. In both data sets,
our model gives the result in just a few seconds. We
can see the topic of Statistics, or Vision (Computer
vision) with NIPS (Table 3) and the theme of Political
and Research with NYTimes data (Table 4).

7 Concluding Remarks

We proposed in this paper a robust sketching model
to approximate the task of solving multiple learning
problems. We illustrate our approach with the square-
root LASSO model given a low-rank sketch of the
original data set. The numerical experiments suggest
this framework is highly scalable, gaining one order of
magnitude in computational complexity over the full
model.

One interesting direction is to extend this model to a
different data approximation, such as sparse plus low-
rank (Chandrasekaran et al. (2011)), in order to cap-
ture more useful information while keeping the struc-
tures simple in our proposed framework. Our future
works also include an analysis and implementation of
this framework using first-order techniques for very
large-scale problems.
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(b) Training time of our model. The time to
train the full model is 5547.1 seconds.

Figure 5: Classification performance and running time on RCV1 data set.
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(b) Training time of our model. The time to
train the full model is 991 seconds.

Figure 6: Classification performance and running time on Gisette data set.

Table 3: Topic imaging for 5 query words on NIPS papers.

Query LEARNING STATISTIC OPTIMIZATION TEXT VISION
Time (s) 3.15 2.89 3.11 3.52 3.15

1 error data algorithm trained object
2 action distribution data error image
3 algorithm model distribution generalization visiting
4 targeting error likelihood wooter images
5 weighed algorithm variable classifier unit
6 trained parameter network student recognition
7 uniqueness trained mixture validating representation
8 reinforced likelihood parame trainable motion
9 control gaussian bound hidden view

10 policies set bayesian hmm field

Table 4: Topic imaging for 5 query words on New York Times articles.

Query HEALTH TECHNOLOGY POLITICAL BUSINESS RESEARCH
Time (s) 11.81 11.84 10.95 11.93 10.65

1 drug weaving campaign companionship drug
2 patience companies election companias patient
3 doctor com presidency milling cell
4 cell computer vortices stmurray doctor
5 perceiving site republic marker percent
6 disease company tawny customary disease
7 tawny wwii voted weaving program
8 medica online democratic analyst tessie
9 cancer sites presidentes firing medical

10 care customer leader billion studly
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