Supplementary materials for the manuscript ‘A Scalable Algorithm for
Structured Kernel Feature Selection”

1 Convergence and Regret Analysis and
Proof for Theorem 2

We provide the detailed proof for Theorem 2 in Section 3.2
in the manuscript. First, we re-state the theorem as follows:

Theorem 2 With an auxiliary function h(a) = ||al|?, and
the non-decreasing sequence {3;} with 8; = v(1 + In(t)),
Let {a;} and {g;} be two sequences generated by
Algorithm 1 in the manuscript. Suppose the optimal
solution a* to the original problem (1) in the manuscript
satisfies h(a*) < D, for some D > 0, and there is a
constant G such that ||g:||. < G for all ¢ > 1, we have the
following properties for Algorithm 1:

a) For each t > 1, the average regret is bounded by

G2
Ri(a) < (vD2 - 27) (1+1n(t)).
b) The sequence of primal variables are bounded by

llaz1 —a™[] <

m <<7D2 + gj) (1+1n(t) — Rt(a*)>.

Also we can have the convergence in the expectation form:

c)

. 2 G?
—a || S 1—|—t—|—h1(t)(D +2_y)(1+1n(t))

Proof: We use the indication function to represent the non-
negative region constraint:

Ella;;1

0 ifa; >0,Vi >0
oo ifda; <0,i >0

The loss function for our original problem can be written
as:

aol—i—ZaZK’ ++>\1sz
m=1
+>\2 Z (ai—aj)Q

(i,j)€E

We define the region

ZFp = {a € dom(®)|h(a) < D?}.

a) For the regret analysis, let
t
0y = max {Z ((gg, ac—a)+ @(ag)) — t@(a))},

ZF
acHp =1

t=1,2,3,..

We can see that d; is the upper bound of the regret R;(a)

Rt<a):Z(fc(aC )+ ®(ar)) Z a))
¢=1 ¢=1
= (fe(ag) = fe(a) + @(ac)) — td(a)
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For an arbitrary initial feasible solution ag, we can rewrite

t
Z gc,ac—ao +<I>(a¢))
¢=1

(tg:, a9 — a) — tO
+£3’§,{ g, a0 — a) (a)}.

Define V;(tg:) = maxa {(tg:,a—ao) —t®(a) — Bih(a)}.

As a € Zp, we can derive the following inequality simi-
larly as in Lemma 9 in (Xiao, 2010):

t
<Y ((ge.ac —ao) + @(ac)) + Vi(—t8:) + B D> (2)
¢=1

According to Lemmas 10 and 11 in (Xiao, 2010), we can
easily get

Ve(—C8¢) + (ac+1) < Ve(—C8e),
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and

Ve(—=C€8¢) < Veor(—=(C = 1)g¢—1) + (—8¢,ac — ao)
g2
2(v(¢C = 1) + Be-1)

when ¢ > 2. Hence

+

Ve(—=C8¢) + P(ac+1) < Ve1(—(C = 1)8¢—1)+

lecl? )
2C— 1)+ Ber) "7

Moving corresponding terms, we get:

(—gc,ac —ag) +

(8c.ac —ag) + Plact1) < Vo1 (—(C —1)8¢-1)

= IESIE
A Ty SR
When ¢ = 1, we have
_ _ 5 |lga |12
(g1,a1 —ag) + (az) < —Vi(—81) + 2(0)

+ (Bo — B1)h(az)

By adding all the inequalities for { = 1, ..., ¢, we can get

t
> ((gerac —a0) + Plact)) + Ve(—C&e)
=1

t
llgel[Z

27(C=1) + B

Since a3 = ag = 0 € argmin,®(a), so ®(azy1) >
®(ag) = ®(a;). Adding ®(a;) — ®(as11) to both sides,

Yoot ({gerac —a0) + @ag)) + Ve(—(B)  (3)
< (8o~ B)h(az) + 5 Ty sl — @)
Substituting this into (2) , we have
Ri(a) < &, < 5, D? +Ei%
T 2 7(C= 1)+ B

+2(50 - [31)||g1||i.
81+

For our algorithm 8, = (1 + In(¢)), and By = B1 = v,
hence

t—1
2 1

G
2
Rula) <6 S A1+ MOID 4 (143 )

< <7D2 + gj) (1+1n(t))

b) To find the bounds for primal variables, we first rewrite
the solution to the subproblem (9) in the manuscript at the
tth step in Algorithm 1:

a1 = arg mgn {(tg:,a) + t®(a) + Bih(a)}.

The subgradients by 1 € 0P(as11) and d¢1 € Oh(azy1)
satisfy the following inequality:

<tgt + tbt+1 + Btdt-q-l, a— at+1> >0,Va e dOIIl(CD)

Since both ®(-) and h(-) are strongly convex, we have

1
= (vt + Be)llasy1 — al|?

2
< t(®(a) = ®(art1) — (ber1,a —ap1))+
Bi(h(a) — h(ag1) — (diy1,a — ag41))

= Bih(a) — Brh(ags1) — (tbyyr + Bidip1,a — agyq)

+t®(a) — tP(az+1)
< Bih(a) — Bih(ais1) + (18, a — ait1) + t0(a)
— t®(ai1)
= Bih(a) + t®(a) + {(—t8¢, a1 — ag)
— tP(azy1 }+ 18, a —ag)
= Bih(a) +t®(a) + Vi(—t8:) +

- Bth(at-&-l)
<tgt, a— a0>.

Note that for the dual average methods in Algorithm 1,

t t
(t8i,a =Z<ggaa—a< +Z (8¢ ac — ao).
¢=1 ¢=1

Substituting the corresponding term, we can get
1 2
SOt + Be)llacs —all

s,é’th(a)+{ —tg) + > ((ge,a—a +<I>(a<))}
¢=1

t
)= > D(a
¢=1

t
“FZ gg,a—ag ) +tP(a
=1

Taking the proof for a) (1) that
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(fe(a) = fe(ag)) +t@(a) — > d(ac
¢=1

=1

=> (fe(a)
=1

= —Rt (a),

Il sl

t
= > (felac) + ®(ac))
=1



Using (4), we can derive

SOt + By —allg < Byh(a) + (8o — B)h(as)+

gl 2

1 t
P gy i)

By the assumptions given in the theorem, and setting 5y =
B1 =y, we have

1
5(715 + B)llacy1 — a3 <

) G2 t—1 1

< (’VD2 + ;) (1+1In(¢)) — Re(a).
Hence,

llai+1 —a®|| <
2

¢) Let zo = {Y¢, X} be the (th sample for Algorithm
1, and z[t] denote the collection of i.i.d random variables
{#1, ..., 2:}. We can take a as a function of {21, ..., zc_1},
which is independent of {z¢, ..., z:}.

We have

and

E,i (f(ac, zc) + ®(ac)) = Eye—1)(flac, 2¢) + ®(ac))
=E,;(f(ac) + ®(ac)).
We also can get
E.(f(@",20) + ®(a")) = E. (f(a", 2¢) + ®(a"))
= f(a") + ®(a").
Since

f(a*) + B(a’) = min f(a) + B(a),

combining the previous results leads to the following equa-
tion:

E,Ri(a*) = > E,y(fac) + ®(ac)) — t(f(a*) + ¢(a”))
(=1

> 0.

Therefore, with the result from b), we can get
2

2 s G
At < —— & = )
El|la;y; —a*|| < e (D + 2V2>(1+ln(t))
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Figure 1: Active Regions recovered by the proposed
method, Fused LASSO and HSIC-LASSO for simulated
MRI images with additive nonlinear responses.

2 Some Figures for Simulation Results

Figures 1 and 2 illustrate the results for additive nonlinear
and non-additive nonlinear simulations in Sections 4.1.2
and 4.1.3 in the manuscript.
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Figure 2: Active Regions recovered by the proposed
method, Fused LASSO and HSIC-LASSO for simulated
MRI images with non-additive nonlinear responses.



