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Abstract

Kernel methods are powerful tools for nonlinear
feature representation. Incorporated with struc-
tured LASSO, the kernelized structured LASSO
is an effective feature selection approach that
can preserve the nonlinear input-output relation-
ships as well as the structured sparseness. But
as the data dimension increases, the method can
quickly become computationally prohibitive. In
this paper we propose a stochastic optimization
algorithm that can efficiently address this com-
putational problem on account of the redundant
kernel representations of the given data. Experi-
ments on simulation data and PET 3D brain im-
age data show that our method can achieve supe-
rior accuracy with less computational cost than
existing methods.

INTRODUCTION

Feature selection has been one of the important problems
to address the infamous curse of dimensionality in apply-
ing statistical learning methods to short and fat data with
n/p < 1, where n and p denote the sample size and feature
space dimension respectively. Penalized feature selection
methods such as the Least Absolute Shrinkage and Selec-
tion Operator (LASSO) (Tibshirani, 1996) provide one of
effective solutions, which typically search for features that
are linearly related to the output.

In order to explore potential nonlinear input-output rela-
tionships with feature selection, researchers have proposed
both parametric and non-parametric methods (Tibshirani,
1996; Tibshirani et al., 2005; Li et al., 2006; Yamada et al.,
2014). We focus on non-parametric methods in this paper,
specifically, kernel feature selection methods. Kernel meth-
ods are arguably among the most popular tools that provide
a practical way to capture nonlinear relationships. For ex-
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ample, Quadratic Programming Feature Selection (QPFS)
(Rodriguez et al., 2010) solves a quadratic programming
problem with quadratic kernelized dependency measures.
But with the increasing feature dimension, the Hessian ma-
trix for the quadratic term may become singular and cause
computational difficulty. Song et al. (2012) proposed a
greedy kernel feature selection method with forward fea-
ture selection or backward elimination strategies based on
Hilbert-Schmidt Independent Criteria (HSIC, Gretton et
al., 2005). A related method—Hilbert-Schmidt Feature Se-
lection (HSFS)—proposed in Masaeli et al. (2010) can be
considered as its continuous relaxation. HSFS was formu-
lated as non-convex optimization problems with only lo-
cal optimality guarantee from the resulting optimization al-
gorithms. Neither the method in Song et al. (2012) nor
HSEFS can scale up with the feature dimension due to the
non-convexity and complexity of their accompanying op-
timization problems. To address the scalability problem,
Sparse Additive Models (SAM) (Ravikumar et al., 2009)
have been proposed to efficiently solve kernel feature selec-
tion by a back-fitting algorithm (Ravikumar et al., 2009),
but it was shown that it may not perform well when fea-
tures are not additively related. More recently, based on
feature vector machines (FVM) (Li ef al., 2006), Yamada et
al. (2014) proposed a high-dimensional kernel feature se-
lection method: HSIC-LASSO, in which the optimization
problem can be efficiently solved by the dual augmented
Lagrangian (DAL) algorithm (Tomioka et al., 2011).

HSIC-LASSO is a feature-wise kernel method. When
studying features from structured data such as images and
networks for disease diagnosis, inherent structural and
functional relationships among features may need to be
integrated in feature selection for better accuracy, repro-
ducibility, and interpretability. Feature-wise kernel selec-
tion methods may be further improved with better perfor-
mance by considering such structural and functional rela-
tionships among features, especially when the sample size
is limited. Hence, in this paper, we aim to develop such
a kernel feature selection method that explicitly imposes
structural constraints among selected features. One of such
structured penalized feature selection methods is the Fused
LASSO (Tibshirani et al., 2005; Xin et al., 2014) in lin-
ear regression and classification. The implementation of
Fused LASSO for kernel feature selection to capture non-
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linearity is computationally challenging. When the sam-
ple size and feature dimension increase, for example when
studying 3-Dimensional brain images, the general batch-
based optimization becomes inefficient and even infeasi-
ble. To address this computational difficulty, we introduce
explicit structural constraints and derive a highly scalable
stochastic optimization algorithm for this structured kernel
feature selection method that is designed for the classifica-
tion problems.

In summary, we propose a new structured kernel feature
selection method based on the Hilbert-Schmidt Indepen-
dent Criteria (Gretton et al., 2005) but with explicitly en-
forced structural constraints to incorporate potential struc-
tural and functional relationships among features when
they are available. The derived stochastic optimization al-
gorithm is tailored to such a structured kernel feature selec-
tion problem and can efficiently solve the problem of very
large size, for example for 3D brain images, on account of
the redundant kernel representations of the given data. Fi-
nally, unlike HSIC-LASSO, which is designed for feature
selection and requires separate learning processes for pre-
diction with the selected features, our structured kernel fea-
ture selection method is formulated in a supervised learning
framework and simultaneously learns the prediction model
that can be directly adopted for new data.

The remaining of the paper is organized as follows: Section
2 formulates the structured kernel feature selection prob-
lem; Section 3 derives the tailored stochastic optimization
algorithm; Section 4 presents and discusses our experimen-
tal results with both simulation data and 3D PET brain im-
ages; Section 5 provides the discussion on the relationships
of our method with the existing kernel feature selection
methods in literature; Section 6 concludes the paper and
provides future research directions.

2 MODEL FORMULATION

In this section, we present our structured kernel feature se-
lection model for classification.

2.1 Structured Kernel Feature Selection

Different from HSIC-LASSO (Yamada et al., 2014), we
take the Hinge loss function in our model instead of the
least squared loss in HSIC-LASSO since we focus on clas-
sification problems in this paper. Without loss of generality,
with the input features X € R™*P and output responses
Y € {-1,1}"*!, the penalized kernel feature selection
problem can be formulated as follows, with the L;-norm
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penalty as typically done in LASSO:

n p
min > - LY (a0l + > aiK))l4 + Mlarph
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where the first term is the Hinge loss; L,, is a n-
dimensional vector, corresponding to the mth column of
the output kernel matrix L; and K corresponds to the
mth column of K * which is the kernel matrix for fea-
ture x; . The structural constraints among candidate fea-
tures are imposed as quadratic terms of fitting coefficients
a in (1), where E denotes all the available pairwise struc-
tural relationships among features. We consider a six-
neighborhood-system for 3D images. We note that these
quadratic terms can be rewritten in the matrix form with
the graph Laplacian based on the feature structural relation-
ships. But for many applications, the Laplacian is highly
sparse, and it is not advisable to store and use the Laplacian
matrix directly in the algorithm. With the L;-norm regu-
larization term, the non-negative constraints (2) guarantee
that the active features have larger values and non-related
features have small values to make the results easily inter-
pretable. As similarly done in Yamada et al. (2014), for
each feature x; € X, we have

_ . 1
K'=HK'H; H=I--117;
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For output responses Y, we adopt the following kernel:

L=HYYTH;

L = vec(L);

Py

K = vec(K?) K, :Kim.

I/m, = Z/o,m-

Note that the output kernel matrix in our model is also
different from the one adopted in HSIC-LASSO, which is
given as follows:

o Yny, iy =y,
L(yi,y;) = { 0 otherwise
L=HLH L =vec(L),

where n,, is the number of training samples in class ;.
The proposed kernel on Y discriminates the pairwise sam-
ple relationships in the infinite feature space, and also it
provides us an approach for label prediction as shown lat-
ter in the experiment section. However, it is difficult to get
a clear criterion for prediction with the kernel for Y used in
HSIC-LASSO when there are different numbers of samples
in different classes.
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2.2 Interpretation by Hilbert-Schmidt Independent
Criteria

The formulated optimization problem in (1) aims to iden-
tify predictive features that have large inner-product values
between L and K = agl + Y i K'a; under previously de-
scribed constraints. By expanding the inner-product LT K,
we have

LTK = tr(LK)
= agtr(LI) + Z a;tr(LK?)
i

= agtr(LI) + ZaiHSIC(Y, Xi)-

HSIC(Y,x;) = tr(LK") is the empirical estimation of
Hilbert-Schmidt Independent Criteria (HSIC), which is the
same kernel-based independence measure adopted in Song
et al. (2012) and HSIC-LASSO. As proven in Gretton et
al. (2005), HSIC always takes non-negative value and
is zero if and only if the two variables are independent.
When solving the optimization problem (1), the Hinge loss
term drives the feature selection for highly correlated fea-
tures with the output through the HSIC term; thereafter to
have larger fitting coefficients a;’s with the non-negative
Lji-norm term penalizing less correlated or independent
features to have zero coefficients. Finally, with the struc-
tural constraints, our new model can robustly recover struc-
turally related groups of features that are responsible for the
output, aiming to obtain reproducible and accurate results.

3 STOCHASTIC OPTIMIZATION
SOLUTION

In this section, we derive the stochastic optimization algo-
rithm to solve our structured kernel feature selection prob-
lem.

3.1 Stochastic Optimization Algorithm

We note that the dimension of K in (1) is n2 x 1, and there
are p such feature kernel vectors for p features in the prob-
lem. When either the sample size or feature dimension is
large, many general-purpose first-order optimization algo-
rithms cannot scale up accordingly to solve (1). In order
to provide practical and efficient solution algorithms to (1),
we develop a stochastic optimization algorithm based on an
efficient online algorithm: the dual average method (Xiao,
2010; Yang et al., 2010).

As the fitting coefficients a are non-negative, the optimiza-
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tion problem (1) can be rewritten as
n p p
. T N7 .
min Zl[n L. (apl + Zl a; K )]+ + M\ Zl a;
+ A2 Z (a; — a;)?

(i,j)€E
a; Z 0 Wi Z 1.

3

s.t.

As in the dual average method (Xiao, 2010), the above
optimization problem can be considered as two parts: the
loss function part, which should be subdifferentiable; and
the regularization or constraint part, which should be con-
vex. For our current formulation (3), the objective function
in (3) is subdifferentiable and can be directly taken as the
loss function part for the dual average optimization. The
only constraint term is the non-negative constraints on a.
Applying the dual average method (Xiao, 2010), the objec-
tive function can be rewritten in each step ¢ for one sample
m:

P p
by = [n—iﬁ(aolﬁ-zf_ﬂiﬂai)H +)\12ai “

i=1 i=1
+ )\2 Z (ai — a]‘)2.
(i,4)EE
I?miand f{ i can be considered as sample-dependent parts
of L and K*, respectively.

We first compute the subgradient of [, with respect to fitting
coefficients a:

¢(a), if L (a0l + 32, Kpyai) > ms

ge(i) = { —(K! )T Ly, + ¢(a), otherwise,
d(a) = A1+ 2X2 Z (a; — a;).
{5:(6.5)eE}

Here, g¢(i) gives the ith entry of the subgradient g¢. For
ag, K, is 1. For the dual average method at step ¢, we can
compute the average subgradient g;:

t—1_

1
; g1+ Egb

gt =

&)

According to Xiao (2010), the dual average method re-
quires to solve a modified optimization problem by choos-
ing a simple but strongly convex auxiliary function h(a)
as well as a non-decreasing step-size sequence {0;}. The
appropriate choice of the auxiliary function helps make the
problem smooth and strongly convex for easier optimiza-
tion. The appropriate non-decreasing sequence {/3;} can
guarantee fast convergence. For our structured kernel fea-
ture selection problem, we need to solve the following op-
timization problem each step:

~v(1 + In(t))

t
a; > 0,Yi > 1.

lall”

(6)
@)

ming! a +
a

s.t.
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Here, we take h(a) = ||a||?> as the auxiliary function,
which is strongly convex, and 5; = (1 + In(¢)). This
auxiliary function h(a) is designed specifically to have an
efficient updating rule for solving our original structured
kernel feature selection problem (1). Following the deriva-
tion of the dual average method in Xiao (2010), we can
prove the following theorem that gives the updating rule of
our stochastic optimization algorithm.

Theorem 1 With the auxiliary function h(a) = ||a||? and
the non-decreasing sequence {3;} with 8; = v(1 + In(t)),
then the updating rule in each step ¢ for fitting coefficients
a for the problem (1) is:

if 1 = 0;

t — .
*27(1+1n(t))gt(1)’
¢ ifi=1,...p.

(as)e = { [ 5w 8 (D] +

Proof: We can write the Lagrangian of the problem (6)
by introducing the Lagrangian multipliers with the non-
negative constraint:

t

He “H )

—( )2

We can compute the gradient of the Lagrangian with re-
spect to a as

(1 +In(t)) t

Val =2 " 291+ In(D)

(a—( g) — M1

There is no constraint for ag. Hence, ag
—mgt(O) does not violate any KKT conditions.
For Ai:i>05 if —mgt(z) > O, we set a; =
—mgt(i) and \; = 0, and all of the KKT condi-
tions are satisfied. If —mgt(i) < 0,weseta; =0,
and A\; = g(4), so a;\; = 0 and also 57, L(7) = 0. There-
fore, all of the KKT conditions can be met. With the up-
dating rule stated in the theorem, all of the KKT conditions
can be satisfied. Finally, as the problem (6) is convex, the

updating rule in the theorem provides the optimal solution
to (6).

This stochastic optimization algorithm provides an efficient
updating rule for our original problem, and this is the key
that our method can scale up to high dimensional datasets.
Since the objective function in (1) is subdifferentiable, and
the constraint set is convex, as shown in Xiao (2010), with a
large enough number of samples and iteration steps, the up-
dating rules finally approach to the optimal solution to (1).

The pseudo-code of the final stochastic optimization algo-
rithm is summarized in Algorithm 1.
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Algorithm 1 Dual Average Algorithm for Structured Ker-
nel Feature Selection
Input: Data matrix X, Outcome labels Y, Feature
structural relationship graph G(V, E), a strongly convex
auxiliary function h(a), A1, Az.
Initialization: Compute the kernel matrices for X and
Y'; Initialize a € min, h(a);
repeat
1 Given the function /;, compute the subgradient on

at: 8t

2 Update the average subgradient g; = —tglgt_l +
1
1 8ts

3 Calculate a with

ifi=0

~ ) 80
i ifi=1,..p

(ai)e = _ .
[- 27 (1+1In(2)) 8t (9)]+
until Stopping criteria satisfied

Output: Fitting coefficients a.

The required storage of the kernel matrices K°, i
1, ..., p may take large memory space for high-dimensional
datasets. Similar tricks adopted in (Yamada et al., 2014)
can be implemented to reduce memory requirements when
needed.

3.2 Convergence and Regret Analysis

Following Xiao (2010), we can prove the following theo-
rem:

Theorem 2 With an auxiliary function h(a) = ||a||?, and
the non-decreasing sequence {;} with 8; = (1 + In(t)),
{a;} and {g;} are two sequences generated by
Algorithm 1.  Suppose the optimal solution a* to
problem (1) satisfies h(a*) < D, for some D > 0, and
there is a constant G such that ||g|[. < G forall ¢t > 1,
we have the following properties for Algorithm 1:

a) For each t > 1, the average regret is bounded by

2

Ri(a) < (’yD2 + ;) (1+1In(t)).

b) The sequence of primal variables are bounded by

2
((W L&
2y

Also we can have the convergence in the expectation form:

c)

llag+1 —a*|| <
2

A(1+t+1n(t)) >(1 +1n(t) - Rt(a*)).

G2
E||at+1 D? + 2772

. 2
—a ||§1+t—|—1n(t)< )(1+ln(t)).
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Theorem 2(a) reveals that when v = %, we can have
the improved regret bound:
DG
Ry(a) = 2, | == (1 + In(t)).

V2

From Theorem 2(b-c), we can see that our algorithm has a
convergence rate of O(In(t)/t). A detailed proof of these
results can be found in the supplementary file.

4 EXPERIMENTAL RESULTS

We have two sets of experiments to verify the effectiveness
and efficiency of our methods on structured high dimen-
sional datasets. The first one is based on simulation experi-
ments using MRI data. The second one is to analyze the 3D
PET brain images for Alzheimer’s disease (AD) prognosis
(Jack et al., 2008; Xin et al., 2014). For these studies, we
compare our algorithm with Fused LASSO (Tibshirani et
al., 2005; Xin et al., 2014), and HSIC-LASSO. For Fused
LASSO we use the recent efficient implementation based
on the graph-cut algorithm (Xin et al., 2014) with the same
efforts to provide scalable feature selection for 3D brain
images.

4.1 Simulated Active Regions in MRI Images

In this set of experiments, we study the proposed method
with a simulation of structural anomalies within MRI
anatomical data. From the 1000 Functional Connectomes
Project International Neuroimaging Data-Sharing Initia-
tive (Biswal ef al., 2010), we randomly selected 200 3D
anatomical MRI brain images from healthy subjects. Each
image was spatially normalized to a 1mm X 1lmm X
1mm custom, average anatomical template image using
a low-dimensional free-form deformation image registra-
tion (Rueckert et al., 1999) with 15mm control point spac-
ing. For this simulation experiments, we equally partition
the total samples into healthy (negative) samples and posi-
tive samples by simulating the perturbations from the orig-
inal images. Considering computation efficiency, only one
brain lobe region as shown in Figure 1 is chosen for study.
One spherical region within the lobe is randomly perturbed
as the active functional area with structural anomaly. Each
voxel intensity within the active areas is modified by adding
a random value g, which follows a Gaussian distribution,
N(u,0?). In our experiments, we take o as the standard
deviation of voxel intensity values of the original image.
Among the selected original images without perturbation,
the average value of o is 262.75. We perturb the voxel in-
tensity values in 100 positive samples in the randomly se-
lected single spherical active region with a radius of r = 4
voxels. The images in the first row of Figure 1 display
three-axis views for one example of an original MRI im-
age. The second and third rows in Figure 1 are the images
after perturbation in the active areas at different levels of .

785

Figure 1: The first row shows one example from the origi-
nal MRI images; the second row is the corresponding per-
turbed image at ;1 = 100; the third row displays the per-
turbed image at = 200.

For Fused LASSO and our method we directly adopt the
learned parameters for prediction as both methods are
formulated as supervised learning problems. For HSIC-
LASSO, kernel SVM (Chang and Lin, 2011) based on the
learned features is used for prediction. For the proposed
model, we can use the learned parameters to predict the
pairwise relationship between the testing sample with all
of the training samples. Since it is a binary classification
problem, we can use the sign of the accumulated prediction
label to determine the final prediction value. As mentioned
above, it is difficult to determine the testing sample’s re-
lationship with each training sample with HSIC-LASSO,
and this forces us to train an additional kernel classifier for
HSIC-LASSO. The measure on active region recovery ac-
curacy ACCy is computed as follows:

2R— MFE
ACCyr = SR

where R denotes the number of voxels in the actual active
region; and M F represents the binary voxel-wise matching
error between the ground truth active region and the recov-
ered region, which is the number of voxels in both binary
images that are not in the overlap region. We take the R
active voxels in the recovered region corresponding to the
R voxels with the highest average value over all of the pos-
itive samples. When the recovered binary functional active
region is the same as the ground truth region, M E' = 0 and
thereafter ACC4p = 1. When the recovered region does
not have any overlap voxel with the ground truth, M E =
2R and hence ACC4r = 0.

In this set of experiments, 200 samples are divided into the
training set and testing set. The training set contains 50 ran-
domly chosen positive samples and 50 negative ones. The
rest of the samples go to the testing set. All of the model
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Table 1: Comparison for Simulated MRI Images with Lin-
ear Responses

Method Proposed | FL HSIC-LASSO
Pred. Accuracy | 96% 70% | 69%

Reg. Accuracy | 78.1% 33.3% | 23.1%

CPU time (sec.) | 65.6 431.5 | 73.7

parameters are learned based on the training set with five-
fold cross validation. Since the number of training samples
is not large, we use all of training samples in our stochastic
algorithm without any subsampling on the training dataset.
In this set of simulation experiments, we study all of the
three methods on three different types of input-output rela-
tionships: linear, additive nonlinear, and non-additive non-
linear.

4.1.1 Linear Response

In this experiment, we compare all of the models based
on simulated linear responses from perturbed MRI images
with 100 positive samples having the active regions per-
turbed with random values following N (11, 0?) with . =
100, and the other 100 negative samples from the original
MRI images. The output label for each image is directly
determined by whether the image is perturbed. The results
for the three comparing methods are shown in Table 1, and
the recovered regions are shown in Figure 2.

Table 1 shows that our method can achieve higher pre-
diction accuracy as well as higher active region recovery
accuracy. Moreover, our algorithm takes fewer computa-
tional resources. The results in this experiment show that
our method can work robustly even though the active sig-
nal is relatively weak. The proposed model and Fused
LASSO can get higher ACC values due to the additional
structure knowledge of the data that are incorporated in
the model formulation. Without the structure constraints,
HSIC-LASSO misses many active voxels with the redun-
dancy penalty term in their formulation. This is the reason
why the recovered region is sparse and the ACC is low in
HSIC-LASSO. We also have tried lower sparse penalty in
HSIC-LASSO but it does not significantly change the re-
sults. While we note that HSIC-LASSO can achieve simi-
lar computing time compared to our proposed method due
to the efficiency of their dual augmented Lagrangian (DAL)
algorithm. However, HSIC-LASSO does not impose any
structural constraints, which is one of bottlenecks for scal-
ability of structured kernel feature selection.

4.1.2 Additive Nonlinear Response

In this experiment, we set p 200 for perturbations.
Among 200 original images, 150 are chosen to be per-
turbed by adding random values following N (1, 02) to the
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Figure 2: Active regions recovered by the proposed
method, Fused LASSO and HSIC-LASSO for simulated
MRI images with linear responses.

corresponding voxels in the selected active regions. In
addition, in order to create a nonlinear response model,
not all of these samples are labelled as positive sam-
ples. We divide the voxels within the active regions into
four groups: V1,V2,V3,V4 according to the spacial
order in the image. Then we compute a nonlinear re-
sponse value ¥ = > v,1 ey yoeva vsevs vacva S (V1) +
exp(v2/cl) + v3/c2 + (v4/c3)?, where c1 = 2000, c2 =
1500, and ¢3 = 1500 are constants in this experiment. All
the perturbed images are ranked in an ascending order of
1) values. The top 100 samples are considered as positive
samples while the other 100 samples are labelled as health
(or negative) samples.

The results for this experiment are presented in Table 2.
In the supplementary file, Figure 1 illustrates the recov-
ered regions by three methods. It is clear that our pro-
posed model takes lead in both accuracies and speed. The
high prediction accuracy compared to the Fused LASSO
is due to the kernel method in our model for incorporat-
ing potential nonlinear input-output relationships. By en-
forcing structural constraints, our structured kernel feature
selection also performs superior to HSIC-LASSO. It is in-
teresting to note that the Fused LASSO can achieve higher
ACC for active region recovery compared to HSIC-LASSO
because of the incorporated spacial structures. However,
Fused LASSO takes much more computing time than the
other two methods due to the incorporated non-smooth
structure constraints even with the fast proximal and graph-
cut algorithms implemented in Xin et al. (2014).

Based on these simulation experiments, our structured ker-
nel feature selection with the dual average stochastic op-
timization algorithm can robustly recover potential active
function regions, accurately predict output responses, and
scale better with both the sample size and feature dimen-
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Table 2: Comparison for Simulated MRI Images with Ad-
ditive Nonlinear Responses

Method Proposed | FL HSIC-LASSO
Pred. Accuracy | 94% 62 % 65%

Reg. Accuracy | 74.5% 64.5% | 27.9%

CPU time (sec.) | 62.1 4143 | 80.5

Table 3: Comparison for Simulated MRI Images with Non-
additive Nonlinear Responses

Method Proposed | FL HSIC-LASSO
Pred. Accuracy | 75% 69 % 60%
Reg. Accuracy | 70.9% 28.0% | 0.0%
CPU time (sec.) | 69.5 2230.4 | 89.9

sion compared to the other existing feature selection meth-
ods.

4.1.3 Non-additive Nonlinear Response

In this experiment, the simulation data is gener-
ated in a similar way as in the previous experi-
ments. But this time we randomly choose the vox-
els in the four groups, and the nonlinear response value
V=2 vulevivaevamevavaeva V1 X exp(v2/cl)/c2 +
(v3/c3)? x v4, where ¢l = 2000, ¢2 = 6200 and ¢3 =
1500. Similarly, top ranked 100 perturbed images in the
ascending order of ) are set as positive samples and the
remaining 100 images are negative samples.

The results of this experiment for prediction accuracies, ac-
tive region recovery accuracies, and computational time are
given in Table 3. In the supplementary file, Figure 2 dis-
plays the recovered regions by three methods. As visual-
ized in the figures, our method is much more robust than
the other two methods. For non-additive and nonlinear re-
sponses, the objective function is more complicated, and
Fused LASSO and HSIC-LASSO take longer time to reach
to the optimal values. The computational time for the Fused
LASSO has increased dramatically. The possible reason is
that as the problem becomes complicated, the line search
step in the proximal algorithm in the Fused LASSO takes
much longer time. In this experiment, HSIC-LASSO fails
to identify any responsive voxels inside the active region
due to the lack of structural constraints in their formula-
tion.

The results in this set of experiments show that our model
can recover active function regions in high dimensional
structured data, even when the response signal is weak and
complicated.
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Figure 3: The first row displays the mean image of the orig-
inal PET images in three-axis views and the second row
shows the corresponding mean image after preprocessing.

Table 4: Comparison on Pet 3D Brain Images

Method Proposed | FL HSIC-LASSO
Pred. Accuracy | 95.0% 85.9% | 87.9%
CPU time (sec.) | 163.5 2786.2 | 187.9

4.2 PET 3D Brain Images

In this section, we test the proposed method on a 3D
positron emission tomography (PET) dataset, which is col-
lected from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) (Jack et al., 2008). We collected 95
Alzheimer’s disease (AD) patients and 102 healthy sub-
jects in this set of experiments. With the affine transfor-
mation and subsequent non-linear warping algorithm (Fris-
ton et al., 1995) in the SPM MATLAB toolbox, each im-
age was spatially normalized to the Montreal Neurolog-
ical Institute (MNI) template (Fonov et al., 2011). The
data was resampled and the resolution was reduced to
4dmm x dmm x 4mm to save computation time. Student’s
t-test was used to remove the voxels that do not differ sig-
nificantly between patients and healthy people. Further-
more, the voxels with very small intensity values are also
removed to reduce computational cost. Figure 3 shows the
mean image before and after pre-processing.

The dataset is divided into two sets: the training set con-
tains 51 healthy people and 47 patients, the testing set has
51 healthy people and 48 patients. The parameters are
learned by five-fold cross validation on the training data
set according to the prediction accuracy. Table 4 provides
the performance comparison for the three comparing meth-
ods. We can see that our method again performs much bet-
ter on prediction than the other two approaches. Figure 4
gives the predicted active regions by three models. We use
the voxel-wise average intensity values of the healthy brain
images as the reference background, and then we add in the
learned voxel-wise fitting coefficient weights by the three
models on the background. We can that see our method can
recover multiple coherent regions.
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Figure 4: Active regions recovered by the proposed
method, Fused LASSO and HSIC-LASSO for PET 3D
brain images.

S RELATED WORK

Although based on the same HSIC, our structured kernel
feature selection method is quite different from the existing
kernel feature selection methods in addition to our explic-
itly enforced structural constraints in the formulation (3).
For example, the formulation for the Hilbert-Schmidt Fea-
ture Selection (HSFS) (Masaeli et al., 2010) is as follows:

P
~HSICWX,Y) + A [Jwillsc

i=1

min
WGRP X P

where W [wi,...,wq] is a transformation matrix.
Limited-memory BFGS (L-BFGS) algorithm (Nocedal and
Wright, 2003) can be used to solve the problem. One limi-
tation of HSFS is that the objective function is non-convex.
Hence, with different starting points for optimization, we
may get different solutions. In addition, the estimation of
the transformation matrix with p? variables is computation-
ally expensive, especially when we have a large number of
candidate features as witnessed in our 3D image analysis
problems.

Our model is also quite different from other feature-wise
nonlinear methods, including HSIC, FVM, HSIC-LASSO
(Cortes et al., 2012; Li et al., 2006; Yamada et al., 2014).
In Yamada et al.(2014), they propose to minimize the fol-
lowing objective function:

N =

1
t+ 5 D aia HSIC(Xa, Xaoj).

ij

p
- _ 1
IL =Y K| = HSIC(Y,Y) = Y aiHSIC(Y, Xo)
k=1 7

With the last term, their methods aim to eliminate the corre-
lated redundant features. In this paper we are trying to iden-
tify all of the features that have potential predictive power
to the output, which has more reasonable applications such
as in identifying functional regions inside human brain im-
ages for neurodegenerative disease prognosis and diagno-
sis. In addition, the least squared loss function adopted in
these methods may give degenerated results when solving
binary classification problems as the kernel matrix L on
output Y will degenerate to a bi-value matrix.

To summarize, our structured kernel feature selection prob-
lem is specifically designed for classification with the
Hinge loss function, which can be represented by HSIC
terms as we have shown earlier. Enforcing that related
features should be selected together as they have higher
probability in similarly correlating the output, our struc-
tured kernel feature selection can get more robust feature
selection results. In addition to the differences in formu-
lations, we derive a tailored stochastic optimization algo-
rithm so that the proposed method can be implemented to
efficiently solve feature selection and active region recov-
ery when we have big and high-dimensional data such as
3D brain images in our experiments.

6 CONCLUSIONS

In this paper we propose a new kernel feature selection
model for binary classification problems. Based on Hilbert-
Schmidt Independent Criteria, with the structure knowl-
edge among features incorporated into the objective func-
tion, our model can effectively and robustly identify the ac-
tive regions related to the outcome of interest. Our method
can scale up to large-scale data problems with the efficient
stochastic algorithm based on the dual average method. Ex-
perimental results on both simulation data and real-world
3D image data have verified the effectiveness and effi-
ciency of the proposed method. Our structured formulation
for kernel feature selection together with the accompany-
ing stochastic optimization method provides a practical ap-
proach for large-scale structured data feature selection and
active function region recovery from 3D brain images. Our
model can be further improved with the less memory tech-
niques (Yamada et al., 2014) and faster stochastic methods
(Xiao, 2010), which will be our future research directions.
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