
Appendix: Proofs of Theorems

Proof of Theorem 2

We fix an RKHS H on the input space X ⊂ Rd with an RBF kernel k. Let x =
{x1, . . . , xn} be a set of objects to be ranked in Rd with labels r = {r1, . . . , rn}.
Here ri denotes the label of xi, and ri ∈ R. We assume x to be a random variable
distributed according to P , and r deterministic. Throughout L denotes the hinge
loss.

The following notation will be useful in the proof of Theorem 2. Take T to be the
set of pairs derived from x and define the L-risk of f ∈ H as

RL,P (f) := Ex[RL,T (f)]

where
RL,T (f) =

∑
i,j:ri>rj

D(ri, rj)L(f(xi)− f(xj))

and D(ri, rj) is some positive weight function, which we take for simplicity to be
1/|P|, P = {(i, j) : ri > rj}. RL,T (f) is the empirical L-risk of f , with respect to the
empirical distribution over the pairs of samples, which we denote by T . This uniform
weight is the setting we have taken in the main body of the paper. The smallest
possible L-risk in H is denoted

RL,P := inf
f∈H
RL,P (f).

The regularized L-risk is

Rreg
L,P,λ(f) := λ‖f‖2 +RL,P (f), (1)

λ > 0.
For simplicity we assume the preference pair set P contains all pairs over these

n samples. Let gx,λ be the optimal solution to the rank-AD minimization step. We
have,

gx,λ = arg min
f∈H
RL,T (f) + λ||f ||2 (2)

Let Hn denote a ball of radius O(1/
√
λn) in H. Let Ck := supx,t |k(x, t)| with

k the rbf kernel associated to H. Given ε > 0, we let N(H, ε/4Ck) be the covering
number of H by disks of radius ε/4Ck . We first show that with appropriately chosen
λ, as n→∞, gx,λ is consistent in the following sense.

Proposition 1. Let λn be appropriately chosen such that λn → 0 and logN(Hn,ε/4Ck)
nλn

→
0, as n→∞. Then we have

Ex[RL,T (gx,λn)]→ RL,P = min
f∈H
RL,P (f), n→∞.
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Proof Let us outline the argument. In [Steinwart, 2001], the author shows that
there exists a fP,λ ∈ H minimizing (1):

• For all Borel probability measures P on X × X and all λ > 0, there is an
fP,λ ∈ H with

Rreg
L,P,λ(fP,λ) = inf

f∈H
Rreg
L,P,λ(f)

such that ‖fP,λ‖ = O(1/
√
λ). (If P is the empirical distribution over data T ,

then we denote this minimizer by fT,λ.)

Next, a simple argument shows that

• limλ→0Rreg
L,P,λ(fP,λ) = RL,P .

Finally, we will need a concentration inequality to relate the L-risk of fP,λ with
the empirical L-risk of fT,λ. We then derive consistency using the following argument:

RL,P (fT,λn) ≤ λn‖fT,λn‖2 +RL,P (fT,λn)

≤ λn‖fT,λn‖2 +RL,T (fT,λn) + δ/3

≤ λn‖fP,λn‖2 +RL,T (fP,λn) + δ/3

≤ λn‖fP,λn‖2 +RL,P (fP,λn) + 2δ/3

≤ RL,P + δ

where λn is an appropriately chosen sequence→ 0, and n is large enough. The second
and fourth inequality hold due to Concentration Inequalities, and the last one holds
since limλ→0Rreg

L,P,λ(fP,λ) = RL,P .
We now prove the appropriate concentration inequality [Cucker and Smale, 2001].

Recall H is an RKHS with smooth kernel k; thus the inclusion Ik : H → C(X) is
compact, where C(X) is given the ‖·‖∞-topology. That is, the “hypothesis space”
H := Ik(BR) is compact in C(X), where BR denotes the ball of radius R in H. We
denote by N(H, ε) the covering number of H with disks of radius ε. We prove the
following inequality:

Lemma 2. For any probability distribution P on X ×X,

P εn{T ∈ (X×X)εn : sup
f∈H
|RL,T (f)−RL,P (f)| ≥ ε} ≤ 2N(H, ε/4Ck) exp

(
−ε2n

2(1 + 2
√
CkR)2

)
,

where Ck := supx,t |k(x, t)|.

Proof Since H is compact, it has a finite covering number. Now suppose H =
D1 ∪ · · · ∪D` is any finite covering of H. Then

Prob{sup
f∈H
|RL,T (f)−RL,P (f)| ≥ ε} ≤

∑̀
j=1

Prob{ sup
f∈Dj

|RL,T (f)−RL,P (f)| ≥ ε}

so we restrict attention to a disk D in H of appropriate radius ε.
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Suppose ‖f − g‖∞ ≤ ε. We want to show that the difference

|(RL,T (f)−RL,P (f))− (RL,T (g)−RL,P (g))|

is also small. Rewrite this quantity as

|(RL,T (f)−RL,T (g))− Ex[RL,T (g)−RL,T (f)]|.

Since ‖f − g‖∞ ≤ ε, for ε small enough we have

max{0, 1− (f(xi)− f(xj))} −max{0, 1− (g(xi)− g(xj))} = max{0, (g(xi)− g(xj)− f(xi) + f(xj))}
= max{0, 〈g − f, φ(xi)− φ(xj)〉}.

Here φ : X → H is the feature map, φ(x) := k(x, ·). Combining this with the
Cauchy-Schwarz inequality, we have

|(RL,T (f)−RL,T (g))− Ex[RL,T (g)−RL,T (f)]| ≤ 2
n2 (2n2‖f − g‖∞Ck) ≤ 4Ckε,

where Ck := supx,t |k(x, t)|. From this inequality it follows that

|RL,T (f)−RL,P (f)| ≥ (4Ck + 1)ε =⇒ |(RL,T (g)−RL,P (g))| ≥ ε.

We thus choose to cover H with disks of radius ε/4Ck, centered at f1, . . . , f`. Here
` = N(H, ε/4Ck) is the covering number for this particular radius. We then have

sup
f∈Dj

|(RL,T (f)−RL,P (f))| ≥ 2ε =⇒ |(RL,T (fj)−RL,P (fj))| ≥ ε.

Therefore,

Prob{sup
f∈H
|RL,T (f)−RL,P (f)| ≥ 2ε} ≤

n∑
j=1

Prob{|RL,T (fj)−RL,P (fj)| ≥ ε}

The probabilities on the RHS can be bounded using McDiarmid’s inequality.
Define the random variable g(x1, . . . , xn) := RL,T (f), for fixed f ∈ H. We need

to verify that g has bounded differences. If we change one of the variables, xi, in g
to x′i, then at most n summands will change:

|g(x1, . . . , xi, . . . , xn)− g(x1, . . . , x
′
i, . . . , xn)| ≤ 1

n2
2n sup

x,y
|1− (f(x)− f(y))|

≤ 2

n
+

2

n
sup
x,y
|f(x)− f(y)|

≤ 2

n
+

4

n

√
Ck‖f‖.

Using that supf∈H‖f‖ ≤ R, McDiarmid’s inequality thus gives

Prob{sup
f∈H
|RL,T (f)−RL,P (f)| ≥ ε} ≤ 2N(H, ε/4Ck) exp

(
−ε2n

2(1 + 2
√
CkR)2

)
.
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We are now ready to prove Theorem 2. Take R = ‖fP,λ‖ and apply this result to
fP,λ:

Prob{|RL,T (fP,λ)−RL,P (fP,λ)| ≥ ε} ≤ 2N(H, ε/4Ck) exp

(
−ε2n

2(1 + 2
√
Ck‖fP,λ‖)2

)
.

Since ‖fP,λn‖ = O(1/
√
λn), the RHS converges to 0 so long as

nλn
logN(H, ε/4Ck)

→∞

as n→∞. This completes the proof of Theorem 2.
�

We now establish that under mild conditions on the surrogate loss function, the
solution minimizing the expected surrogate loss will asymptotically recover the correct
preference relationships given by the density f .

Proposition 3. Let L be a non-negative, non-increasing convex surrogate loss func-
tion that is differentiable at zero and satisfies L′(0) < 0. If

g∗ = arg min
g∈H

Ex [RL,T (g)] ,

then g∗ will correctly rank the samples according to their density, i.e. ∀xi 6= xj, f(xi) >
f(xj) =⇒ g∗(xi) > g∗(xj). Assume the input preference pairs satisfy: P =
{(xi, xj) : f(xi) > f(xj)}, where x = {x1, . . . , xn} is drawn i.i.d. from distribu-
tion f . Let ` be some convex surrogate loss function that satisfies: (1) ` is non-
negative and non-increasing; (2) ` is differentiable and `′(0) < 0. Then the optimal
solution: g∗, will correctly rank the samples according to f , i.e. g∗(xi) > g∗(xj),
∀xi 6= xj, f(xi) > f(xj), .

The hinge-loss satisfies the conditions in the above theorem. Combining Theorem
1 and 3, we establish that asymptotically, the rankAD step yields a ranker that
preserves the preference relationship on nominal samples given by the nominal density
f .
Proof Our proof follows similar lines of Theorem 4 in [Lan et al., 2012]. Assume
that g(xi) < g(xj), and define a function g′ such that g′(xi) = g(xj), g

′(xj) = g(xi),
and g′(xk) = g(xk) for all k 6= i, j. We have RL,P (g′)−RL,P (g) = Ex(A(x)), where
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A(x) =
∑

k:rj<ri<rk

[D(rk, rj)−D(rk, ri)][L(g(xk)− g(xi))− L(g(xk)− g(xj))]

+
∑

k:rj<rk<ri

D(ri, rk)[L(g(xj)− g(xk))− L(g(xi)− g(xk))]

+
∑

k:rj<rk<ri

D(rk, rj)[L(g(xk)− g(xi))− L(g(xk)− g(xj))]

+
∑

k:rj<ri<rk

[D(rk, rj)−D(rk, ri)][L(g(xk)− g(xi))− L(g(xk)− g(xj))]

+
∑

k:rj<ri<rk

[D(ri, rk)−D(rj, rk)][L(g(xj)− g(xk))− L(g(xi)− g(xk))]

+(L(g(xj)− g(xi))− L(g(xi)− g(xj)))D(ri, rj).

Using the requirements of the weight function D and the assumption that L is non-
increasing and non-negative, we see that all six sums in the above equation for A(x)
are negative. Thus A(x) < 0, so RL,P (g′) −RL,P (g) = Ex(A(x)) < 0, contradicting
the minimality of g. Therefore g(xi) ≥ g(xj).

Now we assume that g(xi) = g(xj) = g0. Since RL,P (g) = infh∈H RL,P (h), we

have
∂`L(g;x)

∂g(xi)

∣∣∣∣
g0

= A = 0, and
∂`L(g;x)

∂g(xj)

∣∣∣∣
g0

= B = 0, where

A =
∑

k:rj<ri<rk

D(rk, ri)[−L′(g(xk)− g0)] +
∑

k:rj<rk<ri

D(ri, rk)L
′(g0 − g(xk)) +

∑
k:rk<rj<ri

D(ri, rk)L
′(g0 − g(xk)) +D(ri, rj)[−L′(0)].

B =
∑

k:rj<ri<rk

D(rk, rj)[−L′(g(xk)− g0)] +
∑

k:rj<rk<ri

D(rk, rj)L
′(g0 − g(xk)) +

∑
k:rk<rj<ri

D(rj, rk)L
′(g0 − g(xk)) +D(ri, rj)[−L′(0)].

However, using L′(0) < 0 and the requirements of D we have

A−B ≤ 2L′(0)D(ri, rj) < 0,

contradicting A = B = 0.
�

The following lemma completes the proof of Theorem 2:

Lemma 4. Assume G is any function that gives the same order relationship as the
density: G(xi) > G(xj), ∀xi 6= xj such that f(xi) > f(xj). Then

1

n

n∑
i=1

1{G(xi)≤G(η)} → p(η). (3)
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Proof of Theorem 3

To prove Theorem 3 we need the following lemma [Vapnik, 1979]:

Lemma 5. Let X be a set and S a system of sets in X , and P a probability measure
on S. For X ∈ X n and A ∈ S, define νX(A) := |X ∩ A|/n. If n > 2/ε, then

P n

{
X : sup

A∈S
|νX(A)− P (A)| > ε

}
≤ 2P 2n

{
XX′ : sup

A∈S
|νX(A)− νX′(A)| > ε/2

}
.

Now to the proof of the Theorem. Consider the event

J :=

{
X ∈ X n : ∃f ∈ F , P{x : f(x) < f (m) − 2γ} > m− 1

n
+ ε

}
.

We must show that P n(J) ≤ δ for ε = ε(n, k, δ). Fix k and apply lemma 5 with

A = {x : f(x) < f (m) − 2γ}

with γ small enough so that

νX(A) = |{xj ∈ X : f(xj) < f (m) − 2γ}|/n =
m− 1

n
.

We obtain

P n(J) ≤ 2P 2n

{
XX′ : ∃f ∈ F , |{x′j ∈ X′ : f(x′j) < f (m) − 2γ}| > εn/2

}
.

The remaining portion of the proof follows as Theorem 12 in [Schölkopf et al., 2001].
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