
Non-Uniform Stochastic Average Gradient Method

for Training Conditional Random Fields:

Supplementary Material

Mark Schmidt, Reza Babanezhad, Mohamed Osama Ahemd,
Aaron Defazio, Ann Clifton, Anoop Sarkar

Abstract

In this supplementary material we provide the proofs of both parts of the the propositions as well as
extended experimental results.

Proof of Part (a) of Proposition 1

In this section we consider the minimization problem

min
x
f(x) =

1

n

n∑
i=1

fi(x), (1)

where each f ′i is L-Lipschitz continuous and each fi is µ-strongly-convex. We will define Algorithm 1 by
the sequences {xk}, {νk}, and {φkj } given by

νk =
1

npj
[f ′jk (xk)− f ′jk (φkj )] +

1

n

n∑
i=1

f ′i(φ
k
i ),

xk+1 = xk − 1

η
νk,

φk+1
j =

{
f ′jk (xk) if j = jk,

φkj otherwise,

where jk = j with probability pj . In this section we’ll use the convention that x = xk, that φj = φkj ,
and that x∗ is the minimizer of f . We first show that νk is an unbiased gradient estimator and derive a
bound on its variance.

Lemma 1. We have E[νk] = f ′(xk) and subsequently

E‖νk‖2 ≤ 2E‖ 1

npj
[f ′j(x)− f ′j(x∗)]‖2 + 2E‖ 1

npj
[f ′j(φj)− f ′j(x∗)]‖2.

Proof. We have

E[νk] =

n∑
j=1

pj=1

[
1

npj
[f ′j(x)− f ′jk (φj)] +

1

n

n∑
i=1

f ′i(φi)

]

=

n∑
j=1

[
1

n
f ′j(x)− 1

n
f ′j(φj) +

pj
n

n∑
i=1

f ′i(φi)

]

=
1

n

n∑
i=1

f ′j(x)− 1

n

n∑
i=1

f ′j(φj) +

n∑
i=1

[pi]
1

n

n∑
i=1

f ′j(φj)

=
1

n

n∑
i=1

f ′i(x) = f ′(x).

1



To show the second part, we use that E‖X − E[X] + Y ‖2 = E‖X − E[X]‖2 + E‖Y ‖2 if X and Y are
independent, E‖X − E[X]‖2 ≤ E‖X‖2, and ‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2,

E‖νk‖2 = E‖ 1

npj
[f ′j(x)− f ′j(φj)] +

1

n

n∑
i=1

f ′i(φi)‖2

= E‖ 1

npj
[f ′j(x)− f ′j(x∗)]− f ′(x) + f ′(x)− 1

npj
[f ′j(φj)− f ′j(x∗)]−

1

n

n∑
i=1

f ′i(φi))‖2

= E‖ 1

npj
[f ′j(x)− f ′j(x∗)]− f ′(x)− 1

npj
[f ′j(φj)− f ′j(x∗)]−

1

n

n∑
i=1

f ′i(φi))‖2 + ‖f ′(x)‖2

≤ E‖ 1

npj
[f ′j(x)− f ′j(x∗)]− f ′(x)‖2 + 2E‖ 1

npj
[f ′j(φj)− f ′j(x∗)]−

1

n

n∑
i=1

f ′i(φi))‖2 + ‖f ′(x)‖2

≤ 2E‖ 1

npj
[f ′j(x)− f ′j(x∗)]‖2 − 2‖f ′(x)‖2 + 2E‖ 1

npj
[f ′j(φj)− f ′j(x∗)]‖2 + ‖f ′(x)‖2

≤ 2E‖ 1

npj
[f ′j(x)− f ′j(x∗)]‖2 + 2E‖ 1

npj
[f ′j(φj)− f ′j(x∗)]‖2.

We will also make use of the inequality

〈f ′(x), x∗ − x〉 ≤ −µ
2
‖x− x∗‖2 − 1

2Ln

n∑
i=1

‖f ′i(x∗)− f ′i(x)‖2, (2)

which follows from Defazio et al. [2014, Lemma 1] using that f ′(x∗) = 0 and the non-positivity of
L−µ
L

[f(x∗)− f(x)]. We now give the proof of part (a) of Proposition 1, which we state below.

Proposition 1 (a). If η = 4L+nµ
npm

and pm = minj{pj}, then Algorithm 1 has

E[‖xk − x∗‖2] ≤
(

1− npmµ

nµ+ 4L

)t [
‖x0 − x∗‖+

2pm
(4L+ nµ)2

∑
i

1

pi
‖∇fi(x0)−∇fi(x∗)‖2

]
,

.

Proof. We denote the Lyapunov function T k at iteration k by

T k =
1

n

n∑
i=1

1

npj
‖f ′i(φki )− f ′i(x∗)‖2 + c‖xk − x∗‖2.

We will will show that E[T k+1] ≤ (1− 1
κ

)T k for some κ < 1. First, we write the expectation of the first
term as

E

[∑
i

1

n2pi
‖f ′i(φi)− f ′i(x∗)‖2

]

= E
[

1

n2pj
‖f ′j(x)− f ′j(x∗)‖2

]
+
∑
i

1

n2pi
‖f ′i(φi)− f ′i(x∗)‖2 − E

[
1

n2pj
‖f ′j(φj)− f ′j(x∗)‖2

]
=

1

n2

∑
i

‖f ′i(x)− f ′i(x∗)‖2 +
1

n2

∑
i

(
1

p i
− 1

)
‖f ′i(φi)− f ′i(x∗)‖2. (3)

Next, we simplify the other term of E[T k+1],

cE‖xk+1 − x∗‖2 = cE‖x− x∗ − 1

η
νk‖2

= c‖x− x∗‖2 +
c

η2
E‖νk‖2 +

2c

η
〈f ′(x), x− x∗〉

2



We now use Lemma 1 followed by Inequality (2),

cE‖xk+1 − x∗‖2 ≤ c‖x− x∗‖2 +
c

η2
2E‖ 1

npj
[f ′j(x)− f ′j(x∗)]‖2 +

c

η2
2E‖ 1

npj
[f ′j(φj)− f ′j(x∗)]‖2 +

2c

η
〈f ′(x), x− x∗〉

≤ c(1− µ

η
)‖x− x∗‖2 +

2c

η2
E‖ 1

npj
(f ′j(x)− f ′j(x∗))‖2

+
2c

η2
E‖ 1

npj
(f ′j(φj)− f ′j(x∗))‖2 −

c

nηL

∑
i

‖f ′i(x∗)− f ′i(x)‖2

= c(1− µ

η
)‖x− x∗‖2 +

∑
i

(
2c

n2η2pi
− c

nηL
)‖f ′i(x)− f ′i(x∗)‖2 +

∑
i

(
2c

n2η2pi
)‖f ′i(φi)− f ′i(x∗)‖2.

We use this to bound the expected improvement in the Lyapunov function,

E[T k+1]− T k = E[T k+1]− 1

n

n∑
i=1

1

npj
‖f ′i(φi)− f ′i(x∗)‖2 − c‖x− x∗‖2

≤ 1

n2

∑
i

‖f ′i(x)− f ′i(x∗)‖2 +
1

n2

∑
i

(
1

p i
− 1

)
‖f ′i(φi)− f ′i(x∗)‖2 From (3)

+ c(1− µ

η
)‖x− x∗‖2 +

∑
i

(
2c

n2η2pi
− c

nηL
)‖f ′i(x)− f ′i(x∗)‖2 +

∑
i

(
2c

n2η2pi
)‖f ′i(φi)− f ′i(x∗)‖2 From above

− 1

n

n∑
i=1

1

npj
‖f ′i(φi)− f ′i(x∗)‖2 − c‖x− x∗‖2 Definition of T k

=
1

n2

∑
i

‖f ′i(x)− f ′i(x∗)‖2 −
1

n2

∑
i

‖f ′i(φi)− f ′i(x∗)‖2

− cµ

η
‖x− x∗‖2 +

∑
i

(
2c

n2η2pi
− c

nηL
)‖f ′i(x)− f ′i(x∗)‖2 +

∑
i

(
2c

n2η2pi
)‖f ′i(φi)− f ′i(x∗)‖2

= − 1

κ
T k +

(
1

κ
− µ

η

)
c‖x− x ∗ ‖2 (∗)

+
∑
i

(
2c

n2η2pi
+

1

n2
− c

nηL

)
‖f ′i(x)− f ′i(x∗)‖2

+
∑
i

(
2c

n2η2pi
− 1

n2
+

1

n2κpi

)
‖f ′i(φi)− f ′i(x∗)‖2

≤ − 1

κ
T k +

(
1

κ
− µ

η

)[
c‖x− x ∗ ‖2

]
+

(
2c

n2η2pm
+

1

n2
− c

nηL

)[∑
i

‖f ′i(x)− f ′i(x∗)‖2
]

+

(
2c

n2η2pm
− 1

n2
+

1

n2κpm

)[∑
i

‖f ′i(φi)− f ′i(x∗)‖2
]
,

where in (∗) we add and subtract 1
κ
T k and in the last line we assumed c ≥ 0 and used pi ≥ pm. The

terms in square brackets are positive, and if we can choose the constants {c, κ, η} to make the round
brackets non-positive, we have

E[T k+1] ≤
(

1− 1

κ

)
T k.

For the first expression, choosing κ = η
µ

makes it zero. We can make the third expression zero under this

choice of κ by choosing c = η2pm
2
− µη

2
. This follows because

2c

n2η2pm
− 1

n2
+

1

n2κpm
=

2c

n2η2pm
− 1

n2
+

µ

n2ηpm
= 0,

3



is equivalent to
2c

n2η2pm
=

1

n2
− µ

n2ηpm
⇔ c =

η2pm
2
− µη

2
.

For the second expression, note that with our choice of c we have

2c

n2η2pm
+

1

n2
− c

nηL
=

1

n2
− µ

n2ηpm
+

1

n2
−

η2pm
2
− µη

2

nηL
,

which (multiplying by n) is negative if we have

2

n
+

µ

2L
≤ µ

nηpm
+
ηpm
2L

.

Ignoring the last term, we can choose

η =
4L+ nµ

npm
.

We will also require that c ≥ 0 to complete the proof, but this follows because η ≥ µ
pm

. By using that

cE[‖xk+1 − x∗‖2] ≤ E[T k+1] ≤
(

1− 1

κ

)
T k =

(
1− µ

η

)
T k

and chaining the expectations while using the definition of η we obtain

E[‖xk − x∗‖2] ≤
(

1− µ

η

)k
T 0

c

=

(
1− npmµ

nµ+ 4L

)k [
‖x0 − x∗‖2 +

1

cn

n∑
i=1

1

npj
‖f ′i(φ0

i )− f ′i(x∗)‖2
]
.

To get the final expression, use that

1

cn2
=

2

n2(η2pm − µη)
≤ 2

n2η2pm
=

2n2p2
m

n2pm(4L+ nµ)2
=

2pm
(4L+ nµ)2

.

Proof of Part (b) of Proposition 1

In this section we consider the minimization problem

min
x
f(x) =

1

n

n∑
i=1

fi(x), (4)

where each f ′i is Li-Lipschitz continuous and f is µ-strongly-convex. We will define Algorithm 2, a
variant of SAGA, by the sequences {xk}, {νk}, and {φkj } given by

νk =
L̄

Li
[f ′jk (xk)− f ′jk (φkj )] +

1

n

n∑
i=1

f ′i(φ
k
i ),

xk+1 = xk − γνk,

φk+1
j =

{
f ′rk (xk) if j = rk,

φkj otherwise,

where jk = j with probability Li∑n
j=1 Lj

and rk is picked uniformly at random. This is identical to

Algorithm 1, except it uses a specific choice of the pj and the memory φj is updated based on a different
random sample that is sampled uniformly. This algorithm maintains the key property that the expected
step is a gradient step, E[νk] = f ′(xk).

4



From our assumptions about f and the fi, we have [Nesterov, 2004, see Chapter 2].

fi(x) ≥ fi(y) +
〈
f ′i(y), x− y

〉
+

1

2L

∥∥f ′i(x)− f ′i(y)
∥∥2
, (5)

and
f(x) ≥ f(y) +

〈
f ′(y), x− y

〉
+
µ

2
‖x− y‖2 . (6)

We use these to derive several useful inequalities that we will use in the analysis. Adding the former
times 1

2n
for all i to the latter times 1

2
for y = x∗ gives the inequality〈

f ′(x), x∗ − x
〉
≤ f(x∗)− f(x)− µ

4
‖x∗ − x‖2 − 1

4n

∑
i

1

Li

∥∥f ′i(x∗)− f ′i(x)
∥∥2
. (7)

Also by applying (5) with y = x∗ and x = φi, for each fi and summing, we have that for all φi and x∗:

1

n

∑
i

1

Li

∥∥f ′i(φi)− f ′i(x∗)∥∥2 ≤ 2

n

∑
i

[
fi(φi)− f(x∗)−

〈
f ′i(x

∗), φi − x∗
〉]
. (8)

Further, by both minimizing sides of (6) we obtain

−
∥∥f ′(x)

∥∥2 ≤ −2µ [f(x)− f(x∗)] . (9)

We next derive a bound on the variance of the gradient estimate.

Lemma 2. It holds that for any φi that with x
k+1 and xk as given by Algorithm 2 we have

E
∥∥∥xk+1−xk

∥∥∥2

≤ 2γ2 L̄

n

∑
i

1

Li

∥∥∥f ′j(φkj )− f ′j(x∗)
∥∥∥2

+2γ2 L̄

n

∑
i

1

Li

∥∥∥f ′j(xk)− f ′j(x∗)
∥∥∥2

− γ2
∥∥∥f ′(xk)

∥∥∥2

.

Proof. We again follow the SAGA argument closely here

E
∥∥∥xk+1 − xk

∥∥∥2

= γ2E

∥∥∥∥∥ L̄Lj
[
f ′j(φ

k
j )− f ′j(xk)

]
− 1

n

n∑
i=1

f ′i(φ
k
i )

∥∥∥∥∥
2

= γ2E

∥∥∥∥∥ L̄Lj
[
f ′j(φ

k
j )− f ′j(x∗)

]
− 1

n

n∑
i=1

f ′i(φ
k
i )− L̄

Lj

[
f ′j(x

k)− f ′j(x∗)
]
− f ′(xk)

∥∥∥∥∥
2

+γ2
∥∥∥f ′(xk)

∥∥∥2

≤ 2γ2E

∥∥∥∥∥ L̄Lj
[
f ′j(φ

k
j )− f ′j(x∗)

]
− 1

n

n∑
i=1

f ′i(φ
k
i )

∥∥∥∥∥
2

+2γ2E
∥∥∥∥ L̄Lj

[
f ′j(x

k)− f ′j(x∗)
]
− f ′(xk)

∥∥∥∥2

+ γ2
∥∥∥f ′(xk)

∥∥∥2

≤ 2γ2E
∥∥∥∥ L̄Lj

[
f ′j(φ

k
j )− f ′j(x∗)

]∥∥∥∥2

+2γ2E
∥∥∥∥ L̄Lj

[
f ′j(x

k)− f ′j(x∗)
]∥∥∥∥2

− γ2
∥∥∥f ′(xk)

∥∥∥2

.

We can expand those expectations as follows 1
n

∑
i Li = L̄:

E
∥∥∥∥ L̄Li

[
f ′j(φ

k
j )− f ′j(x∗)

]∥∥∥∥2

=
1

nL̄

∑
i

Li

∥∥∥∥ L̄Li
[
f ′j(φ

k
j )− f ′j(x∗)

]∥∥∥∥2

=
L̄

n

∑
i

1

Li

∥∥∥[f ′j(φkj )− f ′j(x∗)
]∥∥∥2

,

5



and similarly for E
∥∥∥ L̄Li

[
f ′j(x

k)− f ′j(x∗)
]∥∥∥2

.

We now give the proof of part (b) of Proposition 1, which we state below.

Proposition 1 (b). If γ = 1
4L

, then Algorithm 2 has

E

[∥∥∥xk − x∗∥∥∥2
]
≤
(

1−min

{
1

3n
,
µ

8L̄

})k [∥∥∥xk − x∗∥∥∥2

+
n

2L̄

(
f(x0)− f(x∗)

)]
.

Proof. We define the Lyapunov function as

T k =
1

n

∑
i

fi(φ
k
i )− f(x∗)− 1

n

∑
i

〈
f ′i(x

∗), φki − x∗
〉

+ c
∥∥∥xk − x∗∥∥∥2

.

The expectations of the first terms in T k+1 are straightforward to simplify:

E

[
1

n

∑
i

fi(φ
k+1
i )

]
=

1

n
f(xk) +

(
1− 1

n

)
1

n

∑
i

fi(φ
k
i ),

E

[
− 1

n

∑
i

〈
f ′i(x

∗), φk+1
i − x∗

〉]
= −

(
1− 1

n

)
1

n

∑
i

〈
f ′i(x

∗), φki − x∗
〉
.

Note that these terms make use of the uniformly sampled φk+1
r = xk value. For the change in the last

term of T k we expand the quadratic and apply E[xk+1] = xk − γf ′(xk) to simplify the inner product
term:

cE
∥∥∥xk+1 − x∗

∥∥∥2

=cE
∥∥∥xk − x∗ + xk+1 − xk

∥∥∥2

=c
∥∥∥xk − x∗∥∥∥2

+ 2cE
[〈
xk+1 − xk, xk − x∗

〉]
+ cE

∥∥∥xk+1 − xk
∥∥∥2

=c
∥∥∥xk − x∗∥∥∥2

− 2cγ
〈
f ′(xk), xk − x∗

〉
+ cE

∥∥∥xk+1 − xk
∥∥∥2

.

We now apply Lemma 2 to bound the error term cE
∥∥xk+1 − xk

∥∥2
, giving:

cE
∥∥∥xk+1 − x∗

∥∥∥2

≤ c
∥∥∥xk − x∗∥∥∥2

− cγ2
∥∥∥f ′(xk)

∥∥∥2

−2cγ
〈
f ′(xk), xk − x∗

〉
+2cγ2 L̄

n

∑
i

1

Li

∥∥∥f ′i(φki )− f ′i(x∗)
∥∥∥2

+ 2cγ2 L̄

n

∑
i

1

Li

∥∥∥f ′i(xk)− f ′i(x∗)
∥∥∥2

.

Now we bound −2cγ 〈f ′(x), x− x∗〉 with (7) and then apply (8) to bound E
∥∥f ′j(φj)− f ′j(x∗)∥∥2

:

cE
∥∥∥xk+1 − x∗

∥∥∥2

≤
(
c− 1

2
cγµ

)∥∥∥xk − x∗∥∥∥2

+

(
2cγ2L̄− 1

2
cγ

)
1

n

∑
i

1

Li

∥∥∥f ′i(xk)− f ′i(x∗)
∥∥∥2

−cγ2
∥∥∥f ′(xk)

∥∥∥2

− 2cγ
[
f(xk)− f(x∗)

]
+
(
4cγ2L̄

) 1

n

∑
i

[
fi(φi)− fi(x∗)−

〈
f ′i(x

∗), φi − x∗
〉]
.

6



We can now combine the bounds we have derived for each term in T , and pull out a fraction 1
κ

of T k

(for any κ at this point). Together with (9) this yields:

E[T k+1]− T k ≤− 1

κ
T k +

(
1

n
− 2cγ − 2cγ2µ

)[
f(xk)− f(x∗)

]
+

(
1

κ
+ 4cγ2L̄− 1

n

)[
1

n

∑
i

fi(φ
k
i )− f(x∗)− 1

n

∑
i

〈
f ′i(x

∗), φki − x∗
〉]

+

(
1

κ
− 1

2
γµ

)
c
∥∥∥xk − x∗∥∥∥2

+

(
2γL̄− 1

2

)
cγ

1

n

∑
i

1

Li

∥∥∥f ′i(xk)− f ′i(x∗)
∥∥∥2

. (10)

Note that the term in square brackets in the second row is positive in light of (8). We now attempt
to find constants that satisfy the required relations. We start with naming the constants that we need
to be non-positive:

c1 =
1

n
− 2cγ − 2cγ2µ,

c2 =
1

κ
+ 4cγ2L̄− 1

n
,

c3 =
1

κ
− 1

2
γµ,

c4 = 2γL̄− 1

2
.

Recall that we are using the step size γ = 1/4L̄, and thus c4 = 0. Setting c1 to zero gives

c =
1

2γ(1− γµ)n
,

which is positive since γµ < 1. Now we look at the restriction that c2 ≤ 0 places on κ:

1

κ
+ 4cγ2L̄− 1

n
=

1

κ
+

4γL̄

2(1− γµ)n
− 1

n

=
1

κ
+

1

2(1− γµ)n
− 1

n

=
1

κ
+

1

2(1− µ/4L̄)n
− 1

n

≤ 1

κ
+

1

2(1− L̄/4L̄)n
− 1

n

=
1

κ
+

2

3n
− 1

n

=
1

κ
− 1

3n
,

∴
1

κ
≤ 1

3n
.

We also have the restriction from c3 = 1
κ
− 1

2
γµ of

1

κ
≤ µ

8L̄
,

therefore we can take
1

κ
= min

{
1

3n
,
µ

8L̄

}
.

Note that c
∥∥xk − x∗∥∥2 ≤ T k, and therefore by chaining expectations and plugging in constants we get:

E

[∥∥∥xk − x∗∥∥∥2
]
≤
(

1−min

{
1

3n
,
µ

8L̄

})k [∥∥∥xk − x∗∥∥∥2

+
n

2L̄

(
f(x0)− f(x∗)

)]
.

7



0 20 40 60 80 100

0.115

0.12

0.125

0.13

0.135

0.14

0.145

Te
st

 e
rr

o
r

 

 

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

0.04

0.045

0.05

0.055

Te
st

 e
rr

o
r

 

 

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

OEG

SMD

0 20 40 60 80 100

0.024

0.026

0.028

0.03

0.032

0.034

Te
st

 e
rr

o
r

 

 

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

OEG

0 20 40 60 80 100

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Te
st

 e
rr

o
r

 

 

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

Figure 1: Test error against effective number of passes for different deterministic, stochastic, and semi-
stochastic optimization strategies. Top-left: OCR, Top-right: CoNLL-2000, bottom-left: CoNLL-2002,
bottom-right: POS-WSJ.

Test Error Plots for All Methods

In the main paper we only plotted test error for a subset of the methods. In Figure 1 we plot the test
error of all methods considered in Figure 1 of the main paper. Note that Pegasos and OEG do not appear
on the plot (despite being in the legend) because their values exceed the maximum plotted values. In
these plots we see that the SAG-NUS methods perform similarly to the best among the optimally-tuned
stochastic gradient methods in terms of test error, despite the lack of tuning required to apply these
methods.

Runtime Plots

In the main paper we plot the performance against the effective number of passes as an implementation-
independent way of comparing the different algorithms. In all cases except OEG and SMD, we imple-
mented a C version of the method and also compared the running times of our different implementations.
This ties the results to the hardware used to perform the experiments, and thus says little about the
runtime in different hardware settings, but does show the practical performance of the methods in this
particular setting. We plot the training objective against runtime in Figure 2 and the testing objective
in Figure 3. In general, the runtime plots show the exact same trends as the plots against the effective
number of passes. However, we note several small differences:

• AdaGrad performs slightly worse in terms of runtime, and was always worse than the basic SG
method. This seems to be due to the extra square root operators needed to implement the method.

• Hybrid performs slightly worse in terms of runtime, although it was still faster than the L-BFGS
method. This seems to be due to the higher cost of applying the L-BFGS update when the batch
size is small.

• SAG performs slightly worse in terms of runtime, though it remains among the other top performing
methods Hybrid and ASG. This seems to be due to the higher cost of the memory update associated

8



0 10 20 30 40 50 60 70

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

O
b

je
c

ti
v

e
 m

in
u

s 
o

p
ti
m

a
l L−BFGS

Pegasos

SG
AdaGrad

ASGHybridSAG
SAG−NUS

SAG−NUS*

0 50 100 150 200 250 300

10
0

10
1

10
2

10
3

10
4

10
5

10
6

O
b

je
c

ti
v
e

 m
in

u
s 

o
p

ti
m

a
l

L−B
FG

S

Pegasos

SG AdaGrad

ASG

H
ybrid

SAG

SAG−NUS
SAG−NUS*

0 10 20 30 40 50 60 70

10
−2

10
0

10
2

10
4

10
6

O
b

je
c

ti
v

e
 m

in
u

s 
o

p
ti
m

a
l

L−BFGS

Pegasos

SG
AdaGrad

ASG

Hybrid
SAG

SAG−NUS SAG−NUS*

0 500 1000 1500 2000 2500 3000

10
−2

10
0

10
2

10
4

10
6

10
8

O
b

je
c

ti
v

e
 m

in
u

s 
o

p
ti
m

a
l

L−BFGS

Pegasos

SG
AdaGrad

ASG

Hybrid

SAG

SAG−NUSSAG−NUS*

Figure 2: Objective minus optimal objective value against time for different deterministic, stochastic, and
semi-stochastic optimization strategies. Top-left: OCR, Top-right: CoNLL-2000, bottom-left: CoNLL-2002,
bottom-right: POS-WSJ.

with the algorithm.

• Although both SAG-NUS methods still dominate all other methods by a substantial margin, the
performance of the new SAG-NUS* and the existing SAG-NUS is much closer in terms of runtime.
This seems to be because, although the SAG-NUS method does much more backtracking than
SAG-NUS*, these backtracking steps are much cheaper because they only require the forward pass
of the forward-backward algorithm. If we compared these two algorithms under more complicated
inference schemes, we would expect the advantage of SAG-NUS* to appear in the runtime, too.

References

A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for
non-strongly convex composite objectives. Advances in Neural Information Processing Systems, 2014.

Y. Nesterov. Introductory lectures on convex optimization: A basic course. Springer, 2004.

9



0 10 20 30 40 50 60 70

0.115

0.12

0.125

0.13

0.135

0.14

0.145

Te
st

 e
rr

o
r

 

 

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

0 50 100 150 200 250 300

0.04

0.045

0.05

0.055

Te
st

 e
rr

o
r

 

 

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

0 10 20 30 40 50 60 70

0.024

0.026

0.028

0.03

0.032

0.034

Te
st

 e
rr

o
r

 

 

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

0 500 1000 1500 2000 2500 3000

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Te
st

 e
rr

o
r

 

 

L−BFGS

Pegasos

SG

AdaGrad

ASG

Hybrid

SAG

SAG−NUS

SAG−NUS*

Figure 3: Test error against time for different deterministic, stochastic, and semi-stochastic optimization
strategies. Top-left: OCR, Top-right: CoNLL-2000, bottom-left: CoNLL-2002, bottom-right: POS-WSJ.

10


