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Abstract

We apply stochastic average gradient (SAG)
algorithms for training conditional random
fields (CRFs). We describe a practical im-
plementation that uses structure in the CRF
gradient to reduce the memory requirement
of this linearly-convergent stochastic gradi-
ent method, propose a non-uniform sampling
scheme that substantially improves practical
performance, and analyze the rate of con-
vergence of the SAGA variant under non-
uniform sampling. Our experimental results
reveal that our method significantly outper-
forms existing methods in terms of the train-
ing objective, and performs as well or bet-
ter than optimally-tuned stochastic gradient
methods in terms of test error.

1 Introduction

Conditional random fields (CRFs) [Lafferty et al.,
2001] are a ubiquitous tool in natural language pro-
cessing. They are used for part-of-speech tagging [Mc-
Callum et al., 2003], semantic role labeling [Cohn and
Blunsom, 2005], topic modeling [Zhu and Xing, 2010],
information extraction [Peng and McCallum, 2006],
shallow parsing [Sha and Pereira, 2003], named-entity
recognition [Settles, 2004], as well as a host of other ap-
plications in natural language processing and in other
fields such as computer vision [Nowozin and Lampert,
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2011]. Similar to generative Markov random field
(MRF) models, CRFs allow us to model probabilis-
tic dependencies between output variables. The key
advantage of discriminative CRF models is the abil-
ity to use a very high-dimensional feature set, without
explicitly building a model for these features (as re-
quired by MRF models). Despite the widespread use
of CRF's, a major disadvantage of these models is that
they can be very slow to train and the time needed
for numerical optimization in CRF models remains a
bottleneck in many applications.

Due to the high cost of evaluating the CRF objec-
tive function on even a single training example, it is
now common to train CRFs using stochastic gradient
methods [Vishwanathan et al., 2006]. These methods
are advantageous over deterministic methods because
on each iteration they only require computing the gra-
dient of a single example (and not all example as in
deterministic methods). Thus, if we have a data set
with n training examples, the iterations of stochastic
gradient methods are n times faster than deterministic
methods. However, the number of stochastic gradient
iterations required might be very high. This has been
studied in the optimization community, which consid-
ers the problem of finding the minimum number of
iterations t so that we can guarantee that we reach an
accuracy of €, meaning that

flw') = f(w*) < e and [’ —w*||* <,

where f is our training objective function, w’ is our
parameter estimate on iteration ¢, and w* is the pa-
rameter vector minimizing the training objective func-
tion. For strongly-convex objectives like ¢o-regularized
CRFs, stochastic gradient methods require O(1/¢) it-
erations [Nemirovski et al., 2009]. This is in contrast to
traditional deterministic methods which only require
O(log(1/€)) iterations [Nesterov, 2004]. However, this
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much lower number of iterations comes at the cost of
requiring us to process the entire data set on each it-
eration.

For problems with a finite number of training ex-
amples, Le Roux et al. [2012] recently proposed the
stochastic average gradient (SAG) algorithm which
combines the advantages of deterministic and stochas-
tic methods: it only requires evaluating a single
randomly-chosen training example on each iteration,
and only requires O(log(1/¢)) iterations to reach an
accuracy of €. Beyond this faster convergence rate,
the SAG method also allows us to address two issues
that have traditionally frustrated users of stochastic
gradient methods: setting the step-size and deciding
when to stop. Implementations of the SAG method use
both an adaptive step-size procedure and a cheaply-
computable criterion for deciding when to stop. Le
Roux et al. [2012] show impressive empirical perfor-
mance of the SAG algorithm for binary classification.

This is the first work to apply a SAG algorithm to train
CRFs. We show that tracking marginals in the CRF
can drastically reduce the SAG method’s huge mem-
ory requirement. We also give a non-uniform sam-
pling (NUS) strategy that adaptively estimates how
frequently we should sample each data point, and we
show that the SAG-like algorithm of Defazio et al.
[2014] converges under any NUS strategy while a par-
ticular NUS strategy achieves a faster rate. Our ex-
periments compare the SAG algorithm with a vari-
ety of competing deterministic, stochastic, and semi-
stochastic methods on benchmark data sets for four
common tasks: part-of-speech tagging, named entity
recognition, shallow parsing, and optical character
recognition. Our results indicate that the SAG algo-
rithm with NUS outperforms previous methods by an
order of magnitude in terms of the training objective
and, despite not requiring us to tune the step-size, per-
forms as well or better than optimally tuned stochastic
gradient methods in terms of the test error.

2 Conditional Random Fields

CRFs model the conditional probability of a struc-
tured output y € Y (such as a sequence of labels)
given an input z € X (such as a sequence of words)
based on features F(z,y) and parameters w using

exp(w F(z,y))
 exp(wT F(z, )’

pylz, w) = 5 (1)

Given n pairs {x;,y;} comprising our training set, the
standard approach to training the CRF is to minimize
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the /5-regularized negative log-likelihood,
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where A\ > 0 is the strength of the regularization pa-
rameter. Unfortunately, evaluating logp(y;|x;, w) is
expensive due to the summation over all possible con-
figurations y’. For example, in chain-structured mod-
els the forward-backward algorithm is used to com-
pute log p(y;|z;, w) and its gradient. A second problem
with solving (2) is that the number of training exam-
ples n in applications is constantly-growing, and thus
we would like to use methods that only require a few
passes through the data set.

3 Related Work

Lafferty et al. [2001] proposed an iterative scaling al-
gorithm to solve problem (2), but this proved to be
inferior to generic deterministic optimization strate-
gies like the limited-memory quasi-Newton algorithm
L-BFGS [Wallach, 2002, Sha and Pereira, 2003]. The
bottleneck in these methods is that we must evalu-
ate log p(y;|z;, w) and its gradient for all n training
examples on every iteration. This is very expensive
for problems where n is very large, so to deal with
this problem stochastic gradient methods were exam-
ined [Vishwanathan et al., 2006, Finkel et al., 2008].
However, traditional stochastic gradient methods re-
quire O(1/€) iterations rather than the much smaller
O(log(1/€)) required by deterministic methods.

There have been several attempts at improving the
cost of deterministic methods or the convergence rate
of stochastic methods. For example, the exponenti-
ated gradient method of Collins et al. [2008] processes
the data online and only requires O(log(1/e)) itera-
tions to reach an accuracy of € in terms of the dual
objective. However, this does not guarantee good per-
formance in terms of the primal objective or the weight
vector. Although this method is highly-effective if A
is very large, our experiments and the experiments of
others show that the performance of online exponen-
tiated gradient degrades substantially if a small value
of X\ is used (which may be required to achieve the
best test error), see Collins et al. [2008, Figures 5-
6 and Table 3] and Lacoste-Julien et al. [2013, Fig-
ure 1]. In contrast, SAG degrades more gracefully as
A becomes small, even achieving a convergence rate
faster than classic SG methods when A = 0 [Schmidt
et al., 2013]. Lavergne et al. [2010] consider using mul-
tiple processors and vectorized computation to reduce
the high iteration cost of quasi-Newton methods, but
when n is enormous these methods still have a high
iteration cost. Friedlander and Schmidt [2012] explore
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a hybrid deterministic-stochastic method that slowly
grows the number of examples that are considered in
order to achieve an O(log(1/€)) convergence rate with
a decreased cost compared to deterministic methods.

Below we state the convergence rates of different meth-
ods for training CRFs, including the fastest known
rates for deterministic algorithms (like L-BFGS and
accelerated gradient) [Nesterov, 2004], stochastic al-
gorithms (like [averaged] stochastic gradient and Ada-
Grad) [Ghadimi and Lan, 2012], online exponentiated
gradient, and SAG. Here L is the Lipschitz constant of
the gradient of the objective, u is the strong-convexity
constant (and we have A\ <y < L), and 02 bounds the
variance of the gradients.

Deterministic: O(n\/% log(1/€)) (primal)
Online EG O((n+ %)log(1/e))  (dual)

Stochastic O(Z—i + \/g) (primal)
SAG O((n+ ﬁ) log(1/€)) (primal)

4 Stochastic Average Gradient

Le Roux et al. [2012] introduce the SAG algorithm, a
simple method with the low iteration cost of stochastic
gradient methods but that only requires O(log(1/e))
iterations. To motivate this new algorithm, we write
the classic gradient descent iteration as

n
(0%
thrl = wt - — E Sﬁ,
n -
=1

where « is the step-size and at each iteration we
set the ‘slope’ variables s! to the gradient with re-
spect to training example i at w’, so that s!
—Vlog p(y;|zi, wt) + Mwt. The SAG algorithm uses
this same iteration, but instead of updating s! for
all n data points on every iterations, it simply sets
st = —Vlogp(yi|zi, w') + Mw' for one randomly cho-
sen data point and keeps the remaining s! at their
value from the previous iteration. Thus the SAG al-
gorithm is a randomized version of the gradient algo-
rithm where we use the gradient of each example from
the last iteration where it was selected. The surprising
aspect of the work of Le Roux et al. [2012] is that this
simple delayed gradient algorithm achieves a similar
convergence rate to the classic full gradient algorithm
despite the iterations being n times faster.

3)

4.1 Implementation for CRFs

Unfortunately, a major problem with applying (3) to
CRFs is the requirement to store st. While the CRF
gradients V log p(y;|z;, w") have a nice structure (see
Section 4.2), s includes A\w! for some previous ¢, which
is dense and unstructured. To get around this issue,
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instead of using (3) we use the following SAG-like up-
date [Le Roux et al., 2012, Section 4]

1 n
t+1 t t t
=w —a(— E "+ Aw
w w a(m 2 g5 )

1
=w' — a(—d+ ')
m

.«
=(1-aNw md7 (4)
where g? is the value of —V log p(y;|z:, w*) for the last
iteration k where i was selected and d is the sum of
the g! over all i. Thus, this update uses the exact gra-
dient of the regularizer and only uses an approxima-
tion for the (structured) CRF log-likelihood gradients.
Since we don’t yet have any information about these
log-likelihoods at the start, we initialize the algorithm
by setting g? = 0. But to compensate for this, we
track the number of examples seen m, and normalize
d by m in the update (instead of n). In Algorithm 1,
we summarize this variant of the SAG algorithm for
training CRFs.! In many applications of CRFs the g!

Algorithm 1 SAG algorithm for training CRF's
Require: {z;,y;}, \, w, §
1: m«0,g, < 0fori=1,2...,n
2:d«+0,L;«1
3: while m < n and ||2d + Aw|s > 6 do

4:  Sample ¢ from {1,2,...,n}
5. f < —logp(yilzi, w)
6: g« —Vlogp(yilri,w)
7:  if this is the first time we sampled ¢ then
8: m<+—m+1
9: end if
Subtract old gradient g;, add new gradient g:
10: d<d—g;,+g
Replace old gradient of example i:
11:  gi<g
12:  if ||g;]|* > 1078 then
13: L, +lineSearch(z;, y;, f, gi,w, Ly)
14:  end if
15 a+1/(Lg+A)
16: w< (1 —alw—2d
17 Ly« L,-27Yn

18: end while

are very sparse, and we would like to take advantage
of this as in stochastic gradient methods. Fortunately,
we can implement (4) without using dense vector op-
erations by using the representation w! = Sfv? for a
scalar A% and a vector v*, and using ‘lazy updates’ that
apply d repeatedly to an individual variable when it is
needed [Le Roux et al., 2012].

If we solve the problem for a sequence of regularization
parameters, we can obtain better performance by warm-
starting ¢¥, d, and m.
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Also following Le Roux et al. [2012], we set the step-
size to « = 1/L, where L is an approximation to the
maximum Lipschitz constant of the gradients. This is
the smallest number L such that

IV fi(w) = Vfi(0)]| < Llw — vl ()
for all 7, w, and v. This quantity is a bound on how
fast the gradient can change as we change the weight
vector. The Lipschitz constant with respect to the
gradient of the regularizer is simply A. This gives
L = Ly + A, where Ly is the Lipschitz constant of
the gradient of the log-likelihood. Unfortunately, L,
depends on the covariance of the CRF and is typically
too expensive to compute. To avoid this computa-
tion, as in Le Roux et al. [2012] we approximate L,
in an online fashion using the standard backtracking
line-search given by Algorithm 2 [Beck and Teboulle,
2009]. The test used in this algorithm is faster than
testing (5), since it uses function values (which only
require the forward algorithm for CRFs) rather than
gradient values (which require the forward and back-
ward steps). Algorithm 2 monotonically increases Ly,
but we also slowly decrease it in Algorithm 1 in or-
der to allow the possibility that we can use a more
aggressive step-size as we approach the solution.

Algorithm 2 Lipschitz line-search algorithm

Require: Ti, Yi, f7 gi, W, Lg'
o ff = —logp(yilzi, w — %ggi)
while f'> f — oL gi[|* do
L/g =2L, X
f —log p(yi|wi, w — fggi)
end while
return L,.

Since the solution is the only stationary point, we must
have V f(w') = 0 at the solution. Further, the value
%d + Aw' converges to V f(w') so we can use the size
of this value to decide when to stop the algorithm (al-
though we also require that m = n to avoid premature
stopping before we have seen the full data set). This
is in contrast to classic stochastic gradient methods,
where the step-size must go to zero and it is therefore
difficult to decide if the algorithm is close to the opti-
mal value or if we simply require a small step-size to
continue making progress.

4.2 Reducing the Memory Requirements

Even if the gradients g! are not sparse, we can often
reduce the memory requirements of Algorithm 1 be-
cause it is known that the CRF gradients only depend
on w through marginals of the features. Specifically,
the gradient of the log-likelihood under model (1) with
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respect to feature j is given by

>, exp(F(z,y"))
= Faay L@ y)

= Fi(a,y) = Yoy lv,w)Fj(2,y)

V;log p(ylr,w) = Fj(z,y) —

= Fj(x,y) - ]Ey’\z,w[Fj<x7yl)}

Typically, each feature j only depends on a small ‘part’
of y. For example, we typically include features of the
form Fj(z,y) = F(x)Ilyx = s] for some function F,
where k is an element of y and s is a discrete state
that y, can take. In this case, the gradient can be
written in terms of the marginal probability of element
Yy taking state s,

Vjlog p(ylz, w) = F(x)l[yr = s] — Eyrjg 0 [F(2)I[yr = s]]
= F(z)Iyx = 8] — Eyjz 0 [Ilyx = 8])
= F(z)(I[lyx = s] — p(yx = s|z,w)).

Notice that Algorithm 1 only depends on the old gra-
dient through its difference with the new gradient (line
10), which in this example gives

V;log p(y|z, w) — V;log p(y|z, wea) =
F(m)(p(yk = S|x7w01d) _p(yk = S|:E,’LU)),

where w is the current parameter vector and wegyq is
the old parameter vector. Thus, to perform this cal-
culation the only thing we need to know about weg
is the unary marginal p(yx = s|x, weq), which will be
shared across features that only depend on the event
that yr = s. Similarly, features that depend on pairs
of values in y will need to store pairwise marginals,
P(yr = S,y = 5’|z, Wola). For general pairwise graph-
ical model structures, the memory requirements to
store these marginals will thus be O(VK + EK?),
where V is the number of vertices and E is the num-
ber of edges. This can be an enormous reduction since
it does not depend on the number of features. Fur-
ther, since computing these marginals is a by-product
of computing the gradient, this potentially-enormous
reduction in the memory requirements comes at no ex-
tra computational cost.

5 Non-Uniform Sampling

Recently, several works show that we can improve the
convergence rates of randomized optimization algo-
rithms by using non-uniform sampling (NUS) schemes.
This inculdes randomized Kaczmarz [Strohmer and
Vershynin, 2009], randomized coordinate descent [Nes-
terov, 2012], and stochastic gradient methods [Needell
et al., 2014]. The key idea behind all of these NUS
strategies is to bias the sampling towards the Lips-
chitz constants of the gradients, so that gradients that
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change quickly get sampled more often and gradients
that change slowly get sampled less often. Specifi-
cally, we maintain a Lipschitz constant L; for each
training example ¢ and, instead of the usual sampling
strategy p; = 1/n, we bias towards the distribution
pi =L/ ; Lj. In these various contexts, NUS allows
us to improve the dependence on the values L; in the
convergence rate, since the NUS methods depend on
L = (1/n) >~; Lj, which may be substantially smaller
than the usual dependence on L = max;{L;}. Schmidt
et al. [2013] argue that faster convergence rates might
be achieved with NUS for SAG since it allows a larger
step size o that depends on L instead of L.2

The scheme for SAG proposed by Schmidt et al. [2013,
Section 5.5] uses a fairly complicated adaptive NUS
scheme and step-size, but the key ingredient is esti-
mating each constant L; using Algorithm 2. Our ex-
periments show this method already improves on state
of the art methods for training CRF's by a substantial
margin, but we found we could obtain improved per-
formance for training CRF's using the following simple
NUS scheme for SAG: as in Needell et al. [2014], with
probability 0.5 choose ¢ uniformly and with probability
0.5 sample ¢ with probability L;/(3_; L;) (restricted to
the examples we have previously seen).®> We also use
a step-size of = 1 (1/L + 1/L), since the faster con-
vergence rate with NUS is due to the ability to use a
larger step-size than 1/L. This simple step-size and
sampling scheme contrasts with the more complicated
choices described by Schmidt et al. [2013, Section 5.5],
that make the degree of non-uniformity grow with the
number of examples seen m. This prior work initializes
each L; to 1, and updates L; to 0.5L; each subsequent
time an example is chosen. In the context of CRFs,
this leads to a large number of expensive backtracking
iterations. To avoid this, we initialize L; with 0.5L
the first time an example is chosen, and decrease L; to
0.9L; each time it is subsequently chosen.

5.1 Convergence Analysis under NUS

Schmidt et al. [2013] give an intuitive but non-rigorous
motivation for using NUS in SAG. More recently, Xiao
and Zhang [2014] show that NUS gives a dependence
on L in the context of a related algorithm that uses
occasional full passes through the data (which sub-
stantially simplifies the analysis). Below, we consider a
NUS extension of the SAGA algorithm of Defazio et al.

2 An interesting difference between the SAG update with
NUS and NUS for stochastic gradient methods is that the
SAG update does not seem to need to decrease the step-size
for frequently-sampled examples (since the SAG update
does not rely on using an unbiased gradient estimate).

3Needell et al. [2014] only analyze the basic stochastic
gradient method and thus require O(1/¢) iterations.

823

[2014], which does not require full passes through the
data and has similar performance to SAG in practice
but is much easier to analyze. This result shows that
SAGA has (a) a linear convergence rate for any NUS
scheme where p; > 0 for all 4, and (b) a rate depending
on L by sampling proportional to the Lipschitz con-
stants and also generating a uniform sample. However,
(a) achieves the fastest rate when p; = 1/n while (b)
requires two samples on each iteration. We were not
able to show a faster rate using only one sample on
each iteration as used in our implementation.

Proposition 1 Let the sequences {w'} and {s’} be
defined by

W' =l —a [ (Ve (w! Z st
p]t
Sl — Vi (wt) ifj=r
J 33‘ otherwise.

where j; is chosen with probability p;.

NP min

Ty we have

(a) If ry is set to j, then with o =

Efflw’ —w*?] < (1 - pe)" [[l® — 2*[| + Ca]

where Pin = min;{p;} and

22

2Dmin

Ca = (4L 4 nu)

IV iz = Vi)l

(b) If pj = Z"LiJL and ry is chosen uniformly at ran-

dom, then with o = E we have
¢
lot—wi?) < (1-min{ o L) (1o -1 + i),
e Cb = 57 [£°) - f(a)]
2L

6 Experiments

We compared a wide variety of approaches on four
CRF training tasks: the optical character recognition
(OCR) dataset of Taskar et al. [2003], the CoNLL-
2000 shallow parse chunking dataset,® the CoNLL-
2002 Dutch named-entity recognition dataset,” and
a part-of-speech (POS) tagging task using the Penn
Treebank Wall Street Journal data (POS-WSJ). The
optimal character recognition dataset labels the letters
in images of words. Chunking segments a sentence into
syntactic chunks by tagging each sentence token with

“http://www.cnts.ua.ac.be/conll2000/chunking
http://www.cnts.ua.ac.be/conl12002/ner
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Figure 1: Objective minus optimal objective value against effective number of passes for different deterministic,
stochastic, and semi-stochastic optimization strategies. Top-left: OCR, Top-right: CoNLL-2000, bottom-left:
CoNLL-2002, bottom-right: POS-WSJ.
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Figure 2: Test error against effective number of passes for different deterministic, stochastic, and semi-stochastic
optimization strategies. Top-left: OCR, Top-right: CoNLL-2000, bottom-left: CoNLL-2002, bottom-right: POS-
WSJ. The dotted lines show the performance of the classic stochastic gradient methods when the optimal step-size
is not used. Note that the performance of all classic stochastic gradient methods is much worse when the optimal
step-size is not used, whereas the SAG methods have an adaptive step-size so are not sensitive to this choice.
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a chunk tag corresponding to its constituent type (e.g.,
‘NP’, ‘VP’, etc.) and location (e.g., beginning, inside,
ending, or outside any constituent). We use standard
n-gram and POS tag features [Sha and Pereira, 2003].
For the named-entity recognition task, the goal is to
identify named entities and correctly classify them as
persons, organizations, locations, times, or quantities.
We again use standard n-gram and POS tag features,
as well as word shape features over the case of the char-
acters in the token. The POS-tagging task assigns one
of 45 syntactic tags to each token in each of the sen-
tences in the data. For this data, we follow the stan-
dard division of the WSJ data given by Collins [2002],
using sections 0-18 for training, 19-21 for development,
and 22-24 for testing. We use the standard set of fea-
tures following Ratnaparkhi [1996] and Collins [2002]:
n-gram, suffix, and shape features. As is common on
these tasks, our pairwise features do not depend on =x.

To quantify the memory savings given by the
choices in Section 4, below we report the size of the
memory required for these datasets under different
memory-saving strategies divided by the memory
required by the naive SAG algorithm. Sparse
refers to only storing non-zero gradient values,
Marginals refers to storing all unary and pairwise
marginals, and Mized refers to storing node marginals
and the gradient with respect to pairwise features.

Dataset Sparse Marginals  Mixed

OCR 7.8x 1071 1.1 x 10° 2.1 x 1071
CoNLL-2000 4.8x 1073 7.0x107% 6.1 x 107"
CoNLL-2002 6.4 x107*% 3.8x107% 7.0x107°
POS-WJ 1.3x107% 55x107% 3.6 x 107

On these datasets we compared the performance of
a set of competitive methods, including five vari-
ants on classic stochastic gradient methods: Pega-
sos which is a standard stochastic gradient method
with a step-size of o = n/At on iteration ¢ [Shalev-
Shwartz et al., 2011],% a basic stochastic gradient (SG)
method where we use a constant o = 7, an aver-
aged stochastic gradient (ASG) method where we use
a constant step-size @ = 7 and average the itera-
tions,” AdaGrad where we use the per-variable o =

n/(6 + \/Zle V; log p(y;|z;, w*)?) and the proximal-
step with respect to the ¢s-regularizer [Duchi et al.,
2011], and stochastic meta-descent (SMD) where we
initialize with a; = n and dynamically update the
step-size [Vishwanathan et al., 2006]. Since setting
the step-size is a notoriously hard problem when ap-
plying stochastic gradient methods, we let these classic

5We also tested Pegasos with averaging but it always
performed worse than the non-averaged version.

"We also tested SG and ASG with decreasing step-sizes
of either oy = n/+/t or ay = 1/(6+1), but these gave worse
performance than using a constant step size.
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stochastic gradient methods cheat by choosing the 7
which gives the best performance among powers of 10
on the training data (for SMD we additionally tested
the four choices among the paper and associated code
of Vishwanathan et al. [2006], and we found § = 1
worked well for AdaGrad). Our comparisons also in-
cluded a deterministic L-BFGS algorithm and the Hy-
brid L-BFGS/stochastic algorithm of Friedlander and
Schmidt [2012]. We also included the online exponen-
tiated gradient OEG method of [Collins et al., 2008],
but we found it had very poor performance for the
small values of \ that approach the optimal test error.®
Finally, we included the SAG algorithm as described
in Section 4, the SAG-NUS variant of Schmidt et al.
[2013], and our proposed SAG-NUS* strategy from
Section 5.9

Figure 1 shows the result of our experiments on the
training objective and Figure 2 shows the result of
tracking the test error. Here we measure the num-
ber of ‘effective passes’, meaning (1/n) times the num-
ber of times we performed the bottleneck operation of
computing log p(y;|x;, w) and its gradient. This is an
implementation-independent way to compare the con-
vergence of the different algorithms (whose runtimes
differ only by a small constant), but we have included
the performance in terms of runtime as supplemen-
tary material. For the different SAG methods that
use a line-search we count the extra ‘forward’ oper-
ations used by the line-search as full evaluations of
log p(y;|x;, w) and its gradient, even though these op-
erations are cheaper because they do not require the
backward pass nor computing the gradient. In these
experiments we used A = 1/n, which yields a value
close to the optimal test error across all data sets.
The objective is strongly-convex and thus has a unique
minimum value. We approximated this value by run-
ning L-BFGS for up to 1000 iterations, which always
gave a value of w satisfying |V f(w)]/o < 1.4 x 1077,
indicating that this is a very accurate approximation
of the true solution. In the test error plots, we have
excluded the SAG and SAG-NUS methods to keep the
plots interpretable (while Pegasos and OEG do not ap-
pear becuase they perform very poorly), but the sup-
plemental material includes these plots with all meth-
ods added. In the test error plots, we have also plotted
as dotted lines the performance of the classic stochas-
tic gradient methods when the second-best step-size is

8Because of the extra implementation effort required to
implement them efficiently, we did not test OEG and SMD
on all datasets. However, they clearly do not achieve the
best performance across all datasets.

9We also tested SG with the proposed NUS scheme, but
the performance was similar to the regular SG method.
This is consistent with the analysis of Needell et al. [2014,
Corollary 3.1] showing that NUS for regular SG only im-
proves the non-dominant term.
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used.

We make several observations based on these experi-
ments:

e SG outperformed Pegasos. Pegasos is known to
move exponentially away from the solution in the
early iterations [Bach and Moulines, 2011], mean-
ing that ||w® —w*|| > p'||w® —w*|| for some p > 1,
while SG moves exponentially towards the solu-
tion (p < 1) in the early iterations [Nedic and
Bertsekas, 2000].

ASG outperformed AdaGrad and SMD (in addi-
tion to SG). ASG methods are known to achieve
the same asymptotic efficiency as an optimal
stochastic Newton method [Polyak and Juditsky,
1992], while AdaGrad and SMD can be viewed as
approximations to a stochastic Newton method.
Vishwanathan et al. [2006] did not compare to
ASG, because applying ASG to large/sparse data
requires the recursion of Xu [2010].

Hybrid outperformed L-BFGS. The hybrid algo-
rithm processes fewer data points in the early it-
erations, leading to cheaper iterations.

None of the three competitive algorithms
ASG/Hybrid/SAG dominated the others: the rel-
ative ranks of these methods changed based on the
data set and whether we could choose the optimal
step-size.

Both SAG-NUS methods outperform all other
methods by a substantial margin based on the
training objective, and are always among the best
methods in terms of the test error. Further, our
proposed SAG-NUS* always performed as well or
better than SAG-NUS.

On three of the four data sets, the best classic stochas-
tic gradient methods (AdaGrad and ASG) seem to
reach the optimal test error with a similar speed to
the SAG-NUS* method, although they require many
passes to reach the optimal test error on the OCR data.
Further, we see that the good test error performance
of the AdaGrad and ASG methods is very sensitive
to choosing the optimal step-size, as the methods per-
form much worse if we don’t use the optimal step-size
(dashed lines in Figure 2). In contrast, SAG uses an
adaptive step-size and has virtually identical perfor-
mance even if the initial value of L, is too small by
several orders of magnitude (the line-search quickly
increases L4 to a reasonable value on the first training
example, so the dashed black line in Figure 2 would
be on top of the solid line).
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7 Discussion

Due to its memory requirements, it may be difficult
to apply the SAG algorithm for natural language ap-
plications involving complex features that depend on
a large number of labels. However, grouping training
examples into mini-batches can also reduce the mem-
ory requirement (since only the gradients with respect
to the mini-batches would be needed). An alternative
strategy for reducing the memory is to use the algo-
rithm of Johnson and Zhang [2013] or Zhang et al.
[2013]. These require evaluating the chosen training
example twice on each iteration, and occasionally re-
quire full passes through the data, but do not have
the memory requirements of SAG (in our experiments,
these performed similar to or slightly worse than run-
ning SAG at half speed).

We believe linearly-convergent stochastic gradient al-
gorithms with non-uniform sampling could give a sub-
stantial performance improvement in a large variety
of CRF training problems, and we emphasize that
the method likely has extensions beyond what we
have examined. For example, we have focused on the
case of ly-regularization but for large-scale problems
there is substantial interest in using #;-regularization
CRFs [Tsuruoka et al., 2009, Lavergne et al., 2010,
Zhou et al., 2011]. Fortunately, such non-smooth reg-
ularizers can be handled with a proximal-gradient vari-
ants of the method, see Defazio et al. [2014]. While we
have considered chain-structured data the algorithm
applies to general graph structures, and any method
for computing/approximating the marginals could be
adopted. Finally, the SAG algorithm could be mod-
ified to use multi-threaded computation as in the al-
gorithm of Lavergne et al. [2010], and indeed might
be well-suited to massively distributed parallel imple-
mentations.
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