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7 SUPPLEMENTARY MATERIAL

7.1 Kalman Filter

This section is a reminder of the Kalman filter algo-
rithm. The Kalman filter is an inference algorithm
that allows a recursive estimate of the state in a lin-
ear dynamical system from a sequence of observations
of that system. In our case, these observations are
provided by the crowdsourced sensors.

The state of the hidden variables at a given time ¢ is
denoted by x; € R? and y; € R’ are the observations
of the system. The dynamic of the system is given by:

Ter1 = Ay + wy (37)
yr = Crae + v (38)
x1 ~N(Z1,%1) (39)
wy ~ N (W4, 3 1) (40)
v~ N(0,5,4) (41)

where w; and v; are Gaussian noise, independent from
each other and from any other variable. N(0,3) de-
notes a multivariate Gaussian distribution of mean 0
and of variance Y.

The goal of the Kalman filter is to obtain a distribu-
tion P(zt|y1.+), that is, a distribution over the sys-
tem state at time ¢ given the sequence of observa-
tions collected from times 1 to t. We will denote by
Ty = By the mean of this distribution and by

2t\t = Exlyl:t(xt
trix. Likewise, P(z¢|y1.4—1)

ly1:¢
— Zyje) (2 — it‘t)T its covariance ma-

= N(i'ﬂt—la zA3t|t—1)-
The Kalman filter is initialized by

Z1)0 = T1 (42)
21‘0 = 21 . (43)

The recursive estimation corresponds to

S = O34 1CF + Su g (44)
op = Tap—1 + Dep—1CF Syt (ye — Cedige—1)  (45)
i:t\t = it|t71 - it|tflctht_10tit|tfl (46)

Typa)e = Ay + Wy (47)
v = ADep AT + S (48)

The equations for iﬂt and ZA)ﬂt,l do not depend on
the value of observations y;. Furthermore, the mean
square estimation error is given by these matrices:
Byl 2e — @\t”i = tr(Xy), see Appendix 7.2.

In our case, we do not have access to all observations
at time ¢, but to a subset u; € {1,...,I'}. This has only
a mild effect on the Kalman filter algorithm: C,, the

full observation matrix, and X, ;, the full observation
covariance noise matrix, are respectively replaced by
Ctu,, composed of the rows r; of Cy buch that i € uy,
and by ¥, ¢ .,, containing the elements o of Yyt such
that 7,5 € uy.

7.2 Mean square estimation error

In this section we show that the mean square estima-
tion error is given by the trace of the state estimation
covariance matrix: Ey |y, |2 — 24| |7, = tr(3y,).

49

50

Epyrlze — &all7, (49)
= By, [(we = 2ge) " (20 — 3] (50)
= Bz, |y, [ {(2 = 200) " (20 — ftlt)}} (51)
:@muhﬂ%—@mm—@mﬂ}@m
(53)
(54)

=tr {Ewt\yl;t (¢ — &4py) (e — ft|t)T]} 53

=tr itlt 5 54

where we used the fact that the trace of a scalar is
equal to that scalar and that tr FF = tr FE for E €
R™™ and F € R™™,

7.3 Expectation-Maximisation

Here, we derive the E and M step of the EM algorithm
(equation 8):

Sitk = Egkjo,y.r [(yi.t -G tff)ﬂ (55)
= (?Ji,t - C; txt T ,) +C; tzt s ,Oth (56)

@k+1() Z]lleutsztk. (57)

Zt’ 1 (Zeut’ =1

O is estimated based on the observations yi.; and an
estimate of the state of the hidden variables x1.;. The
complete likelihood is

t

P(ye,%,) = P@) [ P@IE_)  (58)

=2
t

H H P(yiv|Ey) . (59)

t'=11€us

In EM, the quantity to be maximized is not the like-
lihood but its expectation with respect to the distri-
bution P(#¥,|y1.¢+) (based on the values of 67 at the
previous iteration). Let oF, ~ N(0,0(i)) for all
ie{l,...;I}, t € {l,....,T} and k. We define ¥
such that ¥ is identically distributed for all k& and
Yit = Ci,tiff—l—ﬁﬁt, forallie {1,...,I},te{l,...,T}
and k.
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Qk(g) = fEa':’f:TK—)kyl:TL(‘%]lC:T’yl:T7®) (60)
1 ~ ~ ~
= 7‘/logpcl"]szayl:T|6>p(m11€:T|@ky12T)dx]1€:T
RrT4d

= /d‘%llc:tp(‘%lfztlylzt) |:(D+K)t10g(2ﬂ—)

+ log 34| +Zlog|2}wt| JrZZlogoQ

t=11€u,
(@} —71)

Ty—1
— A 19Ut 1) Ew,tq

+ (i’f -z )TE‘

+Z

(xt — A 133? 1)

a 1
+Z Z(yzt - ztff)TU

s-l\')

t=11€u
(yi,e — Cutff)} :
(61)
In what follows, we use the notation
T
Ni=te{l,..T}:icu|= Z i€uy) . (62)

Next, Q(©) is derived with respect to o2

T

Z]lzGut

C; tzf)Ta_Q} .

QQ /dxltp ‘Tlt‘ylt [

_Z(yi,t -G tl"t )(yz t—

3

(63)
By taking this derivative equal zero, we obtain
2 1 ~k o=k
o7 = = [ dE1ap(F14|y1e) (64)
~k
Z i € ug) (i — Ciny)

t=1
(Z‘/i ¢ — Cj txf)

ulzTyi t C tft ur.r Yt

=1

:%

(/ l‘kxt p(% Y1 t)d$t> CTt}
L T

= — Z 1(i € uy) {yi,tyft

JUT- Tylt C’L txt JUT: Tylt

sk ~kT T
iy <2t,u1 T + ‘rt ,UTL: Txt U: T) C’i,t:|

7.4 Central Dublin Traffic Model

This traffic model is based on measurements collected
from 2013-01-01 to 2013-05-14* by 512 vehicle count
sensors located in central Dublin. 470 sensors remain
after removing the trivial ones. We model the evolu-
tion of the sensor measurements from 5am to 12am.
We then use this model to evaluate our algorithm, as-
suming that we do not observe the sensors anymore.
The purpose of this model is only to demonstrate our
algorithm on a realistic model. In practice, this algo-
rithm would be applied mostly for locations where no
sensors is continuously available.

We construct an auto-regressive model where each hid-
den variable corresponds to a SCATS sensor satura-
tion value, after removing trivial sensors. Measure-
ments are reported for every minute. However, each
sensor generates a measurement approximately every
2 minutes, and the measurement period varies greatly
across sensors. Therefore, we aggregate every 4 suc-
cessive measurements by averaging, ignoring missing
values. We construct our model using the resulting
learning set, that we denote by x4, j € {1,...,470}
is a sensor, t € {1,...,106} a 4-minute interval and
de{1,...,133} is a day.

A different matrix A; is learned for every time step.
Each matrix A; is learned using samples collected for
t' e {t — 04 ...,t + 9;}, weighted by a Gaussian kernel:

exp(—(t —t)?/5,) . (67)

For each matrix A;, each row r;; is learned by an elas-
tic net (Zou and Hastie, 2005; Friedman et al., 2010):

—(t—t")?

Tt = arg mrin g g e %

At E[t—00,t45] (68)
(rey—1,a— CL‘j,t',Ul)2 +(fn(r)
1
fa(r) = (1*77)5||T|\122 +nllrll, - (69)

Ten-fold cross-validation was used to select (, and
n = 0.9. ¥; and each X, are diagonal covariance
matrices estimated by the graphical lasso (Friedman
et al., 2008).

7.5 Estimation error on the parameters

This section provides additional results for the anal-
ysis of the estimation error on © as a function of
time for the articial model. Figure 6(a) provides the
sum of the quadratic estimation error for all parame-
ters, ||© — ©,]|7,, while Figure 6(b) contains the same

“http://dublinked.ie/datastore/datasets/dataset-
305.php
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error restricted to the sensors queried, |[{02}icu, —
{o? biewIl7,-

For oracle, the estimation error over the variance of the
K sensors queried (u;) decreases rapidly close to 0: the
online estimation converges. However, the estimation
error of all I parameters does not converge to 0: some
sensors are never queried.

The estimation error on © initially deteriorates for
EMo, VB and random. EMo and VB quickly fo-
cusses on the promising sensors while random keeps
using them all. As a result, the estimation error for
the noise of the suboptimal sensors (and thus ©) re-
mains high for EMo and VB, but the error for queried
sensors decreases faster than for random.

7.6 Estimation results on traffic in Dublin

This section contains additional experiments on real
traffic measurements from Dublin, Ireland. These re-
sults extend Section 4.3. Note that the estimation of
the sensor noise is reinitialized for every day.

Figure 7 contains experiments performed on the days
of a full week, except friday, which is very similar to
Thursday and is omitted to fit the plots associated to
the six other days on the same page. Figure 8 contains
experiments performed on five successive Tuesdays.

On 2013-01-22 (Figure 8(b)), at least 4 SCATS sen-
sors (and therefore 20 selectable sensors) were report-
ing constant, aberrant values for several hours. The
accuracy of these 20 sensors (with respect to the true
traffic state) was therefore negatively affected, and the
corresponding elements of © did not reflect their true
variances. Because oracle uses © to make its decisions,
it selects suboptimal sensors during this anomaly, and
EMo and VB produces more accurate estimates than
oracle, since these two algorithms can adapt. Another
shorter malfunctioning happened on 2013-01-08, with
similar results.

Table 2 summarizes the experiments performed on the
105 days of our data set. Two quantities summarizing
the performance of the algorithms are provided:

o for each method, the average (over 10 simulations)
of the sum (over 100 time steps) of the quadratic
estimation error:

||xt - jt\@o;t71y1;t||l22 ; (70)

e for each method except oracle, the number of time
steps when the quadratic estimation error of the
method considered is smaller than the quadratic
estimation error of the oracle:

N 1 A hod
L S | A | i o
(71)

EMo typically outperform VB. This can be explained
by the initially good estimate of the sensor noise, equal
to the average true sensor noise. If the initial condi-
tions are worse, VB can be expected to performed bet-
ter, as seen in the experimental section of the paper.

For most days, oracle is the best method. However,
sometimes, malfunctionning sensors cause oracle to
take bad decisions, and the other methods can achieve
a performance closer to or better than oracle. This is
in particular the case on 2013-01-08 and 2013-01-22,
which we have already discussed, but also on 2013-05-
15.

Other perturbations of the variance of the sensors can
also have a positive impact on the relative performance
of our methods with respect to oracle. The most strik-
ing example is 2013-03-17. On that particular day, the
average quadratic estimation error of EMo is smaller
than the error of oracle. This day is also when EMo
and VB achieves a lower estimation error than oracle
during the largest number of time steps. We conjec-
ture this is due to St. Patrick’s Day Parade, which we
assume caused a big alteration to the traffic patterns in
the city and in particular shifted traffic from the main
streets to smaller ones. Such a change would mod-
ify the variance of the sensors in both small and big
streets, and allow the methods estimating the sensor
variance (EMo and VB) to outperform the methods
using set values. To support our hypothesis, we note
that the quadratic estimation error for that particular
day is higher than most other days. A similar situa-
tion happened on 2013-01-01 (New Year) and probably
2013-01-31, although we found no particular event on
this latter day.

Figure 9 details the evolution of the quadratic estima-
tion error over time for these 4 atypical days.
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Figure 6: Evolution of the estimation error on © for the artificial problem.
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Figure 7: Estimation error using traffic data recorded in Dublin, Ireland, on various days of the week.
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Figure 8: Estimation error using traffic data recorded in Dublin, Ireland, on various Tuesdays.
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Table 2: Comparison of the performance of the different methods using different days as the true trajectory of
the process being monitored.

Number of time steps where
Area under the curve (x10°) the estimation error is better
than oracle (max:10000)
date oracle random meanNoise EMo VB | random  meanNoise EMo VB
2013-1-1 10.0 29.3 16.6 10.2 11.5 0 142 223 139
2013-1-2 06.8 27.5 15.0 08.4 09.3 0 0 0 1
2013-1-3 06.8 29.3 15.3 08.5 09.4 0 0 4 0
2013-1-4 06.8 28.5 15.3 08.5 09.4 0 0 1 0
2013-1-5 06.6 24.4 14.5 08.2 09.1 0 0 0 0
2013-1-6 06.8 23.4 14.6 08.3 09.3 0 1 27 16
2013-1-7 06.9 32.8 15.6 08.6 09.6 0 0 1 0
2013-1-8 08.1 32.7 15.7 08.8 10.0 4 123 171 109
2013-1-9 06.9 32.2 15.9 08.6 09.6 0 0 2 0
2013-1-10 | 06.8 31.4 15.5 08.5 09.5 0 0 0 0
2013-1-11 | 06.9 31.1 15.7 08.6 09.6 0 0 5 1
2013-1-12 | 07.0 24.7 14.7 08.3 09.3 0 7 65 13
2013-1-13 | 06.8 23.2 14.7 08.4 09.3 0 0 0 0
2013-1-14 | 08.3 32.2 16.4 09.8 10.3 0 1 36 33
2013-1-15 | 07.0 32.9 15.9 08.6 09.6 0 0 4 1
2013-1-16 | 06.8 31.8 15.6 08.6 09.4 0 0 4 0
2013-1-17 | 07.0 33.8 16.1 08.7 09.6 0 0 1 0
2013-1-18 | 07.7 38.5 17.3 09.2 10.3 0 5 44 4
2013-1-19 | 06.6 25.7 14.7 08.3 09.1 0 0 1 0
2013-1-20 | 06.7 23.3 14.5 08.4 09.3 0 0 0 0
2013-1-21 | 07.4 32.4 16.3 09.0 09.8 0 0 9 5
2013-1-22 | 09.9 33.8 17.0 10.9 11.1 0 57 159 226
2013-1-23 | 07.7 33.7 16.4 09.3 09.9 0 0 15 12
2013-1-24 | 07.2 33.9 16.1 08.7 09.8 0 1 5 2
2013-1-25 | 07.4 33.4 16.6 09.0 09.8 0 0 35 39
2013-1-26 | 07.1 23.7 14.9 08.5 09.4 0 20 28 23
2013-1-27 | 06.8 22.7 14.6 08.5 09.4 0 0 0 0
2013-1-28 | 07.0 31.6 15.7 08.6 09.5 0 0 2 0
2013-1-29 | 06.9 31.3 15.8 08.7 09.6 0 0 1 0
2013-1-30 | 07.2 33.7 16.0 08.6 09.7 0 0 66 53
2013-1-31 | 11.1 39.2 17.2 11.4  12.2 1 208 354 200
2013-2-1 07.0 32.0 15.9 08.7 09.7 0 0 5 0
2013-2-2 06.5 23.8 14.3 08.1  09.1 0 0 1 0
2013-2-3 06.8 23.7 14.5 08.5 09.3 0 0 0 0
2013-2-4 06.9 30.4 15.6 08.5 09.5 0 0 0 0
2013-2-5 07.3 31.1 16.1 08.8 09.8 0 0 42 23
2013-2-6 07.0 314 15.9 08.6 09.6 0 1 5 1
2013-2-7 06.9 31.3 15.8 08.7 09.6 0 0 2 0
2013-2-8 07.7 31.7 16.2 09.0 09.8 2 10 42 31
2013-2-10 | 07.4 23.9 14.7 08.7 09.5 0 4 93 74
2013-2-11 | 07.6 32.1 16.0 08.9 09.9 0 0 74 35
2013-2-12 | 07.7 32.2 16.0 08.8 09.6 0 0 97 62
2013-2-13 | 07.2 31.9 15.8 08.6 09.6 0 0 23 3
2013-2-14 07.2 31.2 15.8 08.7 09.6 0 0 21 2
2013-2-15 | 07.3 30.6 15.7 08.7 09.6 0 0 22 12
2013-2-16 | 07.0 24.1 14.5 08.4 09.3 6 34 35 31
2013-2-17 | 06.7 22.8 14.3 08.3 09.1 0 0 0 0

Continued on next page
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date oracle random meanNoise EMo VB | random  meanNoise EMo VB
2013-2-18 | 07.0 31.1 15.6 08.6 09.5 0 0 34 4
2013-2-19 | 07.1 31.9 15.8 08.7 09.8 1 16 12 10
2013-2-20 | 07.0 31.2 15.8 08.7 09.6 0 0 0 0
2013-2-21 | 07.0 32.4 15.9 08.6 09.5 0 0 2 1
2013-2-22 | 07.1 30.9 15.8 08.7 09.8 0 1 4 0
2013-2-23 | 07.0 25.1 14.7 08.4 09.5 0 0 63 0
2013-2-24 | 06.6 23.0 14.3 08.2 09.2 0 0 1 1
2013-2-25 | 05.4 25.0 12.5 06.9 07.6 0 0 0 0
2013-2-26 | 06.8 30.4 15.4 08.4 09.4 0 0 1 0
2013-2-27 | 06.9 31.9 15.7 08.7 09.5 0 0 3 1
2013-2-28 | 07.8 31.3 15.7 08.6 09.6 0 21 175 103
2013-3-1 07.8 33.0 16.4 09.0 09.9 0 0 76 40
2013-3-2 06.7 25.4 14.6 08.4 09.3 0 0 0 0
2013-3-3 06.8 23.4 14.4 08.5 09.3 0 10 18 7
2013-3-4 07.8 31.1 16.7 09.3 10.0 0 1 32 920
2013-3-5 06.9 31.0 15.7 08.5 09.4 0 0 4 0
2013-3-6 06.9 31.3 15.8 08.6 09.4 0 0 17 15
2013-3-7 07.0 33.1 16.0 08.6 09.6 0 0 8 0
2013-3-8 07.5 33.5 17.1 09.4 10.1 0 0 2 41
2013-3-9 06.8 25.3 14.8 08.5 09.4 0 0 3 1
2013-3-10 | 07.9 24.2 14.6 08.5 094 1 120 168 120
2013-3-11 | 08.1 33.3 16.8 09.0 10.0 0 2 136 104
2013-3-12 | 07.2 31.6 16.0 08.8 09.6 0 7 42 18
2013-3-13 | 09.3 36.0 17.1 09.6 10.2 0 5 334 299
2013-3-14 | 07.6 33.1 16.3 08.9 09.9 0 0 74 45
2013-3-15 | 07.5 31.1 16.2 08.8 09.8 0 0 102 43
2013-3-16 | 07.6 27.5 15.7 08.8 09.9 0 11 100 71
2013-3-17 | 10.1 33.2 17.4 09.7 10.9 0 40 496 308
2013-3-18 | 08.1 26.3 15.6 09.3 10.3 0 44 118 49
2013-3-19 | 08.1 32.4 16.3 08.8 09.8 0 0 270 151
2013-3-20 | 06.9 31.8 15.8 08.6 09.5 0 0 17 0
2013-3-21 | 07.1 32.2 16.1 08.7 09.6 0 0 14 3
2013-3-22 | 07.7 36.2 17.4 09.3 10.1 0 0 37 43
2013-3-23 | 07.5 25.4 15.5 09.1 09.8 0 0 15 2
2013-3-24 | 06.7 22.7 14.3 08.3 09.3 0 0 0 0
2013-3-25 | 07.4 30.7 16.4 09.1 09.8 0 0 1 9
2013-3-26 | 07.0 31.9 16.2 08.8 09.8 0 0 7 2
2013-3-27 | 07.1 31.9 16.3 08.8 09.7 0 0 6 1
2013-3-28 | 07.1 31.8 16.2 08.8 09.7 0 0 4 0
2013-3-29 | 06.8 25.7 15.0 08.4 09.4 0 0 4 1
2013-3-30 | 06.6 23.5 14.5 08.2 09.1 0 0 7 1
2013-4-1 07.0 23.9 14.9 08.6 09.3 0 0 11 3
2013-4-2 07.0 29.9 15.7 08.5 09.6 0 0 5 0
2013-4-3 07.0 31.2 15.9 08.5 09.6 0 0 25 13
2013-4-4 07.0 32.4 16.0 08.7 09.7 0 0 3 0
2013-4-5 06.8 31.2 15.7 08.5 09.5 0 0 0 0
2013-4-6 08.4 27.0 16.0 09.9 10.9 10 48 93 44
2013-4-7 06.8 23.5 14.7 08.5 09.3 0 0 0 3
2013-4-8 07.1 31.6 15.7 08.7 09.7 1 26 45 26
2013-4-9 06.9 32.0 15.9 08.6 09.4 0 0 3 0
2013-4-10 | 07.9 34.5 16.5 09.3 09.9 0 0 62 58
2013-4-11 | 07.3 36.2 16.6 08.9 09.9 0 0 15 8
2013-4-12 | 07.5 34.7 16.8 09.1 10.0 0 0 16 11

Continued on next page
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date oracle random meanNoise EMo VB | random  meanNoise EMo VB
2013-4-13 | 06.9 26.4 15.1 08.6 094 0 0 1 1
2013-4-14 | 08.4 25.5 14.8 08.5 09.4 0 95 297 223
2013-4-15 12.2 35.5 17.5 10.7 10.7 0 150 289 268
2013-4-16 | 08.6 34.3 17.2 10.0 104 0 0 76 127
2013-4-17 | 07.0 32.4 16.2 08.7 09.6 0 0 0 0
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