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Abstract

We model crowdsensing as the selection of
sensors with unknown variance to monitor a
large linear dynamical system. To achieve
low estimation error, we propose a Thomp-
son sampling approach combining submodu-
lar optimization and a scalable online vari-
ational inference algorithm to maintain the
posterior distribution over the variance. We
also consider three alternative parameter es-
timation algorithms. We illustrate the be-
havior of our sensor selection algorithms on
real tra�c data from the city of Dublin. Our
online algorithm achieves significantly lower
estimation error than sensor selection using
a fixed variance value for all sensors.

1 INTRODUCTION

Today, many cities or countries leverage large numbers
of new or existing sensors to obtain a fine, real-time
picture of their territory. Monitoring and predicting
the behavior of tra�c, water or power networks, to
name a few, lead to better management and planning.
However, sensors typically do not cover the whole city.
For example, around 750 junctions are equipped with
SCATS1 vehicle-count sensors in the Greater Dublin
Area, which amounts to only 4% of all junctions.

Crowdsensing, that is leveraging information provided
by sensors carried or set up by citizens, is an attrac-
tive addition or alternative to dedicated sensors: it is
versatile and has no deployment cost. Crowdsensing
is actively being used for large-scale monitoring, for
example Waze2 or (Venanzi et al., 2013).

1Sydney Co-ordinated Adaptive Tra�c System
2https://www.waze.com/
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Here, we jointly address two crowdsensing challenges.

1. Measurement noise a↵ecting privately owned sen-
sors can vary and can hardly be estimated a priori.
For example, traces of mobile phones owned by
bus users or bikers may be less useful than those
of mobiles traveling by car to measure tra�c.

2. The number of sensors that can be queried may be
limited by the bandwidth or the budget available
if querying a sensor has an associated cost.

We consider crowdsensing for monitoring a big linear
dynamical system (LDS) x

t

(tra�c, pollution...), mod-
eled as the selection of sensors with a priori un-
known variance ⇥. We propose and evaluate algo-
rithms to select at each time step a subset u

t

of sensors
to minimize the state estimation error. We now discuss
a few related works before stating our contributions.

Sensor Selection and Submodularity Con-
strained sensor selection problems have been cast or
approximated as submodular optimization problems.
For example, Krause et al. (2008) select the best GPS
traces to query to minimize the estimation error in a
spatial tra�c model. Meliou et al. (2007) optimize the
path of a robot to maximize submodular functions of
a spatio-temporal process. In these works, all model
parameters are known, whereas we must estimate ⇥.

Optimizing unknown submodular functions was stud-
ied by Hazan and Kale (2009); Streeter and Golovin
(2008). In these works, the numerical noisy result of
each selection u

t

is observed and that output must be
maximized. In our setting, the objective (the estima-
tion error) is not observed.

Parameter Estimation Online parameter estima-
tion in a LDS has been studied a lot, but, to our knowl-
edge, rarely together with sensor selection.

Venanzi et al. (2013) estimate the noise of crowd-
sourced radiation sensors in Japan. However, they
do not select sensors, a key di↵erence with our work.
Their method is also not online. However, we assume
a model of the spatio-temporal process is available
whereas they learn one (but with only 2 parameters).
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Figure 1: A hidden process x
t

is monitored by sensors
y

t

. Sensors u
t

2 y

t

are selected for each t. Gray/white
variables are observed/hidden. u1 = {1, 3, 8}.

Parameter Estimation and Sensor Selection
Landmarks selection has been considered in the Simul-
taneous Localization And Mapping (SLAM) problem:
the joint estimation of the position of a robot (x

t

) and
of landmarks used for localization (equivalent to ⇥).
Martinez-Cantin et al. (2009) optimize the landmarks
selected based on a Monte-Carlo approximation of the
expectation of the objective function. The main di↵er-
ence between SLAM and our work is the dimension of
the state space. While robots are typically character-
ized by few state variables (2D position), we consider
systems larger by at least 2 orders of magnitude, e.g.,
the number of streets. Sampling based methods used
in SLAM algorithms cannot scale up.

Crowdsourcing is the inference of unknown object la-
bels from labels provided by imperfect experts (in our
case, the sensors) rather than from a reliable expert
(a city owned sensor). The EM algorithm (Raykar
et al., 2010) and sequential Bayesian estimation (Don-
mez et al., 2010) have for example been used to assess
the accuracy of each worker. Crowdsourcing is simpler
than our crowdsensing problem: we estimate states of
a spatio-temporal process, not independent labels.

Krause and Guestrin (2007) select observations to
maximize estimation accuracy in a Gaussian process
(GP) whose parameters are unknown but belong to
a known finite set. They do not consider individual
sensor noise and so this setting is simpler than ours.

Hoang et al. (2014) consider active sensing for a GP
with unknown parameters by solving, over a finite
horizon T , Bellman equations incorporating the un-
certainty about the parameters. All sensors share the
same noise parameter, a discrete set of parameter val-
ues is considered and the state distribution is approxi-
mated by Monte-Carlo in the Bellman equations. Ap-
plying their solution to crowdsensing would be compu-
tationally expensive. To di↵erentiate between the best
and suboptimal sensors, finely discretized parameter
values must be considered for each sensor. To explore
this large parameter space, T must be larger. To select
each set of sensors and for each step of the planning
horizon, a score is computed for each sensor, requiring
an integration over the parameter space. Finally, the
number of Monte-Carlo samples is exponential in T .

Our three contributions

1. Our key contribution is a scalable, online crowd-
sensing algorithm handling both sensor selection
and unknown sensing noise.

2. Up to our knowledge, the online variational infer-
ence algorithm used within our main algorithm
has not been applied to linear dynamical systems
before. Similar algorithms have however been
used on problems where each iteration is per-
formed on independent realizations.

3. We also evaluate three alternative algorithms
(based on Expectation-Maximization (EM), on-
line EM or Gibbs sampling).

Outline First, Section 2 formalizes the problem con-
sidered. We then present our approaches in Section 3
and empirically evaluate them in Section 4 on a Brow-
nian motion, a more complex artificial model and on
Dublin tra�c data. Finally, Section 5 provides some
additional perspectives before Section 6 concludes.

2 PROBLEM FORMULATION

We consider a LDS, where x

t

2 Rd denotes the set
of hidden variables at time step t, as a mathematical
model of the spatio-temporal process. LDS are com-
monly used to model such processes, including tra�c
(Wang et al., 2008). Hidden variables x

t

are monitored
by selecting at each time step a subset of K sensors
u

t

✓ {1, . . . I} and receiving the selected observations
y

i,t

, i 2 u

t

. More formally,

x

t+1 = A

t

x

t

+ w

t

(1)

y

i,t

= C

i,t

x

t

+ v

i,t

for i 2 u

t

(2)

y

i,t

= ; for i 62 u

t

. (3)

Each observation y

i,t

is perturbed by a Gaussian noise
v

i,t

⇠ N (0,�2
i

) of variance �2
i

. This models the noise of
the sensors, unknown to the operator (⇥ ⌘ {1/�2

i

}I
i=1

is unknown). The initial state is x1 ⇠ N (x̄1,⌃1), the
state transition noise is w

t

⇠ N (w̄
t

,⌃
w,t

). We as-
sume that A

t

, C

i,t

, x̄1,⌃1,⌃w,t

, w̄

t

2 Rd⇥d

,R1⇥d

,Rd

,

Rd⇥d

,Rd⇥d

,Rd are known 8i, t. For t

0  t, let x̂

t|t0,u

and ⌃̂
t|t0,u respectively denote the system state esti-

mate and the covariance of the estimation error at
time t, given a selection of sensors u1:t0 = {u1, ..., ut

0}.
The estimates x̂

t|t0,u and ⌃̂
t|t0,u can be computed ef-

ficiently by the Kalman filter (see Appendix 7.1 for a
brief reminder). Moreover, ⌃̂

t|t0,u can be computed in
advance, since it does not depend on the actual value
of the measurements, for a given u1:t0 . For ease of
notation, y

t

⌘ {y
i,t

}
i2ut . A subscript i will always

denote a sensor and t a time step.

We are interested in settings with a large number of
sensors and where querying a sensor has an associated
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Algorithm 1 Sensor selection meta-algorithm

1: for t = 1 ! 1 do
2: Obtain ⇥̂

t

, p̂(x
t

|y1:t) from u

t

, y
t

, p̂(x
t�1|y1:t�1)

{Algorithms 2 or 3}
3: Optimize u

t+1 based on ⇥̂
t

, p̂(x
t

|y1:t) {Greedy}
4: end for

cost. To model this cost, only K < I sensors can be
queried at each time step.

Our goal is to select, at each time step t, the vari-
ables y

i,t

that are revealed (a subset of sensors u

t

✓
{1, . . . , I}) to minimize the quadratic state estimation
error ||x

t

�x̂

t|t0,u||2
l2
. Since x

t

is unknown, we optimize
over the expected error or equivalently we maximize
the reduction in expected quadratic estimation error:
f

t

(u) : 2I
t ! R = tr(⌃̂

t

� ⌃̂
t|t,u), where tr denotes the

trace of a matrix. This is a typical objective (Krause
et al., 2008; Chen et al., 2012), see also Appendix 7.2.

In a LDS, u1:t may also impact state uncertainty for
t

0
> t, so the selection must be optimized on a horizon

T , possibly with a discount factor � 2 [0, 1[:

u

⇤
1:T = argmin

u1:T :|ut|K 8t

T

X

t=1

�

t

f

t

(u1:t) . (4)

We assume that A

t

, C

i,t

, x̄1,⌃1,⌃w,t

and w̄

t

are
known, which could be considered a strong hypoth-
esis. C

t

is known if the position of each sensor is
known. While we acknowledge that crowdsourced sen-
sors might not be localized, we feel that this assump-
tion is reasonable, given the widespread use of GPS.
A

t

, x̄1, ⌃1, ⌃w,t

and w̄

t

characterize the process moni-
tored. Spatio-temporal processes taking place in cities
(such as tra�c, flooding etc.) have been monitored,
studied and modeled extensively. Postulating the ex-
istence of a model provided by an expert or of histori-
cal measurements from which a model can be derived
seems reasonable to us.

If no model is available, there are several possibilities:

• assuming temporal independence and using a
Gaussian Process with known parameters (as
Krause et al. (2008); Venanzi et al. (2013));

• combining our approach with existing works
that learn a few model parameters (Krause and
Guestrin, 2007; Hoang et al., 2014);

• adapting the algorithms we propose to learn the
system parameters as well.

Developing and studying these alternatives is outside
the scope of the present work. Data or expertise avail-
able in any particular application influences the best
way to estimate system parameters. However, estimat-
ing the observation noise is relevant whenever using

crowdsourced sensors.

3 CROWDSENSING ALGORITHM

The problem described in Section 2 has an inherent
trade-o↵ between exploration (select sensors to esti-
mate ⇥) and exploitation (select good sensors to esti-
mate x

t

). Our first contribution is an algorithm based
on Thompson sampling, an implicit method to deal
with such trade-o↵ (Thompson, 1933; Chapelle and
Li, 2011). Thompson sampling maintains a posterior
distribution P (⇥|y1:t) over unknown parameters and,
at each time step t, it (1) samples ⇥̂

t

from P (⇥|y1:t)
and (2) selects an optimal action conditionally on ⇥̂

t

.
In our case, each action corresponds to the selection
of a set of sensors. An estimate over the state distri-
bution must also be maintained. This process is sum-
marized by Algorithm 1. The algorithm is initialized
by P̂ (x1) = N (x̄1,⌃1) and a prior P (⇥).

Maintaining a posterior P (⇥|y1:t) in a scalable way is
not trivial for our setting. While Gibbs sampling can
generate ⇥, x

t

⇠ P (⇥, x

t

|y1:t), this batch approach
cannot scale up to the continuous monitoring of a large
system (the scale of a city). Instead, we use online
variational inference with stochastic approximation.

We also consider an alternative step 2 of Algorithm
1: estimating ⇥ by ML instead of sampling from
P (⇥|y1:t). Using ML estimation does not handle the
exploration-exploitation trade-o↵. However, it is of-
ten considered in crowdsourcing problems (indepen-
dent labels inference). We do not expect the resulting
sensor selection algorithms to outperform Thompson
sampling. We include them in our experiments for
comparison and to cover 4 distinct classes of methods:
batch or online, maximum likelihood or Bayesian.

We now detail these 4 alternative ⇥ estima-
tion/sampling algorithms (Section 3.1) and the sensor
selection procedure (Section 3.2).

3.1 Parameter Estimation (Algorithm 1, l.2)

This section describes the online variational inference
algorithm (second contribution) and three other meth-
ods to estimate or sample ⇥ based on a growing se-
quence of observations y1:t. We consider both maxi-
mum likelihood (ML) and Bayesian estimations of ⇥.
ML estimation (Section 3.1.1) is simpler but cannot be
used to address the exploration/exploitation trade-o↵.
A Bayesian approach does not provide an estimate for
⇥, but samples a realization from a posterior distribu-
tion P (⇥|y1:t) or an approximation. We describe two
such approaches: Gibbs sampling (Section 3.1.2) and
finally the key online variational inference generating
samples online and e�ciently (Section 3.1.3).

831



Sensor Selection for Crowdsensing Dynamical Systems

Algorithm 2 Online EM algorithm for crowdsens-
ing (update for time t)

Require: u

t

, {y
i,t

}
i2ut , p̂(xt�1|y1:t�1,⇥0:t�2),

h

{k
i

}I
i=1

i

, ⇥
t�1 = {�2

i,t�1}Ii=1

1: p̂(x
t

|y1:t,⇥0:t�1) =
R

p̂(x
t�1|y1:t�1,⇥0:t�2)

p(x
t

|x
t�1,⇥t�1)p(yt|xt

,⇥
t�1)dxt�1

{N (x̂
t,u1:t , ⌃̂t,u1:t), using Kalman filter}

2: ⇥
t

= ⇥
t�1 {Maintain parameters for i 62 u

t

}
3: for i 2 u

t

do
4: s

i,t

= y

i,t

y

T

i,t

� C

i,t

x̂

t,u1:ty
T

i,t

� C

T

i,t

x̂

T

t,u1:t
y

i,t

+

C

i,t

⇣

⌃̂
t,u1:t + x̂

t,u1:t x̂
T

t,u1:t

⌘

C

T

i,t

{New statistics}
5: �

2
i,t

= �

kisi,t + (1� �

ki)�
2
i,t�1 {Update ⇥

t

}
6: k

i

= k

i

+ 1
7: end for
output ⇥

t

= {�2
i,t

}I
i=1, p̂(xt

|y1:t,⇥0:t�1),
h

{k
i

}I
i=1

i

The first three methods are not new. To the best of our
knowledge, the online variational inference method is
novel, although similar methods have been proposed.

3.1.1 Maximum Likelihood

The ML estimate of ⇥ is given by

⇥̂ = argmax
⇥

p(y1:t|⇥) (5)

= argmax
⇥

E

x1:tL(x1:t, y1:t,⇥) , (6)

where p(.|.) denotes a conditional probability den-
sity function and L(., ., .) the complete log-likelihood.
Equation (6) cannot usually be solved analytically.

EM Algorithm (Batch ML) The EM algorithm
(Dempster et al., 1977) performs ML estimation for
models with hidden variables. In a nutshell, EM solves
equation (6) iteratively, alternating between two steps:
computing Q

k

(⇥), an expectation of the log-likelihood
given fixed-length observations y1:T and the current
estimate ⇥

k

of the parameters; and maximizing this
expectation: ⇥

k+1 = argmax⇥ Q

k

(⇥).

In our case, the E and M steps are easily derived from
Q

k

(⇥) (details in Appendix 7.3):

s

i,t,k

= E

x̃

k
t |⇥ky1:T

h

(y
i,t

� C

i,t

x̃

k

t

)2
i

(7)

= (y
i,t

� C

i,t

x̂

k

t,u1:t
)2 + C

i,t

⌃̂k

t,u1:t
C

T

i,t

(8)

⇥
k+1(i) =

1
P

T

t

0=1 (i 2 u

t

0)

T

X

t=1

(i 2 u

t

)s
i,t,k

. (9)

Online EM Algorithm (Online ML) EM oper-
ates on batch data and has a computational complex-
ity O(T (d3 + K

3)) per iteration. Applying EM on

a growing sequence of observations will become in-
tractable. Using a finite window is also problematic
because some sensors might not be queried during the
time window used. Therefore, we consider an online
EM algorithm based on stochastic approximation (Kr-
ishnamurthy and Moore, 1993).

This algorithm updates state and parameter estimates
whenever a new subset of observations is received.
Hence, we denote parameters estimates by ⇥

t

. The
update scheme is based on a recursive estimate of s

i,t,t

,
shortened to s

i,t

:

s

i,t

= E

xt|⇥0:t�1y1:t

h

(y
i,t

� C

i,t

x

t

)2
i

(10)

p̂(x
t

|⇥0:t�1, y1:t) =

Z

p̂(x
t�1|⇥0:t�2, y1:t�1)

p(x
t

|⇥
t�1, yt, xt�1)dxt�1 .

(11)

The notation ⇥0:t in the latter equation stresses that
the state density estimate is updated recursively, as
apposed to EM which recomputes all state density es-
timates (for t = 1, . . . , t) using the latest parameters
estimate ⇥

t

. The update rule for �2
i,t

: i 2 u

t

is

⇥
t

(i) = �

kisi,t + (1� �

ki)�
2
i,t�1 , (12)

where k

i

is the number of updates performed
on �

2
i,t

and where the sequence {�
t

} satisfies

lim
T!1

P

T

t=1 �t

= 1 and lim
T!1

P

T

t=1 �
2
t

< 1.
The parameters of the sensors which are not queried
({1, . . . , I}\u

t

) are not updated. The full procedure is
detailed in Algorithm 2. Note that inputs and outputs
between brackets correspond to internal states of the
estimation algorithm, not returned to Algorithm 1.

3.1.2 Gibbs Sampling (Batch Bayesian)

Deriving P (⇥|y1:t) analytically is typically not pos-
sible. Gibbs sampling can sample a realization from
P (⇥|y1:T ) without computing it explicitly. Wills et al.
(2012), for example, applied it to LDS. Used for
noise estimation only, Gibbs sampling alternates be-
tween sampling x

k

1:T ⇠ P (x1:T |y1:T ,⇥k

), computed
by a Kalman filter, and ⇥

k+1 ⇠ P (⇥|y1:T , xk

1:T ) =
Q

I

i=1 invG(↵
i,k

,�

i,k

) with

�

i,k

= � +
T

X

t=1

(i 2 u

t

)
h

(y
i,t

� C

i,t

x

k

t

)2
i

/2 (13)

↵

i,k

= ↵+
T

X

t=1

(i 2 u

t

)/2 , (14)

where the conjugate prior P (⇥) is a product of inverse
gamma distributions invG(↵,�). � and ↵ respectively
correspond to half the sum of empirical quadratic er-
rors and half the number of samples (Murphy, 2007).
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We use this conjugate prior because it leads to conve-
nient updates. If more information is available, a more
suitable prior can be used.

We use �

i,0 = 0.5 to obtain a prior distribution with
a large variance (low informative prior). ↵

i,0 should
be chosen such that the mean of the distribution is at
a sensible value. In our experiments, ↵

i,0 is typically

such that E(invG(↵
i,0,�i,0)) =

P

I

i=1 �
2
i

/I.

3.1.3 Variational Inference (Online Bayesian)

This section details the key algorithm allowing an on-
line and e�cient first step of each Thompson sam-
pling iteration, sampling P (⇥|y1:T ). Variational in-
ference approximates intractable posterior distribu-
tions such as P (⇥, x

t

|y1:T ). It corresponds to solv-
ing an optimisation problem, the minimization of
D

KL

(P̆ (x
t

,⇥|y1:t)||P (x
t

,⇥|y1:t)), where p̆(x
t

,⇥|y1:t)
is an approximate probability density. In typical batch
variational inference, the gradient is computed using
all time steps. The online algorithm we propose here
relies on stochastic approximation. Noisy estimates
of the gradient are computed by considering only a
few time steps (one, in our case). Alternatively, the
di↵erence between this online variational inference al-
gorithm and batch variational inference is the same
di↵erence as between EM and online EM.

For online variance estimation in a LDS, Sarkka and
Nummenmaa (2009) use the following assumptions:

p̆(x
t

,⇥|y1:t) ⌘ p̆(x
t

|y1:t)p̆(⇥|y1:t) (15)

p̆(x
t

|y1:t) ⌘ N (x̆
t

, ⌃̆
t

) (16)

p̆(⇥|y1:t) ⌘
I

Y

i=1

invG(↵̆
i,t

, �̆

i,t

) (17)

and describe online updates in order to derive
{x̆

t

, ⌃̆
t

, {↵̆
i,t

, �̆

i,t

}
i

} from previous values

{x̆
t�1, ⌃̆t�1, {↵̆i,t�1, �̆i,t�1}i} (18)

for a LDS with time-varying observation noise.

At each time step t, when y

t

is received, N (x̆0
t

, ⌃̆0
t

) ⌘
p̆

0(x
t

|y1:t�1) is computed by a time transition:

x̆

0
t

= A

t�1x̆t�1 (19)

⌃̆0
t

= A

t�1⌃̆t�1A
T

t�1 + ⌃
w,t�1 (20)

{↵̆0
i,t

, �̆

0
i,t

}
i

= {⇢↵̆
i,t�1, ⇢�̆i,t�1}i . (21)

The forgetting factor ⇢ is used to handle the evolution
of the variance. Our ⇥ is constant, so we use ⇢ = 1.
Then, {x̆

t

, ⌃̆
t

} and {↵̆
i,t

, �̆

i,t

}
i

are alternatively up-
dated for a few iterations (of index k):

⇥̆k

t

= E[⇥|{↵̆k

i,t

, �̆

k

i,t

}
i

] (22)

= diag({�̆k

i,t

/↵̆

k

i,t

}
i

) (23)

N (x̆k

t

, ⌃̆k

t

) ⌘ p̆

k(x
t

|y1:t) / N (x̆0
t

, ⌃̆0
t

)p(y
t

|⇥̆k

t

, x

t

)

↵̆

k+1
i,t

= ↵̆

0
i,t

+ 1/2 8i (24)

s

i,t

= (y
i

� C

i,t

x̆

k

t

)2 + C

i,t

⌃̆k

t

C

T

i,t

8i (25)

�̆

k+1
i,t

= �̆

0
i,t

+ s

i,t

/2 8i . (26)

We modify this algorithm by considering a subset of
observations (which is simple), by removing ⇢ (ob-
servation noise is time invariant), by performing only
one iteration at each time step and, more importantly,
by using a stochastic approximation scheme to ensure
convergence of the hyperparameters (lines 5-6 in Al-
gorithm 3).

Directly applying stochastic approximation to
{↵̆

i,t

, �̆

i,t

}
i

is not possible: they correspond to a sum
(of su�cient statistics) and not to an expectation.
Instead, we associate a weight w

t

(we omit the
subscript i) to each expected empirical quadratic
error S

t

(of expectation �̆

i,t

/↵̆

i,t

) and attribute to
the latest su�cient statistics s

t

a weight of 1. When
�

t

= 1/t, a stochastic approximation update corre-
sponds to a weighted average between S

t�1 (weighted
by w

t�1 = N � 1) and s

t

. When �

t

> 1/t, the update
corresponds to a weighted average between S

t�1 and
s

t

, where the weight of S

t�1 has been discounted
by d. Comparing the weighted average and the
stochastic approximation update provides a value for
2↵̆

t

= w

t

= dw

t�1 + 1, the weight after update:

S

t

=
dw

t�1St�1 + s

t

dw

t�1 + 1
= (1� �

t

)S
t�1 + �

t

s

t

(27)

! d = (1� �

t

)/(�
t

w

t�1) (28)

! 2↵̆
t

= dw

t�1 + 1 = 1/�
t

. (29)

We use 1/�
t

as the new equivalent number of samples
after the tth stochastic approximation update. See line
6 in Algorithm 3 for the exact updates. A stochastic
approximation was also introduced in an online vari-
ational inference algorithm by Ho↵man et al. (2013),
but only for temporally independent hidden variables.

The resulting procedure is detailed in Algorithm 3.
The first di↵erence with the online EM algorithm is
the computation of the expected value of ⇥ according
to P̂ (⇥|y1:t) (line 1). This value is then used for the
Kalman filter update (line 2). The update of �2

i,t

is

replaced by an update of {↵̆
i,t

, �̆

i,t

} (line 6). Finally,

P̆ (⇥
t

|y1:t) is sampled, and the resulting parameter val-
ues are returned (line 9). They are used to select the
sensors queried at the next time step.

{↵̆
i,t

, �̆

i,t

} are initialized to the same values as the ones
used for Gibbs sampling.
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Algorithm 3 Online, Scalable Variational Inference for crowdsensing (update for time t)

input u

t

, {y
i,t

}
i2ut , p̆(xt�1|y1:t�1),

h

{↵̆
i,t�1, �̆i,t�1}I

i=1, {ki}Ii=1

i

1: ⇥̆
t�1 = {�̆

i,t�1/(↵̆i,t�1 � 1)}I
i=1 {�2

i,t

= mean(invG(↵̆
i,t�1, �̆i,t�1))}

2: N (x̆
t,u1:t , ⌃̆t,u1:t) = p̆(x

t

|y1:t,⇥0:t�1) =
R

p̆(x
t�1|y1:t�1,⇥0:t�2)p(xt

|x
t�1,⇥t�1) p(yt|xt

,⇥
t�1)dxt�1

3: {↵̆
i,t

, �̆

i,t

}I
i=1 = {↵̆

i,t�1, �̆i,t�1}I
i=1 {Maintain parameters of non-queried users}

4: for i 2 u

t

do

5: s

i,t

= y

i,t

y

T

i,t

� C

i,t

x̆

t,u1:ty
T

i,t

� C

T

i,t

x̆

T

t,u1:t
y

i,t

+ C

i,t

⇣

⌃̆
t,u1:t + x̆

t,u1:t x̆
T

t,u1:t

⌘

C

T

i,t

{New statistics}

6: �̆

i,t

= 0.5

"

s

i,t

+
1� �

ki

�

ki

�̆

i,t�1

↵̆

i,t�1

#

, ↵̆
i,t

= 0.5/�
ki , k

i

= k

i

+ 1 {Hyperparameters}
7: end for
8: �

2
i,t

⇠ invG(↵̆
i,t

, �̆

i,t

) 8i 2 {1, ..., I} {Draw ⇥̆
t

from p̆(⇥|y1:T , x1:T )}
output ⇥̆

t

= {�2
i,t

}I
i=1, P̆ (x

t

|y1:t, ⇥̆0:t�1),
h

{↵̆
i,t

, �̆

i,t

}I
i=1, {ki}Ii=1

i

3.2 Sensor Selection (Algorithm 1, l.3)

The second step of the Thompson sampling iteration
is to select the observations based on a given ⇥. To do
so, we assume the objective is submodular and adapt
(Krause et al., 2008) for a LDS:

Definition 3.1. A submodular function f : 2V ! R
is a function of a subset of a set V such that, for all
subsets A,B : A ✓ B ✓ V and element c 2 V \B,

f(A [ c)� f(A) � f(B [ c)� f(B) . (30)

Intuitively, a submodular function models diminish-
ing returns: the more readings are already available,
the less a new sensor reading helps. Our objective
function (Equation 4) is not submodular if particular
independence relationships between variables do hold,
but submodularity is typically assumed (Krause et al.,
2008; Meliou et al., 2007). A su�cient condition for
submodularity is the conditional suppressor-freeness
(Das and Kempe, 2008). Our work can be directly
applied on any submodular sensor selection problem.
If a problem is not submodular, the combination of
Thompson sampling and online variational inference
(our main contribution) stays relevant, only the opti-
misation step (this subsection) must be adapted.

The sensors queried at time step t (u
t

) are selected at
time t by solving the objective function with a finite
horizon �T , starting from {x̂

t|t�1,u, ⌃̂t|t�1,u}:
u

t:t+�T

= argmin
u

0
t:t+�t:|u0

t0 |K 8t0
f

ut(ut:t+�T

) (31)

f

ut(ut:t+�T

) =
t+�T

X

t

0=t

�

t

0
f

t

t

0(u
t:t0) (32)

f

t

t

0(u
t:t0) = tr(⌃̂

t

0|t�1,u1:t�1
� ⌃̂

t

0|t0,u1:t0
) . (33)

In other words, we optimize future measurements
based on P̂ (x

t�1|y1:t�1).

We make the assumption that each function f

t

t

0 is sub-
modular (cf. Definition 3.1). In that case, the objec-
tive function f

ut is submodular too, because any finite
sum of submodular functions is also submodular, and
finding an optimal solution to Equation 31 is NP-hard.
However f

ut is nondecreasing and null for an empty in-
put, so a greedy solution u

G

t:t+�T

enjoys the following
guarantee with respect to an optimal solution u

⇤
t:t+�T

(Nemhauser et al., 1978):

f

ut(u
G

t:t+�T

) � (1� 1/e)f
ut(u

⇤
t:t+�T

) . (34)

4 EMPIRICAL RESULTS

In this section, we illustrate the respective perfor-
mance and advantages of the four crowdsensing algo-
rithms introduced in Section 3. We first compare algo-
rithms based on batch EM (EM ) and Gibbs sampling
(Gibbs) to their online approximations (respectively
EMo and VB) on a toy problem (Section 4.1), in terms
of the number of optimal decisions and of run time.
We then study the state estimation error achieved by
EMo and VB on an artificial model (Section 4.2) and
on tra�c data collected in central Dublin (Section 4.3).
Estimation of ⇥ is discussed in Appendix 7.5.

We compare these methods to three baselines: random
selection (random); an oracle using the true value of
⇥ to select sensors and an estimated ⇥ for state es-
timation (oracle); and submodular optimization using
a fixed ⇥̂ : �̂2

i

= mean(⇥) 8i (meanNoise). We tried
other constant values for �̂

2
i

, but this one lead to the
most accurate results. The first two baselines estimate
⇥ with the online EM algorithm.

All 3 settings are briefly described below. The Dublin
related one is further detailed in Appendix 7.4. We
use � = 0.7, �

k

= 1/k
2
3 and �T = 0. Increasing �T

up to 2 had no noticeable influence on the estimation
error achieved. Ties are broken arbitrarily.
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time steps EM EMo Gibbs VB
10 0.19 0.03 1.3 0.03
50 5 0.12 28 0.14
100 15 0.19 97 0.22

Table 1: Brownian motion model: run-time (seconds)
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Figure 2: Performance of the online algorithms against
the batch ones (Brownian motion model, 100 runs).

Brownian motion There is one hidden variable. Its
dynamics is x

t

= x

t

+w

t

. ⇥ = {[1, 0.5, 0.1, 0.05]}, K =
3, w

t

⇠ N (0, 0.02),⇥̂0 = {2}4
i=1 and (↵,�) = (1, 0.5).

Artificial model The model contains 65 variables,
an arbitrary compromise between scale and run time.

x1,t = 0.2x1,t�1 + w1,t (35)

x

i,t

= 0.2x
i,t�1 + xbi/2c,t�1 + w

i,t

8i > 1 . (36)

Furthermore, ⌃
w,t

= I. Each hidden variable can be
observed by 5 sensors. The variances of the noise of
each set of 5 sensors = {1, 2, 3, 4, 5} and K = 98 (⇡
30% of the sensors). �2

i,0 = 3 8i. (↵,�) = (1.5, 0.5).

Tra�c in Dublin We apply our methods to the es-
timation of the saturation of 470 road lanes. We con-
struct a LDS modeling the 5am to 12am evolution of
the saturations of these road lines in Central Dublin
to have a realistic system dynamic for evaluation pur-
pose3. These saturation values correspond to x

t

. 5
artificial sensors of variance {20, 50, 80, 110, 140} can
observe each hidden saturation value (2350 sensors in
total). K = 700. �2

i,0 = 100 8i. (↵,�) = (50, 0.5).

4.1 Results on Brownian Motion

Figure 2 compares the number of optimal choices made
by our methods for all times. The problem is simple,
so EM and Gibbs converge to the optimal, although
Gibbs overexplores a bit. The online algorithms EMo
and VB improve more slowly. EMo does not converge
to the best choice every run and fares worse than VB .

Our online methods are orders of magnitude faster, as
can be seen from the average run times listed in Table
1. The run times of EM andGibbs in the other settings
would be prohibitive, so they are not considered.

3using 4 months of data available at http://

dublinked.ie/datastore/datasets/dataset-305.php

4.2 Results on Artificial Model

The accuracy ||x
t

� x̂

t|⇥0:t�1y1:t
||2
l2

achieved by each
method is illustrated in Figure 3(a). Both our online
methods achieve an estimation error close to oracle
after some time, and significantly better than random
and meanNoise. The behavior of EMo and VB is sim-
ilar, due to the relatively good initial estimates of ⇥.

If these initial estimates are worse, as in the experi-
ment presented in Figure 3(b), EMo can be worse than
random, due to its greedy nature. VB is still better
than random and meanNoise and converges to oracle.

4.3 State Estimation for Tra�c in Dublin

Typical estimation errors are illustrated in Figure 4.
Both EMo and VB are again significantly more accu-
rate than random andmeanNoise. The initial estimate
of ⇥ was good: EMo is a bit more accurate than VB .

On 2013-01-22 (Figure 5), 4 SCATS recordings (20 se-
lectable sensors) contain constant, aberrant values for
several hours. Therefore, corresponding elements of ⇥
do not reflect the true variances of these 20 sensors.
Because oracle uses ⇥ to make its decisions, it selects
suboptimal sensors during this anomaly. Since our VB
can adapt, it produces more accurate estimates than
oracle. Appendix 7.6 contains results for all days.

5 DISCUSSION

When all parameters are known, submodular sensor
selection comes with theoretical guarantees. A natural
question is whether such guarantees can be extended
to our algorithms. Answering this question is outside
the scope of this paper, but here are a few insights.

Parameter estimation of EM and the online EM con-
verge to a (local) maximum of the likelihood function.
However, the quality of the parameter estimates still
depends on the number of queries answered by each
sensor. Therefore, estimates of sensors that are no
longer selected cannot improve much. These meth-
ods are clearly not optimal. Possible improvements
include penalizing the choice of a sensor by a mono-
tonic function of the number of past queries and de-
riving confidence intervals over the noise parameters.
We are only aware of one result related to the lat-
ter approach. Joglekar et al. (2013) derive confidence
intervals in crowdsourcing settings where labels are bi-
nary. Developing the new tools for a similar analysis
of our algorithms requires significant work.

There have long been substantial empirical evidence
that Thompson sampling is competitive with the state
of the art in many problems and recent theoretical op-
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(a) With a good initial ⇥ estimate, the errors of EMo

and VB converge to the errors of the oracle.
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(b) With worse initial parameter estimates, EMo provides
worse state estimates than random or meanNoise.

Figure 3: Quality of state estimation on the artificial model, for �2
i,0 = 3 8i,↵ = 1.5 (left) and �

2
i,0 = 10 8i,↵ = 5

(right). Filled areas correspond to 0.25-0.75 quantiles of 20 simulations, dark lines with markers to the means.
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Figure 4: EMo and VB are more accurate
than random and meanNoise on 2013-01-10.
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Figure 5: On 2013-01-22, faulty sensors lead oracle to take sub-
optimal decisions. VB adapts and is more accurate than oracle.

timality results for simple problems. Whether these
results can be extended to our setting, with Gibbs sam-
pling or with a VB approximation, is an open question.

Our online algorithms perform each update based on
the last time step. They can be modified to operate
on several past time steps, increasing estimation ac-
curacy. Increasing the planning horizon �

T

did not
influence accuracy. This suggests that the transition
noise is either evenly distributed or much higher than
the uncertainty propagated in time.

6 CONCLUSION

Crowdsourced sensors are versatile, mobile, come in
huge numbers and cost nothing to deploy but are typ-
ically unreliable and uncalibrated. Legal and econom-
ical concerns may limit the number of queries.

We develop real-time algorithms to decide which
crowdsourced sensors should be queried to reduce the
estimation error on a linear dynamical system the scale
of a city. We develop Thompson sampling algorithms
combining a submodular sensor selection procedure
(Krause et al., 2008) with two Bayesian parameter
sampling algorithms. As an alternative, we also con-
sider maximum-likelihood estimation algorithms. The

algorithm based on online variational Bayes inference
is the best candidate for the large-scale systems we tar-
get. Up to our knowledge, online variational inference
has not been applied to dynamical systems before.

Our methods are not limited to LDS. They are easily
applicable to problems where temporal independence
is enforced, including the classical crowdsourcing set-
ting. If the parameters of the system are unknown, our
methods are also applicable to crowdsensing based on
Gaussian processes (Krause et al., 2008; Venanzi et al.,
2013), which result in simpler models than the LDS
we use. If the objective function is not submodular,
the optimisation subroutine must be changed, but the
combination of Thompson sampling and online varia-
tional inference stays relevant.

Legal issues are currently being tackled before the de-
ployment of our algorithms in a real city with the size
of approximately a million people. Another attractive
application is smart grids, for example querying smart
meters to estimate the power consumed and the re-
newable electricity produced by each house.
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