Exploiting Symmetries to Construct Efficient MCMC Algorithms With an Application to SLAM

SUPPLEMENTARY MATERIAL — PROOFS

For any topological space X, let K (X) be the class of con-
tinuous real-valued functions from X having compact sup-
port: for any f € K(X) there is some compact K C X such
that f is zero outside K. Any measure on X is always finite
for any function on K (X) and to show that two measures
are the same, it is sufficient that they agree for all functions
in K(X).

Suppose from now on that Assumptions 1 and 2 hold: X
is a topological space and G is a topological group act-
ing continuously and properly on X, with both X and G
Hausdorft and locally compact. Recall that the require-
ment that the action is proper means that the continuous
function 0 : X X G — X X X defined by (x,g) — (x,gx)
is such that for any compact set K € X X X, the pre-image
6~'(K) of K is compact in X X G.6 For any x € X, let
G, = {g € G| gx = x} be the isotropy subgroup of G at x
and let 7, : G = G/G be the natural quotient map from
G to the coset space G/Gy. Because G acts properly on X,
each G is compact.

The image of X X G under 6 is the set E =
{(x,gx) | x € X,g € G}, which is closed in X x X because
6 is a proper (hence closed) map and X X G is closed. If
we restrict the codomain of 8 to E, it becomes a surjec-
tive, continuous, and closed map: it is a quotient map. In
other words, any set U C E is open in the subspace topol-
ogy inherited by E from X x X if and only if 7'(U) is
open in X X G. Further, 6 has the following universal prop-
erty: if Z is any topological space and f : X X G — Z is
a continuous function satisfying f(x,g) = f(x’,g") when-
ever 6(x,g) = 6(x’,g’), then there is a unique continuous
function f : E — Z such that f = f o . We see that
0(x,g) = 8(x’,g’) if and only if x = x" and g’ € gG, (i.e.,
gx = g’x). The equivalence classes under 6 are therefore
sets of the form {x} x gG,.

Let A be a y-invariant measure on X under the action of
G, where y : G — R is a continuous group homomor-
phism from G to the multiplicative group of the positive
real numbers: for any measurable F ¢ X and g € G,
A(gF) = x(g)A(F). Note that as a corollary we get that
for any f € K(X),

/ Fgx) Adx) = x(g™) / FO ). (5

Indeed, when f = yy, U <C X measurable,
[ flgx)A(dx) = [T{gx € Ula(dx) = [Tx €
g ' UYA(dx) = A(g7'U) = x(g7HAW) = x(g™") [ 1{x €
U} A(dx) = x(g7") [ f(x)A(dx), from which the result fol-
lows.

SMore generally, f : X — Y is said to be proper if f ® idz :
X X Z — Y x Z is closed for every topological space Z, and
a group is said to act properly if 0 (as defined above) is proper.
Our definition coincides with this one because the domain and
codomain of 8 are both locally compact.

Let u be a left Haar measure on G. Recall that this means
that u(H) = u(gH) for any measurable H ¢ G and g € G.
We will also need the right modular character AS of G.
Recall that AY is the unique function from G to the positive
reals such that u(Hg) = A%(g)u(H) for any measurable
H c G. (The existence of AY follows since H — u(Hg)
can be seen to be a left Haar measure on G and by the
uniqueness of Haar measures up to a normalizing constant.)
A well known fact, that we will need later, is that for any
J € K(G),

/ &™) u(dg) = / F@AS (e u(dg).  (6)

Finally, let 8, be a left Haar measure on G,; by the com-
pactness of G, By is also a right Haar measure and it is
finite, and without loss of generality we can take it to be
normalized.

For any x € X and f € K(G), we will make use of
the following construction: define f; € K(G) by g —

Jc. f(gh) Bx(dh). For any g’ € gG, we have f(g') =
I, f(gg™'¢’h) Bx(dh) = f(g) since By is invariant un-
der a translation by g~'g’ € G,. Thus f/ is constant on
each coset gG and there is some fy € K(G/G,) such
that f; = fy o m¢. Because G, is compact, there is a
quotient measure vy = pu/Bx on G/G, which satisfies
u(f) = v(fy) for any f : K(G). Furthermore, because
By is normalized, vy = 7y (1).

Let M, N be measurable spaces, « : M — N measurable,
p a measure on M. The push-forward measure a(p) on N
is defined by [ fda(p) = [ f o« dp for any f € K(M)
or by a(p)(F) = p(a”'(F)) for any measurable F c N.
From now on, a(p) for « an M — N map, p a measure
on M always means the push-forward of p under @. In
particular, the parentheses in a setting like this will never
be used for grouping. To help parsing the formulae, we
will also occasionally write f - p to denote the measure
whose density w.r.t. pis f, where p is a measure on M and
f: M — [0,00) is p-integrable.

Now consider a measure I on X XG defined by I'(dx,dg) =
v(x,g) A(dx) u(dg), having density y with respect to 1 @ u.
Our goal is to construct the Radon-Nikodym derivative of
the push-forward measure 6(T") on E w.r.t. the push-forward
measure §(A ® u). For this, take any f € K (X X G) so that

/fd@(r):/foedr

- / Ad) / u(dg) y(x.g) F(O(x.2))
X G

- / A(d) / v2(dg) / B(dh) y(x.gh) F(O(x,gh))
X G/Gx Gx
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- / Ad) / v.(dg) F(0(x.8)) / Brdh) y(x.gh).
X G/Gx Gx

In the last equality, f o8 can be taken outside the innermost
integral because 6(x,gh) = 6(x,g) for any h € G,. Now
define y'(x,g) =[5, Bx(dh)y(x,gh), so that y'(x, -) is
constant on each coset gG, and there is some y : E —» R
such that y’ = y 0 6:

/ Fdo(r) = /X Ad) /G P SO ) T

The integrand of v, is well-defined because it depends on
g only through its coset m,(g) = gG,. Using the fact that
vy = my(u), we can replace v, by u in the above integral to
get

/ £ do(r) = / F(0(x.8) 7(0(x.8)) A(dx) u(dg)
- /f«?de(mm.

Thus we have shown that §(y - (1® ) = ¥-0(1® u), where
7(9(x’g)) = fGX y(x7gh) ﬁx(dh)

We will be concerned with the operation of transposition
on X x X, defined by the map (x,x’)’ = T(x,x’) = (x’, x).
We note that T is continuous and is its own inverse. Fur-
ther, T maps the set E to itself: for any (x,gx) € E we have
T(x,gx) = (gx,x) = (gx,g~'gx) € E. Mirroring this defi-
nition of T restricted to E, we will definer : XXG — X XG
by (x,g) +— (gx,g7!), so that ¢ is continuous and also
its own inverse: #(r(x,g)) = t(gx,g”") = (g7'gx,g) =
(x,g). Now note that if (x,g) = 0(x,g’) (i.e., gx = g’'x)
then #(x,g) = (gx,g~") and #(x,g") = (g’x,g’""), where
g’_lg'x = x = g 'gx and thus 0(t(x,g")) = 6(t(x,g)).
Conversely, if 6(¢(x,g)) = 6(t(x’,g’)) then by the previous
result 0(¢(t(x,g))) = 0(t(t(x’,g’))), and since ¢ is its own
inverse, we have shown that 6(¢(x,g)) = 0(t(x’,g’)) <
0(x,g) = 6(x’,g’). In other words, 8ot : X X G — Eis
constant on the equivalence classes of 6, so there is some
continuous 7 : E — E such that § ot = 7 o §; we can
verify that 7 is simply T restricted to E, i.e., the following
diagram is commutative:

XxG Sy E s xxX

O

XxG -3y E 3y XxxX

Let us again take I' = y (1 ® y) and find the push-forward
measure ¢(I'). Take f € K (X X G). Then,

/fdt(F):/fotdF

- / Flgx.g ™) y(r.g) Adx) u(dg)

changing x to g~ x using Eq. (5)

= [t gyt ) Al )
changing g to g~! using Eq. (6)

- [ 896 x(0)1.0) y(gng™) Aa) utd).

Thus #(I') = t(y(4 ® w)) = y: (1 ® p) where y;(x,g) =
@(g)y(1(x,g)) and ¢(g) = x(2)AZ(¢™") for g € G. Thus y,
is a density for #(I') with respect to 4 ® u, so we can apply
our previous result to this distribution to get a density for
6(¢(T")) with respect to 8(1 ® u): we get

0(I) = 6(y: (A @ w) =y, - 0(A® ),

where

F(6(x.g)) = / Y (x.gh) Bx(dh)

x

@ /G o(gh)y(t(x.gh)) Bx(dh)

® (o) / Yghx. i 'g™) Buldh)
Gy

€ o(e) /G y(gx,g 'gh™'g™") Bx(dh)

D () /G Wgxag™ h) Box(dh)

€ o(e) / y(gx,g ' h) Bex(dh)
Gex

@ ¢(2)7(0(gx,g7") = (e V(T(6(x,2))).

Here, the various equalities hold for the following reasons:
(a) Definition of vy,; (b) Since ¢ is a group homomorphism,
w(gh) = o(g)e(h) and since G, is compact, ¢(h) = 1 for
any i € Gy; (c) By the definition of G, hx = x; (d) Bgx is
the push-forward of 8, under the map ¢, : h ghg ' In-
deed, if B = cg(By) then B(U) = Br(g7'Ug) for U C Gy
measurable. Now, for any 7 € Ggy, hU = U, hence
B(hU) = Bx(g"'hUg) = B(g7'Ug) = B(U) and thus
B = cg(Bx) is a Haar-measure on Gg,. Thanks to the
uniqueness of normalized Haar measures, we then have
cg(Bx) = PBgx; (e) Since Gy is compact, Sg, remains
unchanged under the change of variables & +— h~!; (f) Def-
inition of 7.

Theorem 3. Let X, G, A, i1, (Gx)yex> (Bx)yex be as stated
in this section. Then, for any I measure on X X G that is
absolute continuous w.r.t. A ® p, with density vy, it holds
that

iy (x,gx) = w where x € X,g € G

dT(6(I')) x(8)v(gx,x)

where 0(x,g) = (x,gx) and T(x,x") = (x’,x) for any x,x’ €
X,geGand

v(x,gx) = / v(x,gh) Bx(dh) where x € X,g € G.
Gx



Exploiting Symmetries to Construct Efficient MCMC Algorithms With an Application to SLAM

Proof. ¢ (y o T) is a density for 6(¢(T")) (and hence for
T(6(I')) with respect to 6(1 ® w)). Since the density
for (') with respect to the same measure is y, we
see that the Radon-Nikodym derivative d6(I")/dT(6(I")) is

y(x,8x)/p(g)y(gx,x) at (x,gx) € E. O

We will now restate some results of Tierney (1998) for use
in the following proofs.

Proposition 2 (Tierney, 1998, Proposition 1). Let
u(dx,dy) be a sigma-finite measure on the product space
(EXE,& ® &) and let u” (dx,dy) = u(dy,dx). Then there
exists a symmetric set R € & ® & such that p and ' are
mutually absolutely continuous on R and mutually singu-
lar on the complement of R, R€. The set R is unique up to
sets that are null for both u and . Let ug and ;15 be the
restrictions of p and ' to R. Then there exists a version
of the density

R (dx,dy)

uk(dx,dy)

such that 0 < r(x,y) < oo and r(x,y) = 1/r(y,x) for all
x,y € E.

r(x,y) =

Proposition 3 (Tierney, 1998, Theorem 2). A Metropolis-
Hastings transition kernel satisfies the detailed balance
condition Eq. (1) if and only if the following two conditions
hold.

(i) The function « is u-almost everywhere zero on RC.

(ii) The function « satisfies a(x,y)r(x,y) = a(y,x)

u-almost everywhere on R.

The Metropolis-Hastings acceptance probability

(x.y) = min{1,r(y,x)}, if (x,y) € R,
GEYI=00, if (x,y) ¢ R.

satisfies these conditions by construction.

Proofs of Theorems 1 and 2

Proof of Theorem 1. Procedure 1 describes an MH kernel
based on the proposal Q’(dw’|w) that, given a state w,
samples g ~ Qg(- |w) and proposes gw. In other words,
Q’(- |w) is the push-forward of Qg(- | w) under the map
g — gw, making P(dw)Q’(dw’|w) the push-forward
of P(dw)Qg(dg|w) under the map O(w,g) = (w,gw).
We can now apply Theorem 3 by taking I'(dw,dg) =
P(dw) Qg(dg | w) with density y(w,g) = p(w) q(g | w), so
that P(dw) Q’(dw’ |w) = 6(T') and

do(P(dw) Qg(dg|w))
dT(0(P(dw) Qg(dg|w)))
_ AF(9)¥(w.gw)

x(8)y(gw,w)

r(w,gw) = (w,gw)

where w € W,g € G

where
T gw) = / pOv) qlgh | w) B (dh)
Gx
= p(w) / a(gh| w) Bx(dh)
Gx
=pw)q'(g|w).
Define

R = {(w,gw) € E|p(w)q’(g|w) > 0 and
p(ew)q'(g™" |gw) > 0}.

Now the image of 6 is E, so both 6(T") and T(6(T")) are zero
outside E. Thus they are mutually singular outside R C E
and mutually absolutely continuous on R. We can define
r(w,w’) = 1 outside R, and by inspection we can verify that
r(w’,w) = 1/r(w,w’). Thus we have satisfied all the condi-
tions for Proposition 2 and by Proposition 3 the MH kernel
with acceptance probability a(w,w’) = min{l,r(w’,w)}
on R satisfies detailed balance. Since we assume that the
initial state is within the support of P, and the acceptance
probability is always zero for proposals outside the support,
a will never be evaluated outside the set R. O

Proof of Theorem 2. Procedure 2 describes an MH
kernel based on a proposal Q’ which is a mix-
ture of the types of proposals seen in Proce-
dure 1: Q'(dw'|w) = X, a(i|w)Qi(dw’|w) and
P(dw)Q'(dw’|w) = X1, a(i|w)P(dw)Qi(dw|w).
Now define T';(dw,dg) = a(i|w)P(dw)Q;(dg|w). By
a similar argument to the previous proof it follows that
P(dw)Q'(dw’ | w) " ,0(I';). As before, we can
define a function r; that is a Radon-Nikodym derivative
for dO(I;)/dT(6(T;)) restricted to a set R; where both
those measures are mutually absolutely continuous, and
mutually singular outside it. Since 6(I';) is zero outside
the set E; := 6(W,G;), we see that R; C E;. The problem
arises because the E; may not be disjoint. However, we
will show that we can take the R; to be disjoint without
loss of generality.

Foreach 1 <i < n, define V; tocontain allthe 1 < j < n
such that Assumption 3 is satisfied for i and j with k = i.
Now for any j € V; the pre-image of E; N E; under 6 is
{(w,g)|w e W.g € G; ;G;,w}. Applying the assumption,
this set has zero measure under I'; so E; N E; has zero mea-
sure under §(I';). Then J ey, E; N E; has zero measure
under 6(T';) and is symmetric, so it has zero measure un-
der T(6(T';)) as well. Thus, without loss of generality, we
can take R; to be a subset of E; \ ey, E; since it is only
unique up to 6(I;)-null sets. By the assumption, for any
i # jeitheri € Vj or j € V;, so the R; are disjoint. We have
found a collection of disjoint sets R; such that each 6(T';)
is mutually absolutely continuous on R; and mutually sin-
gular outside R;, with dO(T;)/d(T(6(I';))) = r; restricted to
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R;. We can now define r so that it takes on the value r;
on E;, with R := (J!_, R;. This r is the Radon-Nikodym
derivative for Tierney’s Proposition 1.

It only remains to note that by Assumption 3 for any w
in the support of P and w’ = gw sampled according to
Qi(-|w), (w,gw) € R; with probability 1. Thus if the
algorithm samples from some Q; then r is evaluated on E;
with probability 1. O



