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Abstract

In structured prediction, most inference al-
gorithms allocate a homogeneous amount of
computation to all parts of the output, which
can be wasteful when different parts vary
widely in terms of difficulty. In this paper,
we propose a heterogeneous approach that
dynamically allocates computation to the dif-
ferent parts. Given a pre-trained model, we
tune its inference algorithm (a sampler) to
increase test-time throughput. The inference
algorithm is parametrized by a meta-model
and trained via reinforcement learning, where
actions correspond to sampling candidate
parts of the output, and rewards are log-
likelihood improvements. The meta-model
is based on a set of domain-general meta-
features capturing the progress of the sam-
pler. We test our approach on five datasets
and show that it attains the same accuracy
as Gibbs sampling but is 2 to 5 times faster.

1 Introduction

For many structured prediction problems, the output
contains many interdependent variables, resulting in
exponentially large output spaces. These properties
make exact inference intractable for models with high
treewidth [Koller et al., 2007], and thus we must rely
on approximations such as variational inference and
Markov Chain Monte Carlo (MCMC). A key charac-
teristic of many such approximate inference algorithms
is that they iteratively modify only a local part of the
output structure at a small computational cost. For
example, Gibbs sampling [Brooks et al., 2011] updates
the output by sampling one variable conditioned on
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the rest. Often, a large number of local moves is re-
quired.

One source of inefficiency in Gibbs sampling is that it
dedicates a homogeneous amount of inference to each
part of the output. However, in practice, the diffi-
culty and inferential demands of each part is hetero-
geneous. For example, in rendering computer graph-
ics, paths of light passing through highly reflective or
glossy regions deserve more sampling [Veach, 1997];
in named-entity recognition [McCallum and Li, 2003],
most tokens clearly do not contain entities and there-
fore should be allocated less computation. Attempts
have been made to capture the nature of heterogene-
ity in such settings. For example, Elidan et al. [2006]
schedule updates in asynchronous belief propagation
based on the information residuals of the messages.
Chechetka and Guestrin [2010] focus the computation
of belief propagation based on the specific variables
being queried. Other work has focused on building
cascades of coarse-to-fine models, where simple models
filter out unnecessary parts of the output and reduce
the computational burden for complex models [Viola
and Jones, 2001, Weiss and Taskar, 2010].

We propose a framework that constructs heteroge-
neous sampling algorithms using reinforcement learn-
ing (RL). We start with a collection of transition ker-
nels, each of which proposes a modification to part of
the output (in this paper, we use transition kernels
derived from Gibbs sampling). At each step, our pro-
cedure chooses which transition kernel to apply based
on cues from the input and the history of proposed
outputs. By optimizing this procedure, we fine-tune
inference to exploit the specific heterogeneity in the
task of interest, thus saving overall computation at
test time.

The main challenge is to find signals that consistently
provide useful cues (meta-features) for directing the fo-
cus of inference across a wide variety of tasks. More-
over, it is important that these signals are cheap to
compute relative to the cost of generating a sample,
as otherwise the meta-features themselves become the
bottleneck of the algorithm. In this paper, we provide
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general principles for constructing such meta-features,
based on reasoning about staleness and discord of vari-
ables in the output. We cache these ideas out as a
collection of five concrete meta-features, which empir-
ically yield good predictions across tasks as diverse as
part-of-speech (POS) tagging, named-entity recogni-
tion (NER), handwriting recognition, color inpainting,
and scene decomposition.

In summary, our contributions are:

e The conceptual idea of learning to sample: we
present a learning framework based on RL, and
discuss meta-features that leverage heterogeneity.

e The practical value of the framework: given a

pre-trained model, we can effectively optimize the
test-time throughput of its Gibbs sampler.

2 Heterogeneous Sampling

Before we formalize our framework for heterogeneous
sampling, let’s consider a motivating example.

x | think now is the right  time
pass 1: y | PRP__VBP RB__VBZ DT NN NN
pass 22y | PR VBP RB VBZ DT JJ NN

Table 1: A POS tagging example. Outputs are

recorded after each sweep of Gibbs sampling. Only
the ambiguous token “right” (NN: noun, JJ: adjective)
needs more inference at the second sweep.

Suppose our task is part-of-speech (POS) tagging,
where the input € X is a sentence and the out-
put y € Y is the sequence of POS tags for the words.
An example is shown in Table 1. Suppose that the
full model is a chain-structured conditional random
field (CRF) with unigram potentials on each tag and
bigram potentials between adjacent tags. Exact infer-
ence algorithms exist for this model, but for illustrative
purposes we use cyclic Gibbs sampling, which samples
from the conditional distribution of each tag in cyclic
order from left to right.

The example in Table 1 shows at least two sweeps of
cyclic Gibbs sampling are required, because it is hard
to know whether “right” is an adjective or a noun un-
til the tag for the following word “time” is sampled.
However, the second pass wastes computation by sam-
pling other tags that are mostly determined at the first
pass. This inspires the following inference strategy:

pass 1
pass 2

sample the tags for each word.
sample the tag for “right”.

In general, it is desirable to have the inference algo-
rithm itself figure out which locations to sample, and
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Algorithm 1 Template for a heterogeneous sampler

: Initialize y[0] ~ Py(y) for some initializing Py(-).
: for t =1 to Tyq(x) do
select transition kernel A; for some 1 <j<m
sample y[t] ~ A;(- | y[t —1])
end for
output y = y[T]

IR > e

at a higher level, which test instances to sample.

2.1 Framework

We now formalize the intuition from the previous ex-
ample. Assume our pre-trained model specifies a dis-
tribution p(y | ). On a set of test inputs X
(@™, ..., 2™), we would like to infer the outputs
Y = (y™,...,y™) using some inference algorithm
M. To simplify notation, we will focus on a single in-
stance (z,y), though our final algorithm considers all
test instances jointly. Notice that we can reduce from
the multiple-instance case to the single-instance case
by just concatenating all the instances into a single
instance.

We further assume that a single output y
(y1,--.,Ym) is represented by m variables. For in-
stance, in POS tagging, y; (j = 1,...,m) is the part-
of-speech of the j-th word in the sentence x. We are
given a collection of transition kernels which target the
distribution p(y | ). For Gibbs sampling, we have the
kernels {A;(y’ | y) : j = 1,...,m}, where the transi-
tion A; samples yj conditioned on all other variables
Y—j, and leaves ij equal to y—;.

Algorithm 1 describes the form of samplers we con-
sider. A sampler generates a sequence of outputs
y[1],y[2],... by iteratively selecting a variable index
Jj[t] and sampling y[t + 1] ~ A;(- | y[t]). Rather
than applying the transition kernels in a fixed order,
our samplers select the transition A;p;) to apply based
on the input x together with the sampling history.
The total number of Markov transitions T (x) made
by M characterizes its computational cost on input .

How do we choose which transition kernel to apply?
A natural objective is to maximize the expected log-
likelihood under the model p(y | @) of the sampler
output M(x):

max  Eq, (ylm[logp(y | )] (1)

s.t.: Tam(x) < TF,

where ga(y | @) is the probability that M outputs y
and T* is the computation budget. Equation (1) says
that we want guq to place as much probability mass
as possible on values of y that have high probability
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under p, subject to a constraint 7% on the amount
of computation. Note that if T* o0, the optimal
solution would be the posterior mode.

Solving this optimization problem at test time is in-
feasible, so we will instead optimize M on a training
set, and then deploy the resulting M at test time.

3 Reinforcement Learning of
Heterogeneous Samplers

We would like to optimize the objective in (1), but
searching over all samplers M and evaluating the ex-
pectation in (1) are both difficult. We use reinforce-
ment learning (RL) to find an approximate solution.

Reduction to RL. Recall y[0],y[1],... is the se-
quence of outputs generated by our sampler, where
ylt + 1] ~ Ajpp(- | ylt]). To cast our prob-
lem into the RL framework, let the state s,
(y[0]...,y[t],4[0],...,4[t — 1]) be the entire history
of samples, and the action a; = Aj; refers to the
transition kernel that produces y[t + 1] from y[t]. We
let the reward be the improvement in log-probability:

Rost, at; si1) = logp(y[t+1]] z)—logp(y[t] | ®). (2)

Let S be the space of states and A be the space of
actions as defined above. The goal of RL is to find a
policy 7 : § — A to maximize the expected cumulative
reward E[Rp« ]|, where

T-1

Rr = ) R(si,ar,s141)-
=0

(3)

Clearly, the total reward Rr is equal to logp(y[T] |
x) — log p(y[0] | «); since y[0] is independent of the
particular policy, maximizing cumulative reward is
equivalent to maximizing the original objective in (1).
Although reward only depends on the last output y|t]
of a state sy, we will allow the policy to depend on the
full history encapsulated in s;.

Learning algorithm. Our algorithm learns an
action-value function Q(s¢, A;) that predicts the value
of using A; in state s;. Standard reinforcement learn-
ing methods, such as Q-learning [Watkins and Dayan,
1992] and SARSA [Rummery and Niranjan, 1994], do
not work well for our purpose. The issue is that they
attempt to learn a function Q(s¢, A;) that models the
expected cumulative future reward if we take action
Aj in state s;. In our setting this cumulative reward
is hard to predict for the following two reasons:

e [t is difficult to estimate how far the current sam-
ple is from the global optima. As an approxima-
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tion, we use Q(s¢, A;) to predict the cumulative
reward over a shorter time horizon H « T*.

The reward over time H also depends on the con-
text of y;. By subtracting the contextual part of
the reward, we can hope to isolate the contribu-
tion of action A;. Thus, we use Q(s¢, A;) to model
the difference in reward from taking a transition
Aj, relative to the baseline of making no transi-
tion.

Formally, we learn @ using sample backup [Sutton and
Barto, 1998, Chapter 9.5]. We start with some state-
action sequence (sg,ag, S1,a1,---,S7+) sampled from
a fixed exploration policy «’. Then, for each index

t (t=0,...,7* — 1) in the sequence, we generate a
rollout starting from initial state s{ = sy41: for i =
1,2,..., H, we generate action a$ = arg max, Q(s§, a)

and state sj,; using aj, and define the utility due to
taking ay:

H
UC = R(Styah St+1) + Z R<sz¢?a§7 quJrl)‘

i=1

(4)

Next, consider starting from state s} s¢ and not
taking a;, and letting a® = argmax, Q(s%,a). The
resulting states and actions s?, a® define the following
utility:

H

U = > R(

i=1

b b b
Sis Qi Si1

)- ()

To model the Q-function, we use a single-layer neural
network with one hidden node [Tesauro, 1995]:

Q(s,a) =wo(a- ¢(s,a)) + b, (6)

where o(-) is the logistic function, ¢(s,a) € RL are
meta-features and o € R, w € R, b € R are the meta-
parameters; we write @ = (w, b, av).

We update 0 with a temporal difference update [Sut-
ton and Barto, 1998] based on our rollout:

0<—0+"7t*dt7 (7)

where 1, € RE*2 are step sizes, “ 7 is element-wise

multiplication and the vector d; is
di = (U° = U" = Q(s1,0)) VoQlsi,a). ()
For choosing 1;, we use ADAGRAD from Duchi et al.

[2010]:
n

A0+ dixd;

where 7 is the meta learning rate and ¢ is a smoothing
parameter (we use n = 1 and § = 10~* in experi-
ments).

)

Nt
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We use the cyclic Gibbs sampler as the fixed explo-
ration policy 7’ to generate the initial states for the
rollouts. The entire training procedure is shown in
Algorithm 2:

Algorithm 2 Learning a heterogeneous sampler.

1: Input Dataset X, transition kernels A;, number
of epochs &, cyclic Gibbs policy #’, time horizon
H.

Initialize y ~ Py(y). Set so = (y[0]).
for epoch = 1,...,& do
fort=0,...,7* —1do
Get action a; = 7'(sy).
Sample s;41 from ay.
Extract ¢(s¢, ay).
Estimate gradient using (8)
Update meta-parameters 8 via (7).
end for
: end for

— =
_= O

Test time. At test time, we apply Algorithm 1. In
particular, we maintain a priority queue over locations
j, where priorities are the Q-values.

e During the select step, compute
argmax; Q(s¢, A;) for state s;, popping off
the maximum element from the priority queue.

e After the sample step, re-compute the meta-
features of the actions that depend on j[t] and
update the corresponding Q-values in the priority
queue.

In terms of computational complexity, select takes
O(logm), and re-scoring takes O(Ln;logm), where
m is the number of variables, and n; is the number
of neighbors of variable y;. The complexity of meta-
feature computation will be discussed in Section 4.

4 Meta-Features

The effectiveness of our framework hinges on the exis-
tence of good meta-features for the Q-function in (6).
Our goal is to develop general meta-features that ex-
hibit strong predictive power across many datasets. In
this section, we offer a few guiding principles, which
culminates in a set of five meta-feature templates.

Principles. One necessary criterion is that comput-
ing the meta-features should be computationally cheap
relative to the rest of the inference algorithm. With-
out loss of generality, we assume each output variable
y; takes one of K values and has n; neighbors. Then
such meta-features would take, for example, O(K) or
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O(n;) to compute, and they should not be computed
more often than being sampled.

In order to satisfy this criterion, an idea that we have
found consistently useful is stale values. For example,
suppose we would like to use the entropy of p(y; |
y-;) as a meta-feature. Computing it would be just
as expensive as sampling from A;. Instead, we keep
track of a stale version of conditional entropy. Every
time we sample from A;, we compute the entropy of
y; according to the sampling distribution and store it
in memory. Then the stale conditional entropy of y;
is defined as the current entropy in memory. As the
stale conditional entropy is a meta-feature, we leave it
up to the learning algorithm to determine how much
to trust it.

Reasoning about staleness is valuable in another way
as well: we want to know how different the Markov
blanket of y; is relative to the last time it was sampled.
If it is very different, this tells us two things: first,
any stored quantities such as entropy that we have
computed are probably out of date. More importantly,
the conditional distribution p(y; | y—;) is probably
very different than when we last sampled from Aj;, so
it is probably a good idea to sample from A; again.

In addition to staleness, another important notion is
discord. If at least one neighbor of y; is inconsistent
with the current value of y;, then it is probably worth
sampling from A;.

Templates. Based on the ideas of staleness and dis-
cord, we introduce the following meta-feature tem-
plates:

vary: the number of variables in the Markov blanket
of y; that have changed since the last time we sam-
pled from A;. The more neighbors of y; that have
changed, the more stale y; could be. This meta-
feature is computed as follows: upon sampling y;, we
set vary(y;) = 0, and increment vary of its neighbors
by 1. So the computational complexity of vary is only

O(TLJ)

nb: discord with neighbors. We define meta-features
nb-y-y’ (y,y’ € {1,..., K}) which are binary indicators
to track the occurrences of each of the possible value
pairs (y,y’) for y; and one of its neighbors. The intu-
ition is that certain pairs of values are very unlikely to
occur as part of a legitimate output, and thus repre-
sent a discordance that requires taking more samples;
the nb meta-features allow us to learn these pairs from
data. Although the total number of nb meta-features
is K2, the computational complexity is still O(n;) due
to sparsity.

cond-ent: the conditional entropy of y; at the last
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time it was sampled. Variables with high conditional
entropy have a high degree of uncertainty and can ben-
efit from being sampled further.

However, as noted earlier, keeping track of an up-to-
date conditional entropy would be too computationally
expensive. We therefore use a stale version based on
the last time that the variable y; in question was sam-
pled by A;. The computational overhead of cond-ent
is O(K), since we can just compute the entropy based
on p(y; | y—;), which already needs to be computed in
order to sample from A;.

unigram-ent: Sometimes, we can fit a simpler un-
igram model to the training dataset, where all the
variables y; are independent (given the input). In
such cases, unigram entropy of p(y;) can be used as
an over-estimate of the degree of ambiguity for a given
variable [Bishop, 2006]. If the unigram entropy is very
low, the variable is probably not worth sampling. To
capture this, we use the indicator function for the uni-
gram entropy being below some threshold (10~% in our
experiments).

sp: number of times y; has been sampled thus far. A
potential problem with all of the above meta-features
is that they might overly explore possibilities for the
same variable. So we need some way to reason about
the fact that at some point sampling the same variable
more is unlikely to lead to improvements. We do this
by keeping track of the number of times a variable
has already been sampled: once a variable has been
sampled too many times, it is unlikely that sampling
it further will be fruitful.

5 Experiments

In this section, we provide empirical evaluation of our
method, which we call HeteroSampler.

5.1 Datasets

To evaluated our method on five tasks: part-
of-speech tagging (POS), named-entity recognition
(NER), handwriting recognition, color inpainting, and
scene decomposition.

The general setup is as follows. First, we use RL to
learn the parameters of the meta-model on the training
dataset. We then run Algorithm 1 on the test set.
Unless otherwise stated, in all experiments we use £ =
3 training epochs, step size n = 1, and time horizon
H = 1. In addition to using cyclic Gibbs to generate
a base policy for training, we also compare to cyclic
Gibbs at test time.

We evaluated on the following datasets:

Words Japan coach Shu Kamo said :

' ' The Syrian own goal proved lucky for us

Truth B-LOC O B-PERI-PER O OO0 O B-MISC O O o O oO
1 I-FORG O B-PERI-PER O 00O O B-LOC O O o O o0oO
2 B-LOC O B-PERI-PER O 00O O B-MISC O O (o} O OO
3 B-LOC O B-PERI-PER O 00O O B-MISC O O [0} 0O OoO

Words
Truth
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(a) Cyclic Gibbs sampler on NER-f4

Japan coach Shu Kamo said : ' ' The Syrian own goal proved lucky for us

B-LOC O B-PERI-PER O 00O O B-MISC O O o O 0O
1 I-ORG O B-PERI-PER O 00O O B-LOC O O o O 0O
2 BLOC O B-PERI-PER O 00O O B-MISC O O o O 0O
3 o] I-lPER O 000/ 0 o O o] 0O o0O

(b) HeteroSampler on NER-f4

Figure 1: Visualization of computational resource allo-
cation on a test example from NER-f4. FEach row is
a snapshot of the sample after £ = 1,2,3 sweeps. A
darker color means that more cumulative samples have
been taken. For HeteroSampler, one sweep corresponds
to making m transitions, where m is the number of vari-
ables. HeteroSampler has learned to sample harder parts
of the instance, such as ambiguous tokens.

POS/NER Tagging. The POS tagging dataset
comes from the standard Wall Street Journal (WSJ)
section of the Penn Treebank, and the NER tag-
ging dataset is taken from the 2003 CoNLL Shared
Task. We trained an CRF model with fea-
tures between each token and its corresponding tag
(i.e. features [g(x;),y;] with feature extractor g(-)),
and higher-order features between/among tags (i.e.
[Yis Yit1, - Yitq]) [Liang et al., 2008]. We refer to ¢ as
the factor size, and call the corresponding tasks POS-
fq and NER-fg. The feature extraction functions g(-)
include prefixes and suffixes of the word (up to length
4), lowercase word, word signature (e.g. McDiarmid
into AA and AaAaaaaaa, banana into a and aaaaaa)
and an indicator of the word’s being capitalized. The
CRF is trained using AdaGrad [Duchi et al., 2010] with
5 passes over the training set, using Gibbs sampling for
inference with 8 total sweeps over each instance and 5
sweeps as burn-in. The performance is evaluated via
tag accuracy for POS and F1 score for NER.

Handwriting Recognition. We use the handwrit-
ing recognition dataset from Weiss and Taskar [2010].
The data were originally collected by Kassel [1995],
and contain 6877 handwritten words from 150 subjects
with 55 distinct words. Each instance of the dataset is
a word, which is a sequence of characters. Associated
with each output character is a corresponding 16 x 8
input binary optical image. The dataset is split into
training and test set, where the training set had 6251
words and the test set had 626 words.

Similar to POS/NER tagging, the baseline algo-
rithm is an CRF. We have a feature for each (pixel
value, location, character) triple, as well as higher-
order n-gram potentials between consecutive charac-
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(a) NER (factor size 2) (b) NER (factor size 4)

F1 score
F1 score

— HeteroSampler|
— cyclic Gibbs

— HeteroSampler|
— cyclic Gibbs

40 60 80 100 120
Average Number of Transitions

0
Average Number of Transitions

(d) OCR (factor size 4) (e) Color Inpainting

10 20 30 40 50 60 70 8

0

o

o

Accuracy
Log Probability (x 10*)

— HeteroSampler|
— cyclic Gibbs

— HeteroSampler
— cyclic Gibbs

2 4 6 8 10 12 14 ~
Average Number of Transitions (x 10°

20 40 60 80 100 120 140
Average Number of Transitions

ters. The training scheme of the full model is similar
to POS/NER, except that we use 16 Gibbs sampling
sweeps in total with 5 burn-in sweeps. The results are
evaluated via character-wise accuracy.

Color Inpainting. The three-class color inpainting
task is borrowed from Chambolle et al. [2012]. The
input is a corrupted color image in a circular domain,
and the target image is an equipartition of the circle
using three colors. We use a pre-trained model from
the OpenGM benchmark [Kappes et al., 2013]. The
baseline is Gibbs sampling with 100 sweeps over the
instance. There are two instances in this dataset and
we use one to train the HeteroSampler and the other
to test it. Performance is evaluated based on the log-
probability of the output.

Scene Decomposition. The scene decomposition
dataset is obtained from the source in Gould et al.
[2009]. The goal is to segment a natural image into
eight semantic categories, such as grass and sky. We
use the subset of 715 images included in the OpenGM
toolkit [Kappes et al., 2013], for which an existing
graphical model is publicly available. The graphical
model is a superpixel factor graph, and each super-
pixel has 773 feature dimensions. Among the 715 im-
ages, we randomly pick 358 instances for training, and
the rest are used for testing. The baseline Gibbs sam-
pling uses 16 sweeps over each image, and we train the
HeteroSampler in the same way as Color Inpainting.
Performance is again evaluated via log-probability.

5.2 Visualization of Resource Allocation

Figure 1 visualizes the allocation of sampling op-
erations on an NER instance. While cyclic Gibbs
sampling uniformly distributes its computational re-

16
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(c) POS (factor size 4)

o
©
N
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830

200 400 600 800
Average Number of Transitions

1000

sources, HeteroSampler is able to focus on harder
parts of the task such as names.

5.3 Performance under Different Budgets

To measure the performance under different budgets,
we gradually increase the total number of transitions
at test time for the HeteroSampler and the overall
number of sweeps for the Gibbs baseline. The number
of transitions for training are held fixed.

Figure 2 plots the performance versus average num-
ber of transitions per instance. As we see, given
the same budget, HeteroSampler achieves equal
or better performance for all tasks. In addition,
HeteroSampler reaches the ceiling accuracy 2 to 5
times faster regardless of the problem domain. For the
Color Inpainting problem, which is the most challeng-
ing of the tasks, HeteroSampler also achieves better
end performance when it converges. This is due to
the fact that, by optimizing the order of sampling, the
meta-algorithm is able to find a better local optimum.

Next, we justify measuring computational cost in
terms of number of samples. To do this, we mea-
sured the overhead of computing the policy relative
to the cost of sampling. As long as this overhead
is low, computing samples is the bottleneck in the
base algorithm, and so number of samples is a reason-
able measure of computational cost. Figure 3 shows
how many wall-clock seconds were spent computing
the HeteroSampler policy for each dataset. For most
tasks, sampling involves computing all of the features
of the full model, while computing the policy uses only
a few meta-features and therefore has negligible cost.
The exception is color inpainting, where the full model
has only a few features.
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(a) NER (factor size 2)

— Policy
— Overall

(b) NER (factor size 4)

— Policy
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(f) Scene Decomposition
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Figure 3: Wall-clock time vs. average number of transi-
tions across different datasets. This measures the overhead
of policy evaluation. The red line “sampling” shows the
time spent without policy evaluation, while the blue line
“policy” shows the time spent on policy evaluation.

5.4 Cumulative Rewards

We would like to verify two facts: first, training with
cumulative rewards is useful relative to just using im-
mediate reward; second, our meta-features can predict
the cumulative rewards. First, Figure 4(a) shows ac-
curacy vs. number of transitions with H = 0 (im-
mediate rewards) and H = 1 (cumulative rewards)
on NER-f4. As we can see, with cumulative rewards,
HeteroSampler performs better. Table 2 provides an
intuitive explanation.

To see which meta-features are contributing to the pre-

1.0
0.80

0.8
0.6
0.4

0.78

0.76
ind

0.74

0.72

0.70

0.2

o ooooop

10 20 30 40 50 60 70
Average Number of Transation

(a)

0.0
oracle biascond-ent sp

(b)

oracle biascond-ent sp

()

Figure 4: Effect of training with cumulative rewards. (a)
Convergence curve of the inference algorithm trained with
one-step look-ahead (H = 1) vs. immediate rewards (H =
0). (b) Weights of meta-features when trained with H =
0 plus the oracle meta-feature. (c) Weights of the meta-
features when trained with H = 1 plus the oracle meta-
feature.
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input | KANSAS
immediate B-LOC
cumulative B-0RG

CITY AT OAKLAND
I-L0C 0 B-LOC
I-0RG 0 B-LOC

Table 2: Cumulative rewards are often helpful when
there is high correlation between variables. In this ex-
ample, “KANSAS CITY” is initially labeled as an lo-
cation. Two coordinated actions are needed to change
it to an organization and improve log-likelihood. A
meta-model trained with immediate rewards would not
recognize the value of sampling “KANSAS” alone.

diction of cumulative rewards, we intentionally add an
oracle meta-feature, which is the immediate reward
of sampling. Figures 4(b) and (c) visualize the weights
of some meta-features for H = 0 and H = 1 respec-
tively. As expected, when learned with immediate re-
wards, all weights concentrates on the oracle meta-
feature. The learned meta-model does not encourage
exploration and therefore may omit positions that have
cumulative reward. When trained with cumulative re-
wards, the meta-model also distributes some weight to
cond-ent, which leads to better exploration and bet-
ter performance.

5.5 Meta-feature Ablation Analysis

To evaluate the contribute of individual meta-features
and to understand their role in predicting reward, we
did a meta-feature ablation analysis. With one meta-
feature removed at a time, we run the meta-algorithm
and produce a convergence curve, shown in Figure 5
for NER-f2 and POS-f4. All meta-features play an im-
portant role. sp is the most important; without it,
we would repeatedly sample variables with high un-
certainty.

6 Related Work and Discussion

At a high-level, our approach is about fine-tuning the
inference algorithm of a pre-trained model to make
more effective use of computational resources at test
time. Specifically, we use reinforcement learning to
train a sampler that operates on variables heteroge-
neously based on the promise of likelihood improve-
ments. We demonstrated substantial speed improve-
ments on several structured prediction tasks.

The idea of treating structured prediction as a se-
quential decision-making problem has been explored
by SEARN [Daume et al., 2009] and DAGGER [Ross
et al., 2011a]. Both train a multiclass classifier to build
up a structured output incrementally in a fixed order.
Similar ideas have been applied in dependency parsing
[Goldberg and Nivre, 2013].
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Figure 5: Meta-feature ablation study on various datasets. (a) shows the convergence curves of HeteroSampler with
one meta-feature removed on (a) NER-f2 and (b) POS-f4. F is the entire meta-feature set, and “\” denotes excluding a
meta-feature. We see that each meta-feature matters for at least some of the tasks, and sp is the most important.

To obtain speedups, it is beneficial to learn the or-
der in which the structured output is constructed;
this flexibility is the cornerstone of our work. For
example, Goldberg and Elhadad [2010] proposed an
approach that learns to construct a dependency tree
by adding “easy” arcs first. More generally, Jiang
et al. [2012] maintains a priority queue over partially
constructed hypotheses for constituency parsing and
learns to choose which one to process first. While the
aforementioned work builds up outputs incrementally,
our heterogeneous sampler makes modifications to full
outputs, which can be more flexible.

Other work also operate in the space of full outputs.
For example, Doppa et al. [2014b,a] perform several
steps of local search around a baseline prediction.
Zhang et al. [2014] performed greedy hill-climbing
from multiple random starting points for dependency
parsing. Ross et al. [2011b] used DAGGER to learn
message-passing inference algorithms. However, un-
like our method, none of these papers deal with the
issue of determining which locations are useful to op-
erate on without explicitly evaluating the model score
for each candidate modification. We use lightweight
meta-features for this purpose.

Some methods use a fixed strategy to prioritize infer-
ence in a fixed model. For example, residual belief
propagation [Elidan et al., 2006] selects the message
between two variables that has changed the most from
the previous iteration. In cases where we are inter-
ested in a particular query variable, Chechetka and
Guestrin [2010] prioritizes messages based on impor-
tance to the query. Wick and McCallum [2011] imple-
ments the same intuition in the context of MCMC.

SampleRank [Wick et al., 2011] also performs learning
in the context of sampling, but is complementary to
our work: SampleRank fixes a sampling strategy and
trains the underlying model, whereas we fix the un-
derlying model and train the sampling strategy using
domain-general meta-features. Wick et al. [2009] tack-
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les the local optima problem in structured prediction
by using RL to train policies that could select fruitful
downward jumps, which is the same issue that our use
of cumulative rewards attempts to address.

More generally, the goal of speeding up inference at
test time is quite established by now. Viola and Jones
[2001] used a sequence of models from simple to com-
plex for face detection, at each successive stage prun-
ing out unlikely locations in the image. Weiss and
Taskar [2010] trained a sequence of Markov models of
increasing order, each successive stage pruning out un-
likely local configurations.

As feature extraction is often the performance bottle-
neck, it is a promising place to look for speed improve-
ments. Weiss and Taskar [2013] used RL to train poli-
cies that adaptively determine the value of information
of each feature at test time. For dependency parsing,
He et al. [2013] considers a sequence of increasingly
complex features, and uses DAGGER to learn which
arcs to commit to before adding more features.

Our work is superficially related to the work on adap-
tive MCMC [Andrieu and Thoms, 2008], but the goals
are quite different. Adaptive MCMC samplers attempt
to preserve the stationary distribution, while our ap-
proach seeks to directly maximize log-likelihood within
a fixed number of time steps.

As a final remark, in this paper, we only focused on the
issue of “where to sample”, but the general framework,
which merely learns which transition kernels to apply,
could also be applied to determine “how to sample” too
by supplying a richer family of transition kernels—for
example, ones based on models with different feature
sets or blocked samplers. This opens up a vast set of
possibilities for finer-grained adaptivity.
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