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1.1 Proof of Lemma 2.2

Proof. Let γ ∼ IG(α, β) be inverse gamma distributed with parameters α and β and y | γ ∼
N(µ, γK). The scale mixture form of the probability density function can be written as
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where ∆2 = (y− µ)TK−1(y− µ). We now recognize this as the Student-t density in Definition 2.1
by parametrizing α = ν

2 and β = ν−2
2 . Thus y ∼ MVT(µ,K, ν). Note the redundancy in γ ∼

IG( ν2 , ρ
ν−2
2 ) and y | γ ∼ N(µ, γ

ρ
K) for ρ > 0. Without loss of generality, we choose ρ = 1.

1.2 Marginal likelihood for the naive TP

We write down the negative log marginal likelihood (energy) function and its derivatives with respect
to the degrees of freedom ν and the covariance hyperparameters θ = (σ2

n, θ1, θ2, . . .). The negative
log marginal likelihood, L = − log p(y | ν,θ), is given by
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where β = yTK−1
θ

y. The derivatives can now be given as
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where ψ(·) is the digamma function.



1.3 Marginal likelihood for the state space TP

The negative log marginal likelihood can be evaluated recursively starting from L0 = 0:
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where vk and Sk are the innovation mean and covariance evaluated by the filter update step, and
νk = νk−1 + nk. Formally differentiating Lk gives a recursion algorithm for evaluating the gradient
along with the filtering steps:
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The formal differentiation of the function also includes differentiating the filter prediction and update
steps. This leads to the following rather lengthy recursion formulas, which include a lot of small
matrix operations. On the filter prediction step we compute:
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and on the filter update step we compute:
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Note that, the derivative ∂L
∂ν

can be evaluated as given in Equation (16), if the β = βn is evaluated

along the filtering recursion such that βk = βk−1 + γk−1v
T

kS
−1
k vk and starting from β0 = 0. For

maximum a posteriori estimation, the recursion should be started from the initial condition ∂L0(θ)
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. For a similar formulation for the Gaussian filter, see [6] and the references therein.
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