
A Appendix

A.1 Mathematical miscellany

In many cases we would like to bound a summation using an integral.

Lemma 3. For x ≥ 0, we have

b∑
i=a

ix ≤
∫ b+1

a
ixdi =

(b+ 1)x+1 − ax+1

x+ 1
(11)

b∑
i=a

ix ≥
∫ b

a−1
ixdi =

bx+1 − (a− 1)x+1

x+ 1
(12)

For x < 0 and x 6= −1, we have

b∑
i=a

ix ≤
∫ b

a−1
ixdi =

bx+1 − (a− 1)x+1

x+ 1
(13)

b∑
i=a

ix ≥
∫ b+1

a
ixdi =

(b+ 1)x+1 − ax+1

x+ 1
(14)

For x = −1, we have
b∑
i=a

ix ≤
∫ b

a−1
ixdi = log

b

a− 1
(15)

b∑
i=a

ix ≥
∫ b+1

a
ixdi = log

b+ 1

a
(16)

The sequence {ix} is increasing when x > 0 and is decreasing when x < 0. The proof follows
directly from applying standard technique of bounding summation with integral.

A.2 Proofs from Section 2

Proof. (Of Theorem 1) Consider an oracle G implemented based on a dataset D of size T . Given
any sequence w1, w2, . . . , wT , the disguised version of D output by G is the sequence of gradients
G(w1), . . . ,G(wT ). Suppose that the oracle accesses the data in a (random) order specified by a
permutation π; for any t, any x, x′ ∈ X , y, y′ ∈ {1,−1}, we have

ρ(G(wt) = g|(xπ(t), yπ(t)) = (x, y))

ρ(G(wt) = g|(xπ(t), yπ(t)) = (x′, y′))
=
ρ(Zt = g − λw −∇`(w, x, y))

ρ(Zt = g − λw −∇`(w, x′, y′))

=
e−(ε/2)‖g−λw−∇`(w,x,y)‖

e−(ε/2)‖g−λw−∇`(w,x′,y′)‖

≤ exp
(
(ε/2)(‖∇`(w, x, y)‖+ ‖∇`(w, x′, y′)‖)

)
≤ exp (ε) .

The first inequality follows from the triangle inequality, and the last step follows from the fact that
‖∇`(w, x, y)‖ ≤ 1. The privacy proof follows.



For the rest of the theorem, we consider a slightly generalized version of SGD that includes
mini-batch updates. Suppose the batch size is b; for standard SGD, b = 1. For a given t, we call
G(wt) b successive times to obtain noisy gradient estimates g1(wt), . . . , gb(wt); these are gradient
estimates at wt but are based on separate (private) samples. The SGD update rule is:

wt+1 = ΠW

(
wt −

ηt
b

(g1(wt) + . . .+ gb(wt))
)
.

For any i, E[gi(wt)] = λw+E[∇`(w, x, y)], where the first expectation is with respect to the data
distribution and the noise, and the second is with respect to the data distribution; the unbiasedness
result follows.

We now bound the norm of the noisy gradient calculated from a batch. Suppose that the
oracle accesses the dataset D in an order π. Then, gi(wt) = λw+∇`(wt, xπ((t−1)b+i), yπ((t−1)b+i)) +
Z(t−1)b+i. Expanding on the expression for the expected squared norm of the gradient, we have

E

[∥∥∥∥1

b
(g1(wt) + . . .+ gb(wt))

∥∥∥∥2
]

=E

∥∥∥∥∥λw +
1

b

b∑
i=1

∇`(wt, xπ((t−1)b+i), yπ((t−1)b+i))

∥∥∥∥∥
2


+
2

b
E

[(
λw +

1

b

b∑
i=1

∇`(wt, xπ((t−1)b+i), yπ((t−1)b+i))

)
·

(
b∑
i=1

Z(t−1)b+i

)]

+
1

b2
E

∥∥∥∥∥
b∑
i=1

Z(t−1)b+i

∥∥∥∥∥
2
 (17)

We now look at the three terms in (17) separately.
The first term can be further expanded to:

E
[
‖λw‖2

]
+ E

∥∥∥∥∥ 1

b2

b∑
i=1

∇`(wt, xπ((t−1)b+i), yπ((t−1)b+i))

∥∥∥∥∥
2


+ 2λw ·

(
b∑
i=1

E
[
∇`(wt, xπ((t−1)b+i), yπ((t−1)b+i))

])
(18)

The first term in (18) is at most λ2 maxw∈W ‖w‖2, which is at most 1. The second term is at most
maxw λ‖w‖ · maxw,x,y ‖∇`(w, x, y)‖ ≤ 1, and the third term is at most 2. Thus, the first term
in (17) is at most 4. Notice that this upper bound can be pretty loose compare to the average∥∥∥∥λw +

1

b

∑b
i=1∇`(wt, xπ((t−1)b+i), yπ((t−1)b+i))

∥∥∥∥2

values seen in experiment. This leads to a loose

estimation of the noise level for oracle GDP.
To bound the second term in (17), observe that for all i, Z(t−1)b+i is independent of any Z(t−1)b+i′

when i 6= i′, as well as of the dataset. Combining this with the fact that E [Zτ ] = 0 for any τ , we
get that this term is 0.



To bound the third term in (17), we have:

1

b2
E

∥∥∥∥∥∑
t∈B

Zt

∥∥∥∥∥
2

2

 =
1

b2
E

∑
t∈B
‖Zt‖22 +

∑
t∈B,s∈B,t 6=s

Zt · Zs


=

1

b2

∑
t∈B

E
[
‖Zt‖22

]
+

1

b2

∑
t∈B,s∈B,t 6=s

E [Zt] · E [Zs]

=
1

b2

∑
t∈B

E
[
‖Zt‖22

]
,

where the first equality is from the linearity of expectation and the last two equalities is from the
fact that Zi is independently drawn zeros mean vector. Because Zt follows ρ(Zt = z) ∝ e−(ε/2)‖z‖,
we have

ρ(‖Zt‖ = x) ∝ xd−1e−(ε/2)x,

which is a Gamma distribution. For X ∼ Gamma(k, θ), E [X] = kθ and Var (X) = kθ2. Also, by

property of expectation, E
[
X2
]

= (E [X])2 + Var (X). We then have E
[
‖Zt‖22

]
=

4(d2 + d)

ε2
and

the whole term equals to
4(d2 + d)

ε2b
.

Combining the three bounds together, we have a final bound of 4 +
4(d2 + d)

ε2b
. The lemma follows.

A.3 Proofs from Section 3

Proof. (of Theorem 2) Let the superscripts CF, NF and AO indicate the iterates for the CF, NF and
AO algorithms. Let w1 denote the initial point of the optimization. Let (xOt , y

O
t ) be the data used

under order O = CF,NF or AO to update w at time t, ZO
i be the noise added to the exact gradient

by GC or GN, depending on which oracle is used by O at t and wO
t be the w obtained under order

O at time t. Then by expanding the expression for wt in terms of the gradients, we have

wO
T+1 =w1

T∏
i=1

(1− ηtλ)−
T∑
t=1

ηt

(
T∏

s=t+1

(1− ηsλ)

)
(yOt x

O
t + ZO

t ). (19)

Similarly, if v1 = w1, we have

vOT+1 = w1

T∏
i=1

(1− ηtλ)−
T∑
t=1

ηt

(
T∏

s=t+1

(1− ηsλ)

)
yOt x

O
t . (20)

Define

∆t = ηt

>∏
s=t+1

(1− ηsλ).



Taking the expected squared difference between (19) from (20), we obtain

E
[
‖vOT+1 − wO

T+1‖2
]

= E

∥∥∥∥∥
T∑
t=1

ηt

(
T∏

s=t+1

(1− ηsλ)

)
ZO
t

∥∥∥∥∥
2


= E

∥∥∥∥∥
T∑
t=1

∆tZ
O
t

∥∥∥∥∥
2


=
T∑
t=1

∆2
tE
[
‖ZO

t ‖2
]
, (21)

where the second step follows because the ZO
i ’s are independent.

If ηt = c/t, then

∆t =
c

t

>∏
s=t+1

(
1− cλ

s

)
.

Therefore

∆2
t+1

∆2
t

=


c

t+ 1

∏>
s=t+2

(
1− cλ

s

)
c

t

∏>
s=t+1

(
1− cλ

s

)


2

=

 t

(t+ 1)

(
1− cλ

t+ 1

)


2

=

 1

1 +
1− cλ
t


2

,

which is smaller than 1 if c < 1/λ, equal to 1 if c = 1/λ, and greater than 1 if c > 1/λ. Therefore
∆t is decreasing if c < 1/λ and is increasing if c > 1/λ.
If ∆t is decreasing, then (21) is minimized if E

[
‖ZO

t ‖2
]

is increasing; if ∆t is increasing, then (21)
is minimized if E

[
‖ZO

t ‖2
]

is decreasing; and if ∆t is constant, then (21) is the same under any
order of E

[
‖ZO

t ‖2
]
.

Therefore for c < 1/λ,

E
[∥∥∥vCFT+1 − wCF

T+1

∥∥∥2
]
≤ E

[∥∥∥vAOT+1 − wAO
T+1

∥∥∥2
]
≤ E

[∥∥∥vNFT+1 − wNF
T+1

∥∥∥2
]
.

For c = 1/λ,

E
[∥∥∥vCFT+1 − wCF

T+1

∥∥∥2
]

= E
[∥∥∥vAOT+1 − wAO

T+1

∥∥∥2
]

= E
[∥∥∥vNFT+1 − wNF

T+1

∥∥∥2
]
.

For c > 1/λ,

E
[∥∥∥vCFT+1 − wCF

T+1

∥∥∥2
]
≥ E

[∥∥∥vAOT+1 − wAO
T+1

∥∥∥2
]
≥ E

[∥∥∥vNFT+1 − wNF
T+1

∥∥∥2
]
.

A.4 Proofs from Section 4

Recall that we have oracles G1,G2 based on data sets D1 and D2. The fractions of data in each
data set are β1 = |D1|

|D1|+|D2| and β2 = |D2|
|D1|+|D2| , respectively.



A.4.1 Proof of Theorem 3

Theorem 3 is a corollary of the following Lemma.

Lemma 4. Consider the SGD algorithm that follows Algorithm 1. Suppose the objective function
is λ-strongly convex, and define W = {w : ‖w‖ ≤ B}. If 2λc1 > 1 and i0 = d2c1λe, then we have
the following two cases:

1. If 2λc2 6= 1,

E
[
‖wt+1 − w∗‖2

]
≤

(
4Γ2

1

β2λc2−1
1 c2

1

2λc1 − 1
+ 4Γ2

2

c2
2(1− β2λc2−1

1 )

2λc2 − 1

)
· 1

T
+O

(
1

Tmin(2λc1,2)

)

2. If 2λc2 = 1,

E
[
‖wt+1 − w∗‖2

]
≤

(
4Γ2

1

β2λc2−1
1 c2

1

2λc1 − 1
+ 4Γ2

2c
2
2 log

1

β1

)
· 1

T
+O

(
1

Tmin(2λc1,2)

)

We first begin with a lemma which follows from arguments very similar to those made in Rakhlin
et al. (2012).

Lemma 5. Let w∗ be the optimal solution to E[f(w)]. Then,

E1,...,t

[
‖wt+1 − w∗‖2

]
≤ (1− 2ληt)E1,...,t

[
‖wt − w∗‖2

]
+ η2

t γ
2
t .

where the expectation is taken wrt the oracle as well as sampling from the data distribution.

Proof. (Of Lemma 5) By strong convexity of f , we have

f(w′) ≥ f(w) + g(w)>(w′ − w) +
λ

2
‖w − w′‖2. (22)

Then by taking w = wt, w
′ = w∗ we have

g(wt)
>(wt − w∗) ≥ f(wt)− f(w∗) +

λ

2
‖wt − w∗‖2. (23)

And similarly by taking w′ = wt, w = w∗, we have

f(wt)− f(w∗) ≥ λ

2
‖wt − w∗‖2. (24)

By the update rule and convexity of W, we have

E1,...,t

[
‖wt+1 − w∗‖2

]
= E1,...,t

[
‖ΠW (wt − ηtĝ(wt))− w∗‖2

]
≤ E1,...,t

[
‖wt − ηtĝ(wt)− w∗‖2

]
= E1,...,t

[
‖wt − w∗‖2

]
− 2ηtE1,...,t

[
ĝ(wt)

>(wt − w∗)
]
η2
tE1,...,t

[
‖ĝ(wt)‖2

]
.

Consider the term E1,...,t

[
ĝ(wt)

>(wt − w∗)
]
, where the expectation is taken over the randomness

from time 1 to t. Since wt is a function of the samples used from time 1 to t− 1, it is independent



of the sample used at t. So we have

E1,...,t

[
‖wt+1 − w∗‖2

]
≤ E1,...,t

[
ĝ(wt)

>(wt − w∗)
]

= E1,...,t−1

[
Et[ĝ(wt)

>(wt − w∗)|wt]
]

= E1,...,t−1

[
Et[ĝ(wt)

>|wt](wt − w∗)
]

= E1,...,t−1

[
g(wt)

>(wt − w∗)
]
.

We have the following upper bound:

E1,...,t

[
‖wt+1 − w∗‖2

]
≤ E1,...,t

[
‖wt − w∗‖2

]
− 2ηtE1,...,t−1

[
g(wt)

>(wt − w∗)
]

+ η2
tE1,...,t

[
‖ĝ(wt)‖2

]
.

By (23) and the bound E
[
‖ĝ(wt)‖2

]
≤ γ2

t , we have

E1,...,t

[
‖wt+1 − w∗‖2

]
≤ E1,...,t

[
‖wt − w∗‖2

]
− 2ηtE1,...,t−1

[
f(wt)− f(w∗) +

λ

2
‖wt − w∗‖2

]
+ η2

t γ
2
t .

Then by (24) and the fact that wt is independent of the sample used in time t, we have the following
recursion:

E1,...,t

[
‖wt+1 − w∗‖2

]
≤ (1− 2ληt)E1,...,t

[
‖wt − w∗‖2

]
+ η2

t γ
2
t .

Proof. (Of Lemma 4) Let g(w) be the true gradient ∇f(w) and ĝ(w) be the unbiased noisy gradient
provided by the oracle G1 or G2, whichever is queried. From Lemma 5, we have the following
recursion:

E1,...,t

[
‖wt+1 − w∗‖2

]
≤ (1− 2ληt)E1,...,t

[
‖wt − w∗‖2

]
+ η2

t γ
2
t .

Let i0 be the smallest positive integer such that 2ληi0 < 1, i.e, i0 = d2c1λe. Notice that for fixed
step size constant c and λ, i0 would be a fixed constant. Therefore we assume that i0 < βT . Using
the above inequality inductively, and substituting γt = Γ1 for t ≤ β1T and γt = Γ2 for t > β1T , we
have

E1,...,T

[
‖wT+1 − w∗‖2

]
≤

β1T∏
i=i0

(1− 2ληi)

T∏
i=β1T+1

(1− 2ληi)E1,...,T

[
‖wi0 − w∗‖2

]
+ Γ2

1

T∏
i=β1T+1

(1− 2ληi)

β1T∑
i=i0

η2
i

β1T∏
j=i+1

(1− 2ληj)

+ Γ2
2

T∑
i=β1T+1

η2
i

T∏
j=i+1

(1− 2ληj).



By substituting ηt =
c1

t
for D1 and ηt =

c2

t
for D2, we have

E1,...,T

[
‖wT+1 − w∗‖2

]
≤

β1T∏
i=i0

(
1− 2λc1

i

) T∏
i=β1T+1

(
1− 2λc2

i

)
E1,...,T

[
‖wi0 − w∗‖2

]
+ Γ2

1

T∏
i=β1T+1

(
1− 2λc2

i

) β1T∑
i=i0

c2
1

i2

β1T∏
j=i+1

(
1− 2λc1

j

)

+ Γ2
2

T∑
i=β1T+1

c2
2

i2

T∏
j=i+1

(
1− 2λc2

j

)
.

Applying the inequality 1− x ≤ e−x to each of the terms in the products, and simplifying, we get:

E1,...,T

[
‖wT+1 − w∗‖2

]
≤ e−2λc1

∑β1T
i=i0

1
i e
−2λc2

∑>
i=β1T+1

1
i E1,...,T

[
‖wi0 − w∗‖2

]
+ Γ2

1e
−2λc2

∑>
i=β1T+1

1
i

β1T∑
i=i0

c2
1

i2
e
−2λc1

∑β1T
j=i+1

1
j

+ Γ2
2

>∑
i=β1T+1

c2
2

i2
e
−2λc2

∑>
j=i+1

1
j . (25)

We would like to bound (25) term by term.
A bound we will use later is:

e2λc2/β1T = 1 +
2λc2

β1T
e2λc2/β1T ′ ≤ 1 +

2λc2

β1T
e2λc2/β1 , (26)

where the equality is obtained using Taylor’s theorem, and the inequality follows because T ′ is in
the range [1,∞). Now we can bound the three terms in (25) separately.

The first term in (25): We bound this as follows:

e
−2λc1

∑β1T
i=i0

1
i e
−2λc2

∑>
i=β1T+1

1
i E1,...,T

[
‖wi0 − w∗‖2

]
≤ e−2λc1 log

β1T
i0 e

−2λc2(log 1
β1
− 1
β1T

)E1,...,T

[
‖wi0 − w∗‖2

]
≤
(
i0
T

)2λc1

β
2λ(c2−c1)
1 e2λc2/β1T (4B2)

≤
(
i0
T

)2λc1

β
2λ(c2−c1)
1

(
1 +

2λc2

β1T
e2λc2/β1

)
4B2

= 4B2i0
2λc1β

2λ(c2−c1)
1

1

T 2λc1
+O

(
1

T 2λc1+1

)
,

where the first equality follows from (14).The second inequality follows from ‖w‖ ≤ B, ‖w−w′‖ ≤
‖w‖+ ‖w′‖ ≤ 2B, and bounding expectation using maximum. The third follows from (26).



The second term in (25): We bound this as follows:

Γ2
1e
−2λc2

∑>
i=β1T+1

1
i

β1T∑
i=i0

c2
1

i2
e
−2λc1

∑β1T
j=i+1

1
j ≤ Γ2

1e
−2λc2(log 1

β1
− 1
β1T

)
β1T∑
i=i0

c2
1

i2
e−2λc1 log

β1T
i+1

= Γ2
1β

2λc2
1 e2λc2/β1T

β1T∑
i=i0

c2
1

i2

(
i+ 1

β1T

)2λc1

= Γ2
1β

2λ(c2−c1)
1 e2λc2/β1T c2

1T
−2λc1

β1T∑
i=i0

(i+ 1)2λc1

i2

≤Γ2
1β

2λ(c2−c1)
1 e2λc2/β1T c2

1T
−2λc1

β1T∑
i=i0

4(i+ 1)2λc1−2

≤4Γ2
1β

2λ(c2−c1)
1

(
1 +

2λc2

β1T
e2λc2/β1

)
c2

1T
−2λc1

β1T+1∑
i=i0+1

i2λc1−2,

(27)

where the first inequality follows from (14), the second inequality follows from (1+ 1
i )

2 ≤ (1+ 1
1)2 =

4, and the last inequality follows from (26).
Bounding summation using integral following (13) and (11) of Lemma 3, if 2λc1 > 1, the term

on the right hand side would be in the order of O(1/T ); if 2λc1 = 1, it would be O(log T/T ); if
2λc1 < 1, it would be O(1/T 2λc1). Therefore to minimize the bound in terms of order, we would
choose c1 such that 2λc1 > 1. To get an upper bound of the summation in (27), using (13) of
Lemma 3, for 2λc1 < 2,

β1T+1∑
j=i0+1

i2λc1−2 =

β1T∑
j=i0+1

i2λc1−2 + (β1T + 1)2λc1−2 ≤ (β1T )2λc1−1

2λc1 − 1
+O(T 2λc1−2).

For 2λc1 > 2, using (11) of Lemma 3,

β1T+1∑
j=i0+1

i2λc1−2 =

β1T−1∑
j=i0+1

i2λc1−2 + (β1T )2λc1−2 + (β1T + 1)2λc1−2 ≤ (β1T )2λc1−1

2λc1 − 1
+O(T 2λc1−2).

Finally, for 2λc1 = 2,

β1T+1∑
j=i0+1

i2λc1−2 = (β1T + 1)− (i0 + 1) + 1 = β1T +O(1).

Combining the three cases together, we have

β1T+1∑
j=i0+1

i2λc1−2 ≤ (β1T )2λc1−1

2λc1 − 1
+O

(
T 2λc1−2

)
.



This allows us to further upper bound (27):

4Γ2
1β

2λ(c2−c1)
1

(
1 +

2λc2

β1T
e2λc2/β1

)
c2

1T
−2λc1

β1T+1∑
i=i0+1

i2λc1−2

≤ 4Γ2
1β

2λ(c2−c1)
1

(
1 +

2λc2

β1T
e2λc2/β1

)
c2

1T
−2λc1

(
(β1T )2λc1−1

2λc1 − 1
+O

(
T 2λc1−2

))
=

4Γ2
1c

2
1β

2λc2−1
1

2λc1 − 1
· 1

T
+O

(
1

T 2

)
+O

(
1

T 3

)
.

The last term in (25): We bound this as follows:

Γ2
2

>∑
i=β1T+1

c2
2

i2
e
−2λc2

∑>
j=i+1

1
j ≤ Γ2

2

>∑
i=β1T+1

c2
2

i2
e−2λc2 log T

i+1

= Γ2
2c

2
2T
−2λc2

>∑
i=β1T+1

(i+ 1)2λc2

i2
≤ 4Γ2

2c
2
2T
−2λc2

>∑
i=β1T+1

(i+ 1)2λc2

(i+ 1)2

= 4Γ2
2c

2
2T
−2λc2

>+1∑
i=β1T+2

i2λc2−2, (28)

where the first inequality follows from (14) and the last inequality from (1 + 1
i )

2 ≤ 4.
If 2λc2 6= 1 and 2λc2 ≤ 2, using (13) from Lemma 3,

T+1∑
j=β1T+2

i2λc2−2 ≤ 1− β2λc2−1
1

2λc2 − 1
T 2λc2−1.

If 2λc2 > 2, using (11) from Lemma 3,

T+1∑
j=β1T+2

i2λc2−2 =

T−1∑
j=β1T

i2λc2−2 + T 2λc2−2 + (T + 1)2λc2−2 − (β1T + 1)2λc2−2 − (β1T )2λc2−2

=
1− β2λc2−1

1

2λc2 − 1
T 2λc2−1 +O

(
T 2λc2−2

)
.

If 2λc2 = 2,

T+1∑
j=β1T+2

i2λc2−2 =

T+1∑
j=β1T+2

1 = (1− β1)T.

In all three cases we have

T+1∑
j=β1T+2

i2λc2−2 ≤ 1− β2λc2−1
1

2λc2 − 1
T 2λc2−1 +O

(
T 2λc2−2

)
.

Then (28) can be further upper bounded for 2λc2 6= 1

4Γ2
2c

2
2T
−2λc2

>+1∑
i=β1T+2

i2λc2−2 ≤ 4Γ2
2

c2
2(1− β2λc2−1

1 )

2λc2 − 1
· 1

T
+O

(
1

T 2

)
. (29)



If 2λc2 = 1, we have

T+1∑
j=β1T+2

i2λc2−2 =

T∑
j=β1T+1

i−1 − (β1T + 1)−1 + (T + 1)−1 ≤ log
1

β1
,

and then

4Γ2
2c

2
2T
−2λc2

>+1∑
i=β1T+2

i2λc2−2 ≤ 4Γ2
2c

2
2 log

1

β1
· 1

T
.

which is basically taking the limit as 2λc2 → 1 of the highest order term of (29).
Therefore the summation of the three terms is of order O( 1

T ) (from the second and third terms),
and the constant in the front of the highest order term takes on one of two values:

1. If 2λc2 6= 1,

4Γ2
1

c2
1β

2λc2−1
1

2λc1 − 1
+ 4Γ2

2

c2
2(1− β2λc2−1

1 )

2λc2 − 1
.

2. If 2λc2 = 1,

4Γ2
1

c2
1β

2λc2−1
1

2λc1 − 1
+ 4Γ2

2c
2
2 log

1

β1
.

A.4.2 Proof of Lemma 1

Proof. (Of Lemma 1) Omitting the constant terms and setting k1 = 2λc1, k2 = 2λc2, we can
re-write (10) as 1/T times

Q(k1, k2) =Γ2
1

βk2−1
1 k2

1

k1 − 1
+ Γ2

2

(1− βk2−1
1 )k2

2

k2 − 1
, (30)

with k∗1 = 2λc∗1 = 2.
Observe that in this case, k∗2 ≥ 2. Let x = k2 − 1; then x ≥ 1. Plugging in k∗1 = 2, we can
re-write (30) as

Q(x) = 4Γ2
1β

x
1 + Γ2

2(1− βx1 )

(
x+

1

x
+ 2

)
. (31)

Taking the derivative, we see that

Q′(x) =− 4Γ2
1β

x
1 log(1/β1) + Γ2

2(1− βx1 )

(
1− 1

x2

)
+ Γ2

2

(
x+

1

x
+ 2

)
βx1 log(1/β1). (32)

Suppose

l =
2 log(Γ1/Γ2) + log log(1/β1)

log(1/β1)
.

Observe that βl1 log(1/β1) =
Γ2
2

Γ2
1
. Plugging x = l in to (32), the first term is −4Γ2

2, the second term

is at most Γ2
2, and the third term is at most

Γ4
2

Γ2
1
(l+ 1

l + 2). Observe that for any fixed β1, for large

enough Γ1/Γ2, l ≥ 1. Thus, the right hand side of (32) is at most: −4Γ2
2 + Γ2

2 +
Γ4
2

Γ2
1
(l + 3). For

fixed β1, l grows logarithmically in Γ1/Γ2, and hence, for large enough Γ1/Γ2,
Γ2
2(l+3)

Γ2
1

will become



arbitrarily small. Therefore, for large enough Γ1/Γ2, Q′(l) < 0.
Suppose

u =
2 log(4Γ1/Γ2) + log log(1/β1)

log(1/β1)
.

Observe that βu1 log(1/β1) =
Γ2
2

16Γ2
1
. Plugging in x = u to (32), the first term reduces to −1

4Γ2
2, the

second term is Γ2
2(1− βu1 )(1− 1

u2
), and the third term is ≥ 0. Observe that as Γ1/Γ2 →∞ with β1

fixed, βu1 → 0 and 1/u2 → 0. Thus, for large enough Γ1/Γ2, Γ2
2(1−βu1 )(1− 1

u2
)→ Γ2

2, and therefore
Q′(u) > 0. Thus, Q′(x) = 0 somewhere between l and u and the first part of the lemma follows.
Consider

x =
2 log(mΓ1/Γ2) + log log(1/β1)

log(1/β1)

with 1 ≤ m ≤ 4. The first term of (31) is always positive. As for the second term, x+ 1
x +2 ≥ x for

positive x and βx1 =
Γ2
2

m2Γ2
1

1
log(1/β1) is small when Γ1/Γ2 is sufficiently large. Therefore for sufficiently

large Γ1/Γ2, we have Γ2
2(1 − βx1 )(x + 1

x + 2) ≥ Γ2
2

2 x, and thus Q(x) ≥ Γ2
2

2 x, which gives the lower
bound. And plugging in x = l gives the upper bound.

A.4.3 Proof of Lemma 2

Proof. (Of Lemma 2) Let k2 = ε; then ε ≥ 0. Plugging in k∗1 = 2, we can re-write (30) as

Q(ε) = 4Γ2
1β

ε−1
1 + Γ2

2(1− βε−1
1 )

(
−1 + ε+

1

−1 + ε
+ 2

)
. (33)

Taking the derivative, we obtain the following:

Q′(ε) =− 4Γ2
1β

ε−1
1 log(1/β1) + Γ2

2(1− βε−1
1 )(1− 1

(1− ε)2
)− Γ2

2ε
2

1− ε
βε−1

1 log(1/β1)

=− βε−1
1 log(1/β1)

(
4Γ2

1 +
Γ2

2ε
2

1− ε

)
+ Γ2

2(βε−1
1 − 1)

(
1

(1− ε)2
− 1

)
=− βε−1

1 log(1/β1)

(
4Γ2

1 +
Γ2

2ε
2

1− ε

)
+ Γ2

2(βε−1
1 − 1)

ε(2− ε)
(1− ε)2

. (34)

For ε =
Γ2
1

Γ2
2
≤ 1, using 1− β1−ε

1 ≤ (1− ε) log(1/β1) and βε−1
1 − 1 = (1− β1−ε

1 )βε−1, this is at most:

−βε−1
1 log(1/β1)

(
4Γ2

1 +
Γ2

2ε
2

1− ε
− Γ2

2ε(2− ε)
1− ε

)
= −2Γ2

1β
ε−1
1 log(1/β1).

Thus, at l =
Γ2
1

Γ2
2
, Q′(l) < 0.

Moreover, for ε ∈ [0, 1
2 ], 1− β1−ε

1 ≥ β1(1− ε) log(1/β1). Therefore, Q′(ε) is at least:

Q′(ε) ≥ −βε−1
1 log(1/β1)

(
4Γ2

1 +
Γ2

2ε
2

1− ε

)
+ Γ2

2β
ε
1 log(1/β1)

ε(2− ε)
1− ε

≥ βε−1
1 log(1/β1)

(
Γ2

2βε(2− ε)
1− ε

− 4Γ2
1 −

Γ2
2ε

2

1− ε

)
.



Let u =
8Γ2

1

β1Γ2
2
; suppose that Γ2/Γ1 is large enough such that u ≤ β1/4. Then, u(2−u)β1−u2 ≥ 15uβ1

16 ,

and
Γ2

2(u(2− u)β1 − u2)

1− u
≥ 15Γ2

2uβ1

16(1− β1)
≥ 15Γ2

1

2(1− β1)
≥ 5Γ2

1.

Therefore, Q′(u) > 0, and thus Q(ε) is minimized at some ε ∈ [l, u].
For the second part of the lemma, the upper bound is obtained by plugging in ε = Γ1

Γ2
. For the

lower bound, observe that for any ε ∈ [l, u], Q(ε) ≥ 4Γ2
1β

u−1
1 ≥ 4Γ2

1β
Γ2
2/βΓ2

1−1
1 .
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