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Abstract

Gibbs random fields play an important role
in statistics, however, the resulting likelihood
is typically unavailable due to an intractable
normalizing constant. Composite likelihoods
offer a principled means to construct useful
approximations. This paper provides a mean
to calibrate the posterior distribution result-
ing from using a composite likelihood and il-
lustrate its performance in several examples.

1 Introduction

Gibbs random fields play an important and varied role
in statistics. The autologistic model is used to model
the spatial distribution of binary random variables de-
fined on a lattice or grid (Besag, 1974). The expo-
nential random graph model or p* model is arguably
the most popular statistical model in social network
analysis (Robins et al., 2007). Other application areas
include biology, ecology and physics.

Despite their popularity, Gibbs random fields present
considerable difficulties from the point of view of pa-
rameter estimation, because the likelihood function is
typically intractable for all but trivially small graphs.
One of the earliest approaches to overcome this diffi-
culty is the pseudolikelihood method (Besag, 1975),
which replaces the joint likelihood function by the
product of full-conditional distributions of all nodes.
It is natural to consider generalizations which refine
pseudolikelihood by considering products of larger col-
lections of variables. The purpose of this paper is to
consider such composite likelihood methods. In par-
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ticular, we are interested in their use for Bayesian in-
ference. Friel (2012) focused on a similar problem and
studied how the size of the collections of variables in-
fluence the resulting approximate posterior distribu-
tion. Our main contribution is to present an approach
to calibrate the posterior distribution resulting from
using a mis-specified likelihood function.

This paper is organised as follows. Section 2 outlines
a description of Gibbs random fields, and in particular
the autologistic distribution. Composite likelihoods
are introduced in Section 3. Here we focus especially
on how to formulate conditional composite likelihoods
for application to the autologistic model. We also fo-
cus on the issue of calibrating the composite likelihood
function for use in a Bayesian context. Section 5 illus-
trates the performance of the various estimators for
simulated data. The paper concludes with some re-
marks in Section 6.

2 Discrete-valued Markov random
fields

A Markov random field y is a family of random vari-
ables y; indexed by a finite set . = {1,...,n} of nodes
of a graph and taking values from a finite state space
% . Here the dependence structure is given by an undi-
rected graph ¢ which defines an adjacency relationship
between the nodes of .%: by definition ¢ and j are ad-
jacent if and only if they are directly connected by an
edge in the graph ¢. The likelihood of y given a vector
of parameters 6 = (01,...,60,) is defined as

F(y10) ocexp(6”s(y)) = a(yl6), (1)

where s(y) = (s1(y), ..., sa(y)) is a vector of sufficient
statistics. However a major issue arises due to the fact
that the normalizing constant in (1),

2(0) = Y exp(6”s(y)),

yew
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depends on the parameters 6, and is a summation
over all possible realisation of the Gibbs random field.
Clearly, z(6) is intractable for all but trivially small
situations. This poses serious difficulties in terms of
estimating the parameter vector 6.

One of the earliest approaches to overcome the in-
tractability of (1) is the pseudolikelihood method (Be-
sag, 1975) which approximates the joint distribution
of y as the product of full-conditional distributions for
each y;,

Jpseudo (y) = H fyily—i,0),
=1

where y_,; denotes y \ {y;}. This approximation has
been shown to lead to unreliable estimates of 6, see for
example, Rydén and Titterington (1998), Friel et al.
(2009). This is in fact one of the earliest composite
likelihood approximations, and we will outline work in
this area further in Section 3.

The autologistic model, first proposed by Besag
(1972), is defined on a regular lattice of size m x m/,
where n = mm’. It is used to model the spatial dis-
tribution of binary variables, taking values —1,1. The
autologistic model is defined in terms of two sufficient
statistics,

so(y) = Zyi, s1(y) = ZZ%%‘,

j=1 iZ;

where the notation i < J means that lattice point ¢
is connected to lattice point j in ¢. Following this
notation, the normalizing constant of an autologistic
model should be written z(6,%), highlighting that it
also depends on a graph of dependency. Henceforth
we assume that the lattice points have been indexed
from top to bottom in each column and where columns
are ordered from left to right. For example, for a first
order neighbourhood model an interior point y; has
neighbours {y; —m, ¥i—1,Yi+1, Yi+m . Along the edges
of the lattice each point has either 2 or 3 neighbours.
The full-conditional of y; can be written as

J(wily—i,0) o< exp(Ooyi + 019 (Yi—m + yi—1
+ Yir1 + Yitm))s

(2)

where y_; denotes y excluding y;. As before, the con-
ditional distribution is modified along the edges of
the lattice. The Hammersley-Clifford theorem (Be-
sag, 1974) shows the equivalence between the model
defined in (2) and in (1). The parameter 6, controls
the relative abundance of —1 and +1 values and the
parameter 67 controls the level of spatial aggregation.
Note that the Ising model is a special case, resulting
from 6y = 0.
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The auto-models of Besag (1974) allow variations on
the level of dependencies between edges and a poten-
tial anisotropy can be introduced on the graph. In-
deed, consider a set of graphs {#4,...,%;}. Each
graph of dependency ¥ induces a summary statis-
tic si(y) = X5, Zlﬁyly] For example, one can
consider an anisotropicjconﬁguration of a first order
neighbourhood model: that is edges of 4 are all the
vertical edges of the lattice and edges of ¥, are all the
horizontal ones. Then an interior point y; has neigh-
bours {y;—1,yi+1} according to ¢4 and {Yi—m, Yitm}
according to %. Along the edges of the lattice each
point has either 1 or 2 neighbours. This allows to set
an interaction strength that differs according to the
direction.

3 Composite likelihoods

There has been considerable interests in composite
likelihoods in the statistics literature. See, Varin et al.
(2011) for a recent overview. Our primary objective
is to work with a realisation from an autologistic dis-
tribution y. According to the previous section we de-
note . = {1,...,mm’} as an index set for the lattice
points. Following Asuncion et al. (2010) we consider a
general form of composite likelihood written as

c

fou(y10) =] fwa,

=1

mee)'

Some special cases arise:

. A; = A, B, =0, C =1 corresponds to the full
likelihood.

B; = 0 is often termed marginal composite likeli-
hood.

B; = A\ 4, is often termed conditional composite
likelihood.

The focus of this paper is on conditional composite
likelihoods, since the autologistic distribution is de-
fined in terms of conditional distributions. Note that
the pseudolikelihood is a special case of 3. where each
A; is a singleton. We restrict each A; to be of the same
dimension and in particular to correspond to contigu-
ous square 'blocks’ of lattice points of size k x k. In
terms of the value of C' in case 3., an exhaustive set of
blocks would result in C' = (m —k+1) x (n—k+1).
In particular, we allow the collection of blocks {A;} to
overlap with one another.
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3.1 Bayesian inference using composite
likelihoods

The focus of interest in Bayesian inference is the pos-
terior distribution

p(ly) o< f (y | ) p(0). (3)

Our proposal here is to replace the true likelihood
f(y | 0) with a conditional composite likelihood, lead-
ing us to focus on the approximated posterior distri-
bution

pcL(f | y) o< fou (v | 0) p(0).

Surprisingly, there is very little literature on the use of
composite likelihoods in the Bayesian setting, although
Pauli et al. (2011) present a discussion on the use of
conditional composite likelihoods. Indeed this paper
suggests, following Lindsay (1988), that a composite
likelihood should take the general form

fCL y|9

0" (4)

where w; are positive weights. In related work, Friel
(2012) examined composite likelihood for various block
sizes when w; = 1. Our paper deals with the issue of
calibrating the weights. Before focusing on the tun-
ing of w;, we highlight here the empirical observation
that non-calibrated composite likelihood leads to an
approximated posterior distribution with substantially
lower variability than the true posterior distribution,
leading to overly precise precision about posterior pa-
rameters, see Figure 1.

3.2 Computing full-conditional distributions
of Al

The conditional composite likelihood which we de-
scribed above relies on evaluating

exp (Ooso(ya,) + s1(

_ A,0 == b
fualy-1,9) 0.9y
(5)
where
=Yy sialdy-a) = D) ;.
JEA; JEA; Z%j

Also the normalizing constant now includes the argu-
ment y4, emphasising that it involves a summation
over all possible realisations of sub-lattices defined on
the set A; and conditioned on the realised y_ 4,, that is
conditioned by all the lattice point of y_ 4, connected
to a lattice point of y4, by an edge of ¢4. First we de-
scribe an approach to compute the overall normalizing
constant for a lattice, without any conditioning on a
boundary.
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Generalised recursions for computing the normalizing
constant of general factorisable models such as the au-
tologistic models have been proposed by Reeves and
Pettitt (2004). This method applies to autologistic lat-
tices with a small number of rows, up to about 20, and
is based on an algebraic simplification due to the re-
duction in dependence arising from the Markov prop-
erty. It applies to un-normalized likelihoods that can
be expressed as a product of factors, each of which is
dependent on only a subset of the lattice sites. We can
write ¢(y | 0) in factorisable form as

HQL yz‘o

where each factor ¢; depends on a subset vy,
Yis Yit1s - -+ Yirm Of y, where m is defined to be the
lag of the model. We may define each factor as

q(y | 0) =

qi(y;,0) = exp{boyi + 61y (Yi+1 + Yitm)}  (6)

for all 4, except when i corresponds to a lattice point
on the last row or last column, in which case y;11 or
Yi+m, Tespectively, drops out of (6).

As a result of this factorisation, the summation for the
normalizing constant,

)= [la 0

y i=1

can be represented as

which can be computed much more efficiently than the
straightforward summation over the 2" possible lattice
realisations. Full details of a recursive algorithm to
compute the above can be found in Reeves and Pettitt
(2004). Note that this algorithm was extended in Friel
and Rue (2007) to also allow exact draws from f(y|6)

(7)

The minimum lag representation for an autologistic
lattice with a first order neighbourhood occurs for r
given by the smaller of the number of rows or columns
in the lattice. Identifying the number of rows with the
smaller dimension of the lattice, the computation time
increases by a factor of two for each additional row, but
linearly for additional columns. It is straightforward
to extend this algorithm to allow one to compute the
normalizing constant in (5), so that the summation is
over the variables y4, and each factor involves condi-
tioning on the set y_a4,.

4 Bayesian composite likelihood
adjustments

Approximating the true posterior distribution by rem-
placing the true likelihood by the composite likelihood
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leads to misspecification in the mean and variance of
approximate posterior distribution as shown in Fig-
ure 1. The aim of the following Section is to estab-
lish identities that links the gradient and the Hessian
of the log-posterior for € to the moments of sufficient
statistics with respect to the distribution of the Gibbs
random field, whereupon we use these identities to cal-
ibrate the weights w; in (4).

4.1 An estimation of the gradient and
curvature of the posterior distribution

Using (3) as a starting point, we can write the gradient
of the log-posterior for 6 as

Viegp (0 | y) = s(y) — Vz(6,9) + Vg p(0).
It is straightforward to show that

VZ(H, g) = Eyws(y)a

hence the gradient of the log-posterior for 6 can be
written as a sum of moments of s(y), namely

Viogp (6 | y) = s(y) — Eyjps(y) + Viegp(). (8)

Taking the partial derivatives of the previous expres-
sion yields similar identity for the Hessian matrix of
the log-posterior for 6,

Hlogp (0 y) = —Kyje(s(y)) + Hlogp(0), (9)

where K, 4(s(y)) denotes the covariance matrix of s(y)
when y has distribution f (y | #). Similar to (8) and
(9), one can express the gradient and Hessian of the
log-posterior log pcr, (0 | y) in terms of moments of the
sufficient statistics.

4.2 Mean adjustment

The mean adjustment aims to ensure that the poste-
rior and the approximated posterior distributions have
the same maximum. Thus, the adjustment here is sim-
ply the substitution

pcL(@ | y) =pon(0 — 0" + 6051, | y),

where 6* and 6% , is the maximum a posteriori (MAP)
of the posterior distribution p (6 | y) and the approxi-
mated posterior distribution pcr, (6 | y), respectively.

Addressing the issue of estimation of 6 and ¢, we
note generally from equation (9) that logp (0 | y) and
log pcrL(6 | y) are not concave functions. However the
Hessian of the log-likelihood is a semi-negative ma-
trix and so is unimodal. A reasonable choice of prior,
for example with a semi-negative Hessian matrix, will
thus lead to a unimodal posterior distribution. Care
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must be taken to ensure convergence of the optimi-
sation algorithms to 6* and 6&;. In particular, we
remark that since the approximate posterior distribu-
tion is typically very sharp around the MAP, as shown
in Figure 1, it can be difficult to ensure convergence of
gradient based algorithms in reasonable computational
time. However, in our experiments we have found that
using a BFGS algorithm which is based on a Hessian
matrix approximation using rank-one updates calcu-
lated from approximate gradient evaluations, provided
good performance in our context. Note that in prac-
tice, the gradient evaluated in the algorithm is stochas-
tic and based on a standard Monte Carlo estimator of
the expectation Ey95;(y).

Algorithm 1: MAP estimation

Input: A latticey R
Output: Estimators 0* of 0* and ¢, of 67,

estimate 0, using a BFGS algorithm based on
Monte Carlo estimator of Vlogper (0 | v);
estimate 6* using a BFGS algorithm based on
Monte Carlo estimator of Vlogpcr (6 | y) and
starting from 5&;

Dx Dx .
return 0 and 0¢;;

Estimating o using a random initialization point in
BFGS algorithm (see Algorithm 1) is inefficient. In-
deed, estimating E,|gs(y) is the most cumbersome part
of the algorithm and should be done as little as pos-
sible. Despite that 6, is not equal to 8 it is usually
close and turns out to yield a good initialization to the
second BFGS algorithm.

4.3 Magnitude adjustment

The general approach we propose to adjust the covari-
ance of the approximated posterior is to temper the
conditional composite likelihood with some weights w;
in order to modify its curvature around the mode. We
remark that the curvature of a scalar field at its max-
imum is directly linked to the Hessian matrix. Based
on that observation, our proposal is to choose w; such
that

Hlogp(0* | y) = Hlogpcew (68, | v)-

Note in our context, there exists no particular rea-
son to weight each blocks differently. Consequently
we assume that each block has the same weight and
we denote it w.

For the sake of simplicity, assume a uniform prior but
everything can be easily written for any prior. When 6
is a scalar parameter, writing identity (9) for p (0 | y)
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and pcr, (0 | y) yields

B Vary g+ (s(y))
= =0
Dict Vary, 1oz, (s(ya,

However this approach does not apply when dealing
with autologistic models since 6 € R is a vector. We
thus have a scalar constraint for an equality between
the two matrices

w

. 10
y*Ai)) ( )

c
Kyo-(s(v) =w > Kypge, (s(ya, | y-a,))-

i=1
In Table 1 we consider some possible identities that
are natural to consider in order to choose a reasonable
value for w. The options w® and w(® include only the
information contained in the diagonal of each matrix
whereas options w™", w® and w® take advantage of
all the information of the covariance matrix.

Table 1: Weight options for a magnitude adjustment
when 6 € R?

1/d
o, { det [Ky - (5(4))] }
det [Ziczl Koz, (s(ya, | yfAi))]

c —1
w® %tf |:Ky9*(s(y)) (Z Kyoz, (s(ya, IyA,;))> ]
w®. 1. Vary|o- (si(y))

d = 37 Varye (si(ya; | y-a;))
o tr [Kyjo- (s(v))]
tr [0 Kooz, (s(wa, |y-a,))]
- tr [K2 . (s(v)]

| (S0 Ko, o, 19-0) ]

4.4 Curvature adjustment

The adjustment presented in the previous Section only
modify the magnitude of the approximated posterior
but do not affect its geometry. The weight w similarly
affects each direction of space parameters and does not
take into account a possible modification of the corre-
lation between the variables induced by the use of a
composite likelihood approximation. We expect this
phenomenon to be particularly important when deal-
ing with models where there is a potential on single-
tons such as the autologistic model. Indeed estimation
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of the abundance parameter and interaction parame-
ter, 8y and 6, respectively, do not suffer from the same
level of approximation relating to the independence as-
sumption between blocks. Thus we should move from
the general form (4) with a scalar weight on blocks to
one involving a matrix of weights.

Following Ribatet et al. (2012) in the context of
marginal composite likelihood, our strategy is to write

f(yl0)= fou(y|bcr, +W(0—6bcr)),

for some constant d x d matrix W. Note the sub-
stitution keeps the same maximum but deforms the
geometry of the parameter space through the matrix
w.

Assume that W is a lower triangular matrix in order
to take into account the correlation between the pa-
rameter components. The suggestion of Ribatet et al.
(2012) is to choose W in order to satisfy asymptotic
properties of maximum composite likelihood estima-
tors when the sample size tends to infinity. Since we
only have one observation, we do not focus on the
asymptotic covariance matrix results but rather on the
covariance matrix at the estimated MAP. Indeed, we
follow the same approach introduced in Section 4.3,

Hlogp(6” | y) = Hlogpew (0oL, + W (0" —bcw) [ v),
which is equivalent to
Hlogp(6* | y) = W Hlogper (0° | y)W.

Note that the problem of uniqueness faced by Ribatet
et al. (2012) due to a Cholesky decomposition does
not exist here since we have access to a close form
of different Hessians through Monte Carlo estimators.
This leads to a system of equations that can be easily
solved.

5 Examples

In this numerical part of the paper, we focus on models
defined on a 16 x 16 lattice and we use exhaustively all
4 x 4 blocks. For the lattice of this dimension the re-
cursions proposed by Friel and Rue (2007) can be used
to compute exactly the normalizing constants z(0, %),
2(0,9,y4,) and to draw exactly from the distribution
f(y]8) or from the full-conditional distributions of
A; f(ya, | y—a,,0). This exact computation of the
posterior serves as a ground truth against which to
compare with the posterior estimates of 6 using the
various composite likelihood estimators. Computation
was carried out on a desktop PC with six 3.47Ghz pro-
cessors and with 8Gb of memory. Computing the nor-
malizing constant of each block took 0.0004 second of
CPU time. One iteration of the BFGS algortihm took
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0.09 seconds to estimate the MAP of the composite
likelihood and 1 second to estimate the MAP of true
likelihood. The weight calibration for one dataset took
approximately three minutes. Note that for more re-
alistic situations involving larger lattices, one requires
a sampler to draw from the full likelihood such as
the Swendsen-Wang algorithm (Swendsen and Wang,
1987), however the computational cost of using this
algorithm increases dramatically with the size of the
lattice. One possible alternative is the slice sampler of
Mira et al. (2001) that provides exact simulations of
Ising models.

In each experiment, we simulated 100 realisations from
the model. For each realisation, we use the BFGS al-
gorithm 1 with an adhoc stopping condition to get the
estimators 8* and 6. One iteration of the algorithm
is based on a Monte Carlo estimator of either E,9s(y)
or By, 195(ya, | y-a,,0) calculated from 100 exact
draws whereas the Monte Carlo estimators of the co-
variance matrix K 5. (s(y)) and KylgéL (s(ya, | y—a,))
are based on 50000 exact draws. In all experiments we
placed uniform priors on 6.

Comparing the posterior p (8 | y) with the various pos-
terior approximations pcr, (0 | y) requires knowledge of
the covariance matrix of . We could have used numer-
ical integration but we prefered to use a simple MCMC
algorithm. In terms of implementation, 7000 iterations
were used with a burn in period of 2000 iterations for
each dataset.

First experiment We considered the special case of
a first-order Ising model with a single interaction pa-
rameter 6 = 0.4, which is close to the critical phase
transition beyond which all realised lattices takes ei-
ther value +1 or -1. This parameter setting is the most
challenging for the Ising model, since realised lattices
exhibit strong spatial correlation around this param-
eter value. Using a fine grid of {0} values, the right
hand side of:

q(y | k)
P(Ok | y) o< m

can be evaluated exactly. Summing up the right hand
side — using the trapezoidal rule — yields an estimate of
the evidence, p(y), which is the normalizing constant
for the expression above and which in turn can be used
to give a very precise estimate of p(f | y). The plot
so obtained for the posterior and posteriror approxi-
mations are given by Figure 1(a). On this example it
should be clear that using an un-calibrated conditional
composite likelihood leads to considerably underesti-
mated posterior variances. But once we perform the
mean adjusment and the magnitude adjusment, this
provides a very good approximation of the true poste-
rior. In Figure 1(b) we display the ratio K¢r,(6)/K(0),

p(ek), kZI,...,
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p(e/y)

ppseudo(e/Y)

peL(8/y) with w = 1
pci(8/y) with w calibrated

o

pcc(8/y) (w=1) pe (6/y) (w calibrated)

(b)

Figure 1: First experiment results. (a) Posterior
distribution and posterior distribution approximations
for 0 of a first-order Ising model. (b) Boxplot display-
ing the ratio of the variances Kcr,(0)/K(6) for 100
realisations of a first-order Ising model.

Ppseudo(8/Y)

where K(0), respectively K, (), denotes the variance
of the posterior, respectively the posterior approxima-
tion, for 6, based on 100 realisations of a first-order
Ising model. In view of these results there is no ques-
tion that the magnitude adjustment (10) provides an
efficient correction of the variance.

Table 2 confirms this result through evaluation of the
relative mean square error E [(1 — Kcr(6)/K(6))?]
and the average KL-divergence between the approxi-
mated posterior and true posterior distributions based
on 100 realisations of a first order.

Second experiment We were interested in an
anisotropic configuration of a first-order Ising model.
We set § = (0.3,0.5). The evidence p(y) is here esti-
mated with an importance sampling method. We drew
1000 points using a Gaussian law whose moments are
related to the Monte Carlo estimators of moments of
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Table 2: Evaluation of the relative mean square error
(RMSE) and the average KL-divergence (AKLD) be-
tween the approximated posterior and true posteriror
distributions based on 100 simulations of a first-order
Ising model.

COMP. LIKELTHOOD RMSE AKLD

Ppseudo (9 | y) 1.96 0.510
peL(0 | y) (w=1) 0.757 0.337
pcL(0 | y) (w defined by (10))  0.040 0.010

0. Figure 2(a) and Figure 2(b) represent a compari-
son between the true likelihood and the estimates. As
for the isotropic case, the mean and the magnitude ad-
justment allows us to build an accurate approximation
of the posterior. In Figure 2(c) we display boxplots,
based on 100 realisations of an anisotropic first-order
Ising model, of the ratio |Kcr(0)K~1(0)||r/v/2, where
I-]lr denotes the Frobenius norm. The different weight
options are almost equivalent in term of variance cor-
rection. The weight ws seems to be the most informa-
tive. It should not be a surprise since it is based on
the Frobenius norm which carries information of the
matrix and its singular values.

This conclusion is emphasized in Table 3
which presents the relative mean square error
E[|1 - Kcn(0)K'(0)|2] and the average KL-
divergence between the approximate and true
posterior distributions for 100 realisations of the
model.

Table 3: Evaluation of the relative mean square error
(RMSE) the average KL-divergence (AKLD) between
the approximated posterior and true posteriror dis-
tributions based on 100 simulations of an anisotropic
first-order Ising model.

COMP. LIKELTHOOD RMSE AKLD

peL(f | y) (w=1) 1.28 2.25
pen (0] y) (w=wW) 0.555 0.067
pen(0 | y) (w=w®) 0.583 0.066
pen(0 | y) (w=w®) 0.540 0.071
pcn(0 | y) (w=w®) 0.551 0.061
pen(0|y) (w=w®) 0.525 0.079

Third experiment Here we focused on an autolo-
gistic model with a first-order dependance structure.
The abundance parameter was set to #p = 0.05 and the
interaction parameter to ;7 = 0.4. The differents im-
plementation settings are exactly the same as for the
second experiment. This example illustrates how the
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0.8

Gl
gﬁLég?y) with w = 1

0.7
|

0.4

0.1 00 02 03

1 — p(6ly)

— po(8/y) with w = w®

0.3

1.0

0.5
|

0.0
I

w=w® w=wl w=w w=w®

()

Figure 2: Second experiment results.(a) Poste-
rior distribution and posterior distribution approxi-
mation based on the conditional composite likelihood
with w 1. (b) Posterior distribution and pos-
terior distribution approximation based on the con-
ditional composite likelihood with mean and magni-
tude adjustments (w = w®). (c) Boxplot display-
ing ||KcnL(0)K~1(0)|r/v2 for 100 realisations of an
anisotropic first-order Ising model.

w=w
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use of composite likelihood approximation can induce
a modification of the geometry of the distribution as
shown in Figure 3(a). Indeed in addition to the mean
and variance misspecification the conditional compos-
ite likelihood also changes the correlation between the
variables. It should be evident that a magnitude ad-
justent would not be fruitful here since it would not af-
fect the correlation. Instead the curvature adjustment
manages to do so and thus yields a good approxima-
tion of the posterior, see Figure 3(b). One can object
that we do not detect tail of the posterior. But Figure
3(c) and Table 4 show that the adjustment yields an
efficient correction of the variance.

Table 4: Evaluation of the relative mean square error
(RMSE) and the average KL-divergence (AKLD) be-
tween the approximated posterior and true posteriror
distributions based on 100 simulations of a first-order
autologistic model.

COMP. LIKELTHOOD RMSE AKLD

3.44
0.96

2.38
1.89

poL(0 | y) (w=1)
per (05, + W0 —08r) | y)

6 Conclusion

This paper has illustrated the important role that con-
ditional composite likelihood approximations can play
in the statistical analysis of Gibbs random fields, and
in particular in the Ising and autologistic models in
spatial statistics, as a means to overcoming the in-
tractability of the likelihood function. However us-
ing composite likelihoods in a Bayesian setting can be
problematic, since the resulting approximate posterior
distribution is typically too concentrated and there-
fore underestimates the posterior mean and variance.
Our main contribution has been to show how to cal-
ibrate the approximate posterior distribution that re-
sults from replacing the true likelihood with a condi-
tional composite likelihood. Further work will focus
on how to extend this framework to Gibbs random
fields with larger number of parameters, such as the
exponential random graph model.

Acknowledgments

We are grateful to Mathieu Ribatet and the anony-
mous reviewers of this paper for their helpful com-
ments. The Insight Centre for Data Analytics is sup-
ported by Science Foundation Ireland under Grant
Number SFI/12/RC/2289. Nial Friel’s research was
also supported by an Science Foundation Ireland
grant: 12/IP/1424.

928

0.6

— p(e/
ggL(g?y) withw =1

o
R
Vg N
\.A\
70
50

0.4

Dem

0.2
|

0.6
I

— p(8/
ggL(gzL + W(e - GCL)/V)

0.5

0.4

0.3

0.2
I

15

10

0000

8
8
-8

peL(8/y) With w =1 Pec(BcL +W(B-8c)/y)

(c)

Figure 3: Third experiment results. (a) Poste-
rior distribution and posterior distribution approxi-
mation based on the conditional composite likelihood
with w = 1. (b) Posterior distribution and posterior
distribution approximation based on the conditional
composite likelihood with mean and curvature adjust-
ments. (c) Boxplot displaying |[Kcr(0)K~(0)||r/v2
for 100 realisations of a first-order autologistic model.
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