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1 Karcher Mean Algorithm

The Karcher mean [1, 2, 3] is a generalization of the standard sample mean to arbitrary manifolds M with
associated an distance measure d(·, ·). It is defined as (local) minimizer to the following cost function:

〈x〉 = arg min
p∈M

N∑
i=1

wid
2(p, xi) . (1)

For our purposes wi = 1/N and M = SD−1, which implies the use of the geodesic distance metric.

On the unit sphere we can find the Karcher mean 〈x〉 by the following iterative algorithm:

• project data points {xi}Ni=1 into TpSD−1 and compute mean 〈x̆〉 = 1
N

∑N
i=1 Logp(qi)

• project 〈x̆〉 back onto the sphere to obtain updated p′ = Expp(〈x̆〉). Set p = p′.

• iterate until ||〈x̆〉||2 close to 0 and then set the Karcher mean 〈x〉 = p.

This algorithm takes the geometry of the sphere into account and exhibits fast convergence.

1.1 Weighted Mean of two Points on the Sphere

When merging two clusters a and b that have two different Karcher means 〈x〉a and 〈x〉b, we want to compute
the Karcher mean of the merged cluster efficiently without having to run the Karcher mean algorithm on the
joint set of data points. Let cluster a contain Na and cluster b Nb data points.

We approximate the Karcher mean of the merged cluster 〈x〉c as the weighted Karcher mean, of 〈x〉a and 〈x〉b
with weights Na and Nb respectively. Using Eq. (1) the optimization problem that will yield 〈x〉c becomes:

〈x〉c = arg min
p∈SD−1

Na arccos(pT 〈x〉a)2 +Nb arccos(pT 〈x〉b)2. (2)

Since the geodesic between any two points is the shortest path on the manifold between the two of them, we
know that p has to lie on the geodesic. On the unit sphere we can describe the location on the geodesic as a
rotation about the axis defined by the cross product of the two vectors 〈x〉a and 〈x〉b by an angle θa, which we
define such that the location of 〈x〉a on the geodesic has θa = 0. This implies that the location of 〈x〉b on the
geodesic has angle θb = arccos(〈x〉Ta 〈x〉b). With this intuition we can reformulate the optimization problem in
terms of angles on the geodesic as:

θ?a = arg min
θa

Naθ
2
a +Nb(θa − θb)2 . (3)

The minimizer of this function is θ?a = Nb

Na+Nb
θb. Hence we can compute 〈x〉c by rotating 〈x〉a by an angle of θ?a

about the aforementioned axis. The reader is referred to [4] for details on differentiable manifolds and geodesics.
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2 Proposal Distribution for the Mean of a DP-TGMM Cluster

Since the sphere is a non-linear manifold it is, to our knowledge, not possible to derive a closed-form posterior
distribution for the means µk. Instead, we utilize the Metropolis-Hastings framework to sample means µk from
the true posterior using the following proposal distribution q(µk|x, z,Σk), which approximates the true posterior:

p(µk|x, z,Σk) ∝ p(x|µk, z,Σk)p(µk) = p(µk)
∏

i∈Ik
N (Logµk

(xi); 0,Σk)

≈ p(µk)N (Log〈x〉k(µk); 0,Σk/Nk) = q(µk|x, z,Σk)
(4)

where 〈x〉k is the Karcher mean of the data points xIk . The approximation lies in the assumption, that the data
xIk has a small spread which implies that θi = dG(xi, µk) ≈ θ̄ = dG(〈x〉k, µk). This can be seen when looking
more closely at the product of Gaussians:∏

i∈Ik
N (Logµk

(xi); 0,Σk) ∝

∝ exp

{
−1

2

[
N∑
i=1

θ2i
sin2 θi

xTi Σ−1xi − 2
N∑
i=1

θ2i cos θi

sin2 θi
xTi Σ−1µ+

N∑
i=1

θ2i cos2 θi

sin2 θi
µTΣ−1µ

]}

≈ exp

{
−1

2

[
N

θ̄2

sin2 θ̄
〈x〉TΣ−1〈x〉 − 2N

θ̄2 cos θ̄

sin2 θ̄
〈x〉TΣ−1µ+N

θ̄2 cos2 θ̄

sin2 θ̄
µTΣ−1µ

]}
∝ N (Logµk

(〈x〉); 0,Σk/Nk) = N (Log〈x〉(µk); 0,Σk/Nk)

(5)

The equality in the last line stems from the fact, that both Gaussian densities live in the respective tangents
spaces (around µk and 〈x〉) and have the same covariances. Therefore,Logµk

(〈x〉) = −Log〈x〉(µk) in the tangent
planes and hence their pdf value will be equal due to the radial symmetry of the Gaussian density.

3 Sufficient Statistics in the Tangent Space

As defined in our paper, the distribution of the covariances Σ in the tangent spaces is inverse-Wishart (IW)
conditioned on the associated means µ. Since the IW distribution is in the exponential family [5] of probability
distributions, we only need the associated sufficient statistics of the data to evaluate the joint probability as
well as to compute the posterior distribution in the tangent space. As described in the paper we compute the
sufficient statistics, namely the Karcher mean 〈x〉k, the scatter matrix Sk, and the number of data points in the
cluster Nk for the Gibbs sampling of covariances Σ from the IW posterior.

3.1 Sufficient Statistics in a single Tangent Space

For a single D-TGMM cluster around the mean µk we would ideally bring all associated data xIk into the tangent
space Tµk

SD−1 using Logµk
(xi) and compute the scatter matrix Sµk

as

Sµk
=
∑
i∈Ik

Logµk
(xi)Logµk

(xi)
T . (6)

The number of data points Nk and the scatter matrix Sµk
are sufficient statics for the posterior covariance matrix

of a zero-mean Gaussian distribution with IW prior on the covariance.

As pointed out in the paper, the issue with this approach is that whenever the point of tangency µk changes all
{Logµk

(xi)}i∈Ik as well as Sµk
have to be recomputed. To circumvent this problem, we use that

Logµk
(xi) ≈ Logµk

(〈x〉k) + Log〈x〉k(xi) , (7)

where 〈x〉k is the Karcher mean of {xi}Ik computed as described in Sec. 1. Under this approximation and
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starting from Eq. (6) the scatter matrix Sµk
can be approximated as

Sµk
≈
∑
i∈Ik

[
Logµk

(〈x〉k) + Log〈x〉k(xi)
] [

Logµk
(〈x〉k) + Log〈x〉k(xi)

]T
(8)

≈
∑
i∈Ik

Logµk
(〈x〉k)Logµk

(〈x〉k)T + 2Log〈x〉k(xi)Logµk
(〈x〉k)T + Log〈x〉k(xi)Log〈x〉k(xi)

T (9)

≈ NkLogµk
(〈x〉k)Logµk

(〈x〉k)T + 2
∑
i∈Ik

[
Log〈x〉k(xi)

]
Logµk

(〈x〉k)T +
∑
i∈Ik

Log〈x〉k(xi)Log〈x〉k(xi)
T (10)

≈ NkLogµk
(〈x〉k)Logµk

(〈x〉k)T +
∑
i∈Ik

Log〈x〉k(xi)Log〈x〉k(xi)
T (11)

≈ NkLogµk
(〈x〉k)Logµk

(〈x〉k)T + S〈x〉k . (12)

From Eq. (10) to Eq. (11) we have used the definition of the Karcher mean namely that
∑
i∈Ik Log〈x〉k(xi) = 0.

This approximation has the desired advantage that unless the set, Ik, of data points associated with cluster
k changes, we do not have to recompute 〈x〉k and S〈x〉k . If the mean µk changes we can quickly update
the scatter Sµk

without having to iterate through all associated data points again since the computation of
NkLogµk

(〈x〉k)Logµk
(〈x〉k)T involves just one outer product and neither Nk nor 〈x〉k changes.

3.2 Merging Sufficient Statistics between Tangent Spaces

When we propose merges, and to compute the sufficient statistics of the “upper” cluster consisting of the left
and right sub-clusters, we use the following approach to efficiently compute the needed sufficient statistics solely
from the already computed sufficient statistics. While, we describe the process in the context of merging two
clusters b and c into cluster a, the approach is the same for computing the sufficient statistics of the “upper”
cluster from left and right sub-cluster.

Assume we want to merge cluster b with cluster c to obtain the merged cluster a. We need to obtain its
Karcher mean 〈x〉a ∈ SD−1 as well as the sufficient statistics Na = Nb + Nc, 〈x̆〉a = 1

Na

∑
i:zi=

Logµa
(xi) and

Sa =
∑
i:zi=a

Logµa
(xi)Logµa

(xi)
T .

Clearly, we could just compute the Karcher mean and the sufficient statistics from scratch each time we propose
a merge. Instead, in order to save computations we want to reuse the already computed statistics and Karcher
means for clusters b and c. The Karcher mean 〈x〉a can be computed as described in Sec. 1.1 from 〈x〉b to 〈x〉c
together with the counts Nb and Nc.

The sufficient statistics for clusters b and c are computed in the tangent spaces around their respective Karcher
means. Therefore their sample means 〈x̆〉b,c in the tangent space will be very close to zero. However, the sample
mean in T〈x〉aSD−1 is generally non-zero and we compute it as the weighted mean between the sample means of
cluster b and c mapped into T〈x〉aSD−1:

〈x̆〉a =
1

Na

(
NbLog〈x〉a(Exp〈x〉b(〈x̆〉b)) +NcLog〈x〉a(Exp〈x〉c(〈x̆〉c))

)
(13)

Similarly, we can map the scatter matrices Sb,c into T〈x〉aSD−1 to obtain S̃b,c by making the following approxi-
mation:

S̃b =
∑
Ib

Log〈x〉a(xi)Log〈x〉a(xi)
T (14)

≈
∑
Ib

(
Log〈x〉a(µb) + Log〈x〉b(xi)

)(
Log〈x〉a(µb) + Log〈x〉b(xi)

)T
(15)

=
∑
Ib

Log〈x〉b(xi)Log〈x〉b(xi)
T + 2

(∑
Ib

Log〈x〉b(xi)
)

Log〈x〉a(µb)
T + +NbLog〈x〉a(µb)Log〈x〉a(µb)

T (16)

= Sb +NbLog〈x〉a(µb)Log〈x〉a(µb)
T , (17)

where we have used the fact, that the Karcher mean algorithm gives us 〈x〉b such that
∑
Ib Log〈x〉b(xi) = 0.

Equation (17) gives us a approximate way of computing the statistics S̃b in T〈x〉aSD−1 using only the already
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〈x〉a

T〈x〉aS2

T〈x〉cS2

〈x〉c

Log〈x〉a(〈x〉c)

T〈x〉bS2

〈x〉b

Log〈x〉a(〈x〉b)

S2

Figure 1: Illustration of the problem of computing sufficient statistics for cluster a from clusters b and c. Depicted
are the tangent plane around the Karcher mean 〈x〉a of cluster a in blue and the two tangent planes by clusters
b and c to the left and right in orange.

computed statistics Sb in T〈x〉bSD−1 and the mean 〈x〉b of cluster b. Note that we can do exactly the same

computation for cluster c to obtain S̃c.

The approximation we made lies in the fact that {xi}Ib were linearized around 〈x〉b and hence the deviations
from 〈x〉b which they describe are only valid in T〈x〉bSD−1. By approximating

Log〈x〉a(xi) ≈ Log〈x〉a(µb) + Log〈x〉b(xi) (18)

we make a small error that stems from the different linearizations. However, if the spread of cluster b (or c) is
small, the approximation error is small. Using S̃b,c we compute the scatter matrix Sa of the merged cluster in
T〈x〉aSD−1 as

Sa = Sb +Nb

(
〈x̆〉b〈x̆〉Tb + Log〈x〉a(〈x〉b)Log〈x〉a(〈x〉b)T

)
(19)

+ Sc +Nc

(
〈x̆〉c〈x̆〉Tc + Log〈x〉a(〈x〉c)Log〈x〉a(〈x〉c)T

)
−Na〈x̆〉a〈x̆〉Ta (20)

3.3 Metropolis-Hastings Ratio for Deterministic Split Proposal

Here we derive the Hastings ratio for a deterministic split proposal based on the sub-clusters.

In general the Hastings ratio for the DP-TGMM model is:

r =
p(x, ẑ, µ̂, Σ̂)

p(x, z,µ,Σ)

q(z,Σ,µ)

q(ẑ, Σ̂, µ̂)
. (21)

Since we can propose covariances Σ̂ from the posterior given the means µ̂, we factor the Hastings ratio as follows:

rsplit =
p(ẑ)p(µ̂)p(x|ẑ, µ̂)p(Σ̂|x, ẑ, µ̂)

p(z)p(µ)p(x|z,µ)p(Σ|x, z,µ)

q(z)q(µ|x, z)p(Σ|x, z,µ)

q(ẑ)q(µ̂|x, ẑ)p(Σ̂|x, ẑ, µ̂)
. (22)

We can further expand and simplify this to

rsplit =
p(ẑ)p(µ̂)p(x|ẑ, µ̂)

p(z)p(µ)p(x|z,µ)

q(z)q(µ|x, z)

q(ẑ)q(µ̂|x, ẑ)
=
p(ẑ)q(z)

p(z)q(ẑ)

p(µ̂b)p(µ̂c)p(x|ẑ, µ̂b)p(x|ẑ, µ̂c)q(µa|x, z)

p(µa)p(x|z, µa)q(µ̂b|x, ẑ)q(µ̂c|x, ẑ)
. (23)

Since the labels ẑ and the parameters µ̂b,c are proposed analogous to [6] and because the prior distribution on
the means µ are uniform we have

rsplit =
αΓ(N̂b)Γ(N̂c)

Γ(Na)

p(µ̂)p(x|ẑ, µ̂b)p(x|ẑ, µ̂c)
p(x|z, µa)

q(µa|x, z) . (24)
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Figure 2: Mean and standard deviation over ten sampler runs of normalized mutual information (NMI) and
cluster-count for synthetic datasets of 30 mixed isotropic and anisotropic clusters on S2. The colors for the
different algorithms are consistent across all plots.

3.4 Metropolis-Hastings Ratio for Random Split/Merge Proposals

We derive the Metropolis-Hastings ratio for the random split/merge proposals starting from Eq. (24). Using
derivations in [6] we arrive at

rrandsplit =
αΓ(α/2)2Γ(α+Na)Γ(N̂b)Γ(N̂c)

Γ(α)Γ(Na)Γ(α/2 + N̂b)Γ(α/2 + N̂c)

p(µ̂b)p(x|ẑ, µ̂b)p(x|ẑ, µ̂c)
p(x|z, µa)

q(µa|x, z)

q(µ̂b|x, ẑ)q(µ̂c|x, ẑ)
(25)

Similarly, we can derive the expression for a random merge as

rrandmerge =
Γ(α)Γ(N̂a)Γ(α/2 +Nb)Γ(α/2 +Nc)

αΓ(α/2)2Γ(α+ N̂a)Γ(Nb)Γ(Nc)

p(x|ẑ, µ̂a)

p(µb)p(x|z, µb)p(x|z, µc)
q(µb|x, z)q(µc|x, z)

q(µ̂a|x, ẑ)
(26)

4 Additional Synthetic Results

In Fig. 2 we show additional results for the synthetic data experiment. The two rows show the NMI and cluster-
counts for two different mixed isotropic and anisotropic datasets. The dataset in the second row is more difficult
since it contains more spread-out clusters with overlaps.

All the algorithms converge to close to the true number of clusters for the dataset in the first row. For the more
difficult dataset in the second row, the DP-GMM and the FSD-TGMM both overestimate the number of clusters
while the DP-TGMM converges to the true number of clusters on average. The larger standard deviation of the
DP-TGMM and the overestimation of the number of clusters for the DP-GMM and the FSD-TGMM are likely
due to the spread-out and overlapping clusters in the dataset.
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