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Abstract

We focus on the distribution regression problem: re-
gressing to a real-valued response from a probability
distribution. Although there exist a large number of
similarity measures between distributions, very little is
known about their generalization performance in spe-
cific learning tasks. Learning problems formulated on
distributions have an inherent two-stage sampled diffi-
culty: in practice only samples from sampled distribu-
tions are observable, and one has to build an estimate
on similarities computed between sets of points. To
the best of our knowledge, the only existing method
with consistency guarantees for distribution regression
requires kernel density estimation as an intermediate
step (which suffers from slow convergence issues in
high dimensions), and the domain of the distributions
to be compact Euclidean. In this paper, we provide
theoretical guarantees for a remarkably simple algo-
rithmic alternative to solve the distribution regression
problem: embed the distributions to a reproducing
kernel Hilbert space, and learn a ridge regressor from
the embeddings to the outputs. Our main contribu-
tion is to prove the consistency of this technique in
the two-stage sampled setting under mild conditions
(on separable, topological domains endowed with ker-
nels). For a given total number of observations, we
derive convergence rates as an explicit function of the
problem difficulty. As a special case, we answer a 15-
year-old open question: we establish the consistency
of the classical set kernel [Haussler, 1999; Gärtner et.
al, 2002] in regression, and cover more recent kernels
on distributions, including those due to [Christmann
and Steinwart, 2010].

1 INTRODUCTION

We address the learning problem of distribution regres-
sion in the two-stage sampled setting [1]: we regress
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from probability measures to real-valued responses,
where we only have bags of samples from the prob-
ability distributions. Many classical problems in ma-
chine learning and statistics can be analysed in this
framework. On the machine learning side, multiple
instance learning [2, 3, 4] can be thought of in this
way, in the case where each instance in a labeled bag
is an i.i.d. (independent identically distributed) sam-
ple from a distribution. On the statistical side, tasks
might include point estimation of statistics on a distri-
bution (e.g., its entropy or a hyperparameter), where a
supervised learning method can help in parameter es-
timation problems without closed form analytical ex-
pressions, or if simulation-based results are computa-
tionally expensive.

Before reviewing the existing techniques in the litera-
ture, let us start with a somewhat informal definition
of the distribution regression problem, and an intuitive
phrasing of our goal. Let us suppose that our data
consist of z = {(xi, yi)}li=1, where xi is a probabil-
ity distribution, yi ∈ R, and each (xi, yi) pair is i.i.d.
sampled from a meta distribution M. However, we
do not observe xi directly; rather, we observe a sam-

ple xi,1, . . . , xi,Ni

i.i.d.∼ xi. Thus the observed data are

ẑ = {({xi,n}Ni

n=1, yi)}li=1. Our goal is to predict a new
yl+1 from a new batch of samples xl+1,1, . . . , xl+1,Nl+1

drawn from a new distribution xl+1. For example, in a
medical application the ith patient might be identified
with a probability distribution (xi), which can be peri-
odicly accessed, measured by blood tests ({xi,n}Ni

n=1).
We are also given some health indicator of the patient
(yi), which might be inferred from his/her blood mea-
surements. Based on the observations (ẑ), one might
try to learn the mapping from the set of blood tests to
the health indicator; and the hope is that by observ-
ing more patients (larger l) and performing a larger
number of tests (larger Ni) the estimated mapping

(f̂ = f̂(ẑ)) becomes more “precise”.

The performance of the estimated mapping (f̂) de-
pends on the assumed function class (H), the family

of f̂ candidates. Let fH denote the best estimator from
H given infinite training samples (l = ∞, Ni = ∞),
and let E [fH] be its prediction error. Our goal is to
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obtain upper bounds for the 0 ≤ E [f̂ ]−E [fH] quantity
which hold with high probability. More precisely, we
are aiming at

1. deriving upper bounds on the excess risk, proving
consistency: We construct E [f̂ ] − E [fH] ≤ r(l, N, λ)
bounds, where λ is a regularization parameter con-
verging to zero as we see more samples (l → ∞,
N = Ni → ∞), and choose the (l, N, λ) triplet ap-

propriately to drive r(l, N, λ) and hence E [f̂ ] − E [fH]
to 0.
2. obtaining convergence rates: We establish conver-
gence rates for a general prior family P(b, c) [5], where
b captures the effective input dimension, and larger
c means smoother fH. In particular, when l = Na

(a > 0), the effective dimension is small (large b), and
the total number of samples processed t = lN = Na+1

is fixed, one obtains a rate of 1/t2/7 for a smooth re-
gression function (c = 2), 1/t1/5 in the non-smooth
case (c = 1).

The motivation for considering the P(b, c) family is
two-fold:

1. it does not assume parametric distributions, still
certain complexity terms can be explicitly upper
bounded in the family. This property will be exploited
in our analysis.
2. (for special input distributions) parameter b can be
related to the spectral decay of Gaussian Gram matri-
ces, thus available analysis techniques [6] might give
alternative prior characterizations.

Briefly, we focus on the following question:

Can the distribution regression problem be
solved consistently under mild conditions?

Despite the large number of available “solutions” and
applications of distribution regression dating back to
1999 [7], surprisingly this pretty fundamental question
has hardly been touched. In our paper we give affir-
mative answer to the question by presenting the anal-
ysis of a simple kernel ridge regression approach [see
Eq. (3)] in the two-stage sampled (M → z → ẑ) set-
ting.

Review of approaches to learning on distribu-
tions: A number of methods have been proposed over
the years to compute the similarity of distributions
or bags of samples. As a first approach, one could
fit a parametric model to the bags, and estimate the
similarity of the bags based on the obtained parame-
ters. It is then possible to define learning algorithms
on the basis of these similarities, which often take an-
alytical form. Typical examples with explicit formu-
las include Gaussians, finite mixtures of Gaussians,
and distributions from the exponential family (with

known log-normalizer function and zero carrier mea-
sure) [8, 9, 10, 11]. A major limitation of these meth-
ods, however, is that they apply quite simple para-
metric assumptions, which may not be sufficient or
verifiable in practise.

A heuristic related to the parametric approach is to
assume that the training distributions are Gaussians
in a reproducing kernel Hilbert space; see for example
[10, 12] and references therein. This assumption is al-
gorithmically appealing, as many divergence measures
for Gaussians can be computed in closed form using
only inner products, making them straightforward to
kernelize. A fundamental shortfall of kernelized Gaus-
sian divergences is the lack of their consistency analysis
in specific learning algorithms.

A more theoretically grounded approach to learning
on distributions has been to define positive definite
kernels [13] on the basis of statistical divergence mea-
sures on distributions, or by metrics on non-negative
numbers; these can then be used in kernel algorithms.
This category includes work on semigroup kernels [14],
nonextensive information theoretical kernel construc-
tions [15], and kernels based on Hilbertian metrics [16].
For example, in [14] the intuition is as follows: if two
measures or sets of points overlap, then their sum is ex-
pected to be more concentrated. The value of disper-
sion can be measured by entropy or inverse generalized
variance. In the second type of approach [16], homo-
geneous Hilbert metrics on the non-negative real line
are used to define the similarity of probability distri-
butions. While these techniques guarantee to provide
valid kernels on certain restricted domains of measures,
the performance of learning algorithms based on finite
sample estimates of these kernels remains a challeng-
ing open question. One might also plug into learning
algorithms (based on similarities of distributions) con-
sistent Rényi and Tsallis divergence estimates [17, 18],
but these similarity indices are not kernels, and their
consistency in specific learning tasks, similarly to the
previous works, is open.

To the best of our knowledge, the only prior work ad-
dressing the consistency of regression on distributions
requires kernel density estimation [1, 19], assumes that
the response variable is scalar-valued1, and the covari-
ates are nonparametric continuous distributions onR

d.
As in our setting, the exact forms of these distribu-
tions are unknown; they are available only through
finite sample sets. Póczos et al. estimated these distri-
butions through a kernel density estimator (assuming
these distributions to have a density) and then con-
structed a kernel regressor that acts on these kernel

1[20] considers the case where the responses are also
distributions.
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density estimates.2 Using the classical bias-variance
decomposition analysis for kernel regressors, they show
the consistency of the constructed kernel regressor,
and provide a polynomial upper bound on the rates,
assuming the true regressor to be Hölder continuous,
and the meta distribution that generates the covariates
xi to have finite doubling dimension [22].3

An alternative paradigm in learning when the inputs
are “bags of objects” is to simply treat each input as
a finite set, and to define kernel learning algorithms
based on set kernels [23] (also called multi-instance
kernels or ensemble kernels, and instances of convo-
lution kernels [7]). In this case, the similarity of two
sets is measured by the average pairwise point similar-
ities between the sets. From a theoretical perspective,
very little has been done to establish the consistency
of set kernels in learning since their introduction in
1999 [7, 23]: i.e. in what sense (and with what rates)
is the learning algorithm consistent, when the number
of items per bag, and the number of bags, is allowed
to increase?

It is possible, however, to view set kernels in a distri-
bution setting, as they represent valid kernels between
(mean) embeddings of empirical probability measures
into a reproducing kernel Hilbert space (RKHS) [24].
The population limits are well-defined as being dot
products between the embeddings of the generating
distributions [25], and for characteristic kernels the
distance between embeddings defines ametric on prob-
ability measures [26, 27]. When bounded kernels are
used, mean embeddings exist for all probability mea-
sures [28]. When we consider the distribution regres-
sion setting, however, there is no reason to limit our-
selves to set kernels. Embeddings of probability mea-
sures to RKHS are used by [29] in defining a yet larger
class of easily computable kernels on distributions, via
operations performed on the embeddings and their dis-
tances. Note that the relation between set kernels and
kernels on distributions has been applied by [30] for
classification on distribution-valued inputs, however
consistency was not studied in that work.

Our contribution in this paper is to establish the con-
sistency of an algorithmically simple, mean embedding
based ridge regression method (described in Section 2)
for the distribution regression problem. This result ap-
plies both to the basic set kernels of [7, 23], the distri-

2We would like to clarify that the kernels used in their
work are classical smoothing kernels (extensively studied
in non-parametric statistics [21]) and not the reproducing
kernels that appear throughout our paper.

3Using a random kitchen sinks approach, with orthonor-
mal basis projection estimators and RBF kernels [19] pro-
poses a distribution regression algorithm that can com-
putationally handle large scale datasets; as with [1], this
approach is based on density estimation in R

d.

bution kernels of [29], and additional related kernels
proposed herein. We provide two-stage sampled ex-
cess error bounds, consistency proof and convergence
rates in Section 4, and break down the various trade-
offs arising in different sample size and problem diffi-
culties. The principal challenge in proving theoretical
guarantees arises from the two-stage sampled nature
of the inputs. In our analysis, we make use of [5], who
provide error bounds for the one-stage sample setup.
These results will make our analysis somewhat shorter
(but still rather challenging) by giving upper bounds
for some of the upcoming objective terms. Even the
verification of these conditions requires care (Section
3) since the inputs in the ridge regression are them-
selves distribution embeddings (i.e., functions in a re-
producing kernel Hilbert space).

Due to the differences in the assumptions made and
the loss function used, a direct comparison of our the-
oretical result and that of [1]3 remains an open ques-
tion, however we make two observations. First, our
approach is more general, since we may regress from
any probability measure defined on a separable, topo-
logical domain endowed with a kernel. Póczos et al.’s
work is restricted to compact domains of finite dimen-
sional Euclidean spaces, and requires the distributions
to admit probability densities; distributions on strings,
time series, graphs, and other structured objects are
disallowed. Second, density estimates in high dimen-
sional spaces suffer from slow convergence rates [31,
Section 6.5]. Our approach avoids this problem, as it
works directly on distribution embeddings, and does
not make use of density estimation as an intermediate
step.

2 THE DISTRIBUTION

REGRESSION PROBLEM

In this section, we define the distribution regression
problem, for a general RKHS on distributions. In Sec-
tion 3, we will provide examples of valid kernels for
this RKHS, including set kernels [7, 23], the kernels
from [29], and further related kernels. Below, we first
introduce some notation and then formally discuss the
distribution regression problem.

Notation: Let (X, τ) be a topological space and
let B(X) := B(τ) be the Borel σ-algebra in-
duced by the topology τ . M

+
1 (X) denotes the set

of Borel probability measures on (X,B(X)). The
weak topology (τw = τw(X, τ)) on M

+
1 (X) is de-

fined as the weakest topology such that the Lh :
(M+

1 (X), τw) → R, Lh(x) =
∫

X
h(u)dx(u) map-

ping is continuous for all h ∈ Cb(X) = {(X, τ) →
R bounded, continuous functions}. Let H = H(k) be
the RKHS [6] with k : X× X → R as the reproducing
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kernel. Denote by

X = µ
(

M
+
1 (X)

)

= {µx : x ∈ M
+
1 (X)} ⊆ H

the set of µx =
∫

X
k(·, u)dx(u) = Eu∼x[k(·, u)] ∈ H

mean embeddings [24] of the distributions to the space
H , and let Y = R. Intuitively, µx is the canonical fea-
ture map [k(·, u)] averaged according to the probability
measure [dx(u)]. LetH = H(K) be the RKHS of func-
tions with K : X ×X → R as the reproducing kernel.
L(H) is the space of H → H bounded linear opera-
tors, and δµa

denotes the evaluation functional at µa

(a ∈ M
+
1 (X)). For M ∈ L(H) the operator norm is de-

fined as ‖M‖
L(H) = sup06=q∈H

‖Mq‖
H

‖q‖
H

. Given (U1, S1)

and (U2, S2) measurable spaces the S1⊗S2 product σ-
algebra [6, page 480] on the product space U1 × U2 is
the σ-algebra generated by the cylinder sets U1 × S2,
S1 × U2 (S1 ∈ S1, S2 ∈ S2). E[·] denotes expectation.
Distribution regression: In the distribution re-
gression problem, we are given samples ẑ =

{({xi,n}Ni

n=1, yi)}li=1 with xi,1, . . . , xi,Ni

i.i.d.∼ xi where
z = {(xi, yi)}li=1 with xi ∈ M

+
1 (X) and yi ∈ Y drawn

i.i.d. from a joint meta distribution M defined on the
measurable space (M+

1 (X)×R,B(τw)⊗B(R)). Unlike
in classical supervised learning problems, the problem
at hand involves two levels of randomness, wherein
first z is drawn from M and then ẑ is generated by
sampling points from xi for all i = 1, . . . , l. The goal
is to learn the relation between the random distribu-
tion x and scalar response y based on the observed ẑ.
For notational simplicity, we will assume that N = Ni

(∀i).
As in the classical regression task (Rd → R), distribu-
tion regression can be tackled as a kernel ridge regres-
sion problem (using squared loss as the discrepancy
criterion). The kernel (say kG) is defined on M

+
1 (X),

and the regressor is then modelled by an element in the
RKHS G = G(kG) of functions mapping from M

+
1 (X)

to R. In this paper, we choose kG(x, x
′) = K(µx, µx′)

where x, x′ ∈ M
+
1 (X) and so that the function (in G)

to describe the (x, y) random relation is constructed
as a composition

M
+
1 (X)

µ−→ X(⊆ H = H(k))
f∈H=H(K)−−−−−−−−→ R.

In other words, the distribution x ∈ M
+
1 (X) is first

mapped to X ⊆ H by the mean embedding µ, and the
result is composed with f , an element of the RKHS
H = H(K). Assuming that fG, the minimizer of the
expected risk (E) over G exists, then a function fH also
exists, and satisfies

E [fH]= inf
f∈H

E [f ]= inf
f∈H

E(x,y)∼M[f(µx)− y]2

=inf
g∈G

E(x,y)∼M[g(x)− y]2=inf
g∈G

E [g] = E [gG] .

The classical regularization approach is to optimize

fλ
z
= argmin

f∈H

1

l

l
∑

i=1

[f(µxi
)− yi]

2
+ λ ‖f‖2

H
(1)

instead of E , based on samples z. Since z is not ac-
cessible, we consider the objective function defined by
the observable quantity ẑ,

fλ
ẑ
= argmin

f∈H

1

l

l
∑

i=1

[f(µx̂i
)− yi]

2
+ λ ‖f‖2

H
, (2)

where x̂i =
1
N

∑N
n=1 δxi,n

is the empirical distribution

determined by {xi,n}Ni=1. Algorithmically, ridge re-
gression is quite simple [32]: given training samples ẑ,
the prediction for a new t test distribution is

(fλ
ẑ
◦ µ)(t) = [y1, . . . , yl](K+ lλIl)

−1k ∈ R,

K = [K(µx̂i
, µx̂j

)] ∈ R
l×l,

k = [K(µx̂1 , µt); . . . ;K(µx̂l
, µt)] ∈ R

l.

(3)

Remarks:

1. It is important to note that the algorithm has access
to the sample points only via their mean embeddings
{µx̂i

}li=1 in Eq. (2).
2. There is a two-stage sampling difficulty to tackle:
The transition from fH to fλ

z
represents the fact that

we have only l distribution samples (z); the transition
from fλ

z
to fλ

ẑ
means that the xi distributions can be

accessed only via samples (ẑ).
3. While ridge regression can be performed using the
kernel kG, the two-stage sampling makes it difficult to
work with arbitrary kG. By contrast, our choice of
kG(x, x

′) = K(µx, µx′) enables us to handle the two-
stage sampling by estimating µx with an empirical es-
timator and using it in the algorithm as shown above.

The main goal of this paper is to analyse the ex-
cess risk E [fλ

ẑ
]−E [fH], i.e., the regression performance

compared to the best possible estimation from H, and
to establish consistency and rates of convergence as a
function of the (l, N, λ) triplet, and of the difficulty of
the problem in the sense of [5].

3 ASSUMPTIONS

In this section we detail our assumptions on the
(X, k,K) triplet, and show that regressing with set
kernels fit into the studied problem family. Our anal-
ysis will rely on existing ridge regression results [5]
which focus on problem (1), where only a single-
stage sampling is present; hence we have to verify
the associated conditions. Though we make use of
these results, the analysis still remains rather challeng-
ing; the available bounds can moderately shorten our
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proof. We must also take particular care in verify-
ing that [5]’s conditions are met, since they must hold
for the space of mean embeddings of the distributions
(X = µ

(

M
+
1 (X)

)

), whose properties as a function of X
and H must themselves be established. Our assump-
tions:

• ∃fH such that E [fH] = inff∈H E(f).
• (X, τ) is a separable, topological domain.
• k : X × X → R is bounded (∃Bk < ∞ such that
supu∈X k(u, u) ≤ Bk) and continuous.
• K : X × X → R is bounded, i.e., ∃BK < ∞ such
that

K(µa, µa) ≤ BK , (∀µa ∈ X), (4)

and Ψ(µc) := K(·, µc) : X → H is Hölder continuous,
i.e., ∃L > 0, h ∈ (0, 1] such that for ∀(µa, µb) ∈ X×X

‖Ψ(µa)−Ψ(µb)‖H ≤ L ‖µa − µb‖hH . (5)

• y is bounded: ∃C < ∞ such that |y| ≤ C almost
surely.
• X = µ(M+

1 (X)) ∈ B(H).

Discussion of the assumptions: We give a short
insight into the consequences of our assumptions and
present some concrete examples.

1. The boundedness and continuity of k imply the
measurability of µ : (M+

1 (X),B(τw)) → (H,B(H)),
which using the X ∈ B(H) condition guarantees that
the ρ, the measure induced by M on X × R is well-
defined (see the supplementary material).
2. For a linear kernel, K(µa, µb) = 〈µa, µb〉H ,
(µa, µb ∈ X), one can verify (see the supplementary
material) that Hölder continuity holds with L = 1, h =
1. Also, since K(µa, µb) ≤ Bk for any a, b ∈ M

+
1 (X),

we can choose BK = Bk. Evaluating the kernel, K at
the µx̂i

=
∫

X
k(·, u)dx̂i(u) =

1
N

∑N
n=1 k(·, xi,n) empir-

ical embeddings yields the standard set kernel:

K(µx̂i
, µx̂j

) =
1

N2

N
∑

n,m=1

k(xi,n, xj,m).

3. One can also prove (see the supplement) by using
the properties of negative/positive definite functions
[33] that many K functions on X ×X are kernels and
(in case of compact metric X domains) Hölder con-
tinuous.4 Some examples are listed in Table 1; these
kernels are the natural extensions to distributions of
the Gaussian [29], exponential, Cauchy, generalized t-
student and inverse multiquadratic kernels.

4To guarantee the Hölder property of K-s, we assume
the continuity of µ. For example, if X is a compact metric
space and k is universal, then µ metrizes the weak topology
τw [34, Theorem 23, page 1552], hence µ is continuous.
In this case X = µ(M+

1 (X)) is compact metric (see the
supplement), thus closed and hence X ∈ B(H) also holds.

4. Y = R is a separable Hilbert space hence Polish,
and thus the ρ(y|µa) conditional distribution (y ∈
R, µa ∈ X) is well-defined; see [6, Lemma A.3.16,
page 487].
5. The separability of X and the continuity of k implies
the separability of H [6, Lemma 4.33, page 130]. Also,
since X ⊆ H , X is separable; hence so is H due to the
continuity of K.

Verification of [5]’s conditions: Below we prove
that [5]’s conditions hold under our assumptions.

1. Y = R and H are separable Hilbert spaces – as we
have seen.
2. By the bilinearity of 〈·, ·〉

H
and the reproduc-

ing property of K, the measurability of (µx, µt) 7→
〈K(·, µx)w,K(·, µt)v〉H = wK(µx, µt)v (∀w, v ∈ R)
is equivalent to that of (µx, µt) 7→ K(µx, µt); the lat-
ter follows from the Hölder continuity of Ψ (see the
supplement).
3. Due to the boundedness of y, we have
∫

X×R
y2dρ(µx, y) ≤

∫

X×R
C2dρ(µx, y) ≤ C2 < ∞,

and ∃Σ > 0, ∃M > 0 such that

∫

R

e
|y−f

H
(µx)|

M − |y − fH(µx)|
M

− 1dρ(y|µx) ≤
Σ2

2M2
(6)

for ρX -almost µx ∈ X , where ρ(µx, y) =
ρ(y|µx)ρX(µx) is factorized into conditional and
marginal distributions. (6) is a model of the noise
of the output y; it is satisfied, for example in case
of bounded noise [5, page 9]. By the bounded-
ness of y and that of kernel K this property holds:
|y − fH(µx)| ≤ |y| + |fH(µx)| ≤ C + ‖fH‖H

√
BK ,

where we used the triangle inequality and Lemma 4.23
(page 124) from [6].

4 ERROR BOUNDS,

CONSISTENCY,

CONVERGENCE RATE

In this section, we present our main result: we de-
rive high probability upper bound for the excess risk
E
[

fλ
ẑ

]

−E [fH] of the mean embedding based ridge re-
gression (MERR) method, see our main theorem. We
also illustrate the upper bound for particular classes
of prior distributions, resulting in sufficient conditions
for convergence and concrete convergence rates (see
Consequences 1-2). We first give a high-level sketch
of our convergence analysis and the results are stated
with their intuitive interpretation. Then an outline of
the main proof ideas follows; technical details of the
proof steps may be found in the supplement.

At a high level, our convergence analysis takes the fol-
lowing form: Having explicit expressions for fλ

z
, fλ

ẑ

[see Eq. (9)-(10)], we will decompose the excess risk
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Table 1: Nonlinear kernels on mean embedded distributions: K = K(µa, µb); θ > 0. For the Hölder continuity,
we assume that X is a compact metric space and µ is continuous (the latter is implied e.g., by a universal k).

KG Ke KC Kt Ki

e−
‖µa−µb‖2

H
2θ2 e−

‖µa−µb‖H
2θ2

(

1 + ‖µa − µb‖2H /θ2
)−1 (

1 + ‖µa − µb‖θH
)−1 (

‖µa − µb‖2H + θ2
)− 1

2

h = 1 h = 1
2 h = 1 h = θ

2 (θ ≤ 2) h = 1

E [fλ
ẑ
]− E [fH] into five terms:

E
[

fλ
ẑ

]

− E [fH] ≤ 5 [S−1 + S0 +A(λ) + S1 + S2] ,

S−1 = ‖
√
T (T

x̂
+ λ)−1(g

ẑ
− gz)‖2H,

S0 = ‖
√
T (T

x̂
+ λ)−1(Tx − T

x̂
)fλ

z
‖2H,

S1 = ‖
√
T (Tx + λ)−1(gz − TxfH)‖2H,

S2 = ‖
√
T (Tx + λ)−1(T − Tx)(f

λ − fH)‖2H,

A(λ) = ‖
√
T (fλ − fH)‖2H,

where fλ = argminf∈H E [f ] + λ ‖f‖2
H
, Tµa

=
K(·, µa)δµa

[Tµa
(f) = K(·, µa)f(µa), µa ∈ X ],

T =

∫

X

Tµa
dρX(µa) ∈ L(H), Tµa

∈ L(H). (7)

1. Three of the terms (S1, S2, A(λ)) will be identical
to terms in [5], hence their bounds can be applied.
2. The two new terms (S−1, S0), the result of two-
stage sampling, will be upper bounded by making use
of the convergence of the empirical mean embeddings,
and the Hölder property of K.

These bounds will lead to the following results:

Main theorem (bound on the excess risk). Let
M , Σ and T be as in (6), (7). Let Ψ(µa) = K(·, µa) :
X → H be Hölder continuous with constants L, h.
Let l ∈ N, N ∈ N, λ > 0, 0 < η < 1, C > 0, δ > 0,
Cη = 32 log2(6/η), |y| ≤ C (a.s.), A(λ) the residual
as above, and define B(λ) = ‖fλ − fH‖2H the recon-
struction error, N(λ) = Tr[(T + λ)−1T ] the effective
dimension. Then with probability at least 1− η − e−δ

E
[

fλ
ẑ

]

− E [fH] ≤

≤ 5

{

4L2C2
(

1 +
√

log(l) + δ
)2h

(2Bk)
h

λNh

[

1 +
4(BK)2

λ2

]

+

A(λ) + Cη

[

B2
KB(λ)

l2λ
+

BKA(λ)

4lλ
+

BKM2

l2λ
+

Σ2N(λ)

l

]

}

provided that l ≥ 2CηBKN(λ)/λ, λ ≤ ‖T ‖
L(H), N ≥

(1 +
√

log(l) + δ)22
h+6
h Bk(BK)

1
hL

2
h /λ

2
h .

Below we specialize our bound on the excess risk for a
general prior class, which captures the difficulty of the

regression problem as defined in [5]. This P(b, c) class
is described by two parameters b and c: intuitively,
larger b means faster decay of the eigenvalues of the
covariance operator T [(7)], hence smaller effective in-
put dimension; larger c corresponds to smoother fH.
Formally:

Definition of the P(b, c) class: Let us fix the pos-
itive constants M , Σ, R, α, β. Then given 1 < b,
c ∈ [1, 2], the P(b, c) class is the set of probability dis-
tributions ρ on Z = X×R such that (i) the (µx, y) as-
sumption holds with M , Σ in (6), (ii) there is a g ∈ H

such that fH = T
c−1
2 g with ‖g‖2

H
≤ R, (iii) in the T =

∑N
n=1 tn 〈·, en〉H en spectral theorem based decompo-

sition ((en)
N
n=1 is a basis of ker(T )⊥), N = +∞, and

the eigenvalues of T satisfy α ≤ nbtn ≤ β (∀n ≥ 1).

We can provide a simple example of when the source
decay conditions hold, in the event that the distribu-
tions are normal with means mi and identical variance
(xi = N(mi, σ

2I)). When Gaussian kernels (k) are

used with linear K, then K(µxi
, µxj

) = e−c‖mi−mj‖2

[30, Table 1, line 2] (Gaussian, with arguments equal
to the difference in means). Thus, this Gram matrix
will correspond to the Gram matrix using a Gaussian
kernel between points mi. The spectral decay of the
Gram matrix will correspond to that of the Gaussian
kernel, with points drawn from the meta-distribution
over the mi. Thus, the source conditions are analysed
in the same manner as for Gaussian Gram matrices,
e.g. see [6] for a discussion of the spectral decay prop-
erties.

In the P(b, c) family, the behaviour of A(λ), B(λ) and
N(λ) is known; specializing our theorem we get:5

Consequence 1 (Excess risk in the P(b, c) class).

E
[

fλ
ẑ

]

− E [fH] ≤ 5

{

4L2C2
(

1 +
√

log(l) + δ
)2h

(2Bk)
h

λNh

×
[

1 +
4(BK)2

λ2

]

+Rλc + Cη ×
[

B2
KRλc−2

l2
+

BKRλc−1

4l
+

BKM2

l2λ
+

Σ2βb

(b− 1)lλ
1
b

]

}

.

5In what follows, we assume the conditions of the main
theorem and ρ ∈ P(b, c).
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By choosing λ appropriately as a function of l and N ,
the excess risk E [fλ

ẑ
] − E [fH] converges to 0, and we

can use Consequence 1 to obtain convergence rates:
the task reduces to the study of

r(l, N, λ) =
logh(l)

Nhλ3
+ λc +

1

l2λ
+

1

lλ
1
b

→ 0, (8)

subject to l ≥ λ− 1
b
−1.6 By matching two terms in (8),

solving for λ and plugging the result back to the bound
(see the supplementary material), we obtain:

Consequence 2 (Consistency and convergence rate
in P(b, c)). Let l = Na (a > 0). The excess risk can
be upper bounded (constant multipliers are discarded)
by the quantities given in the last column of Table 2.

Note: in function r [Eq. (8)] (i) the first term comes
from the error of the mean embedding estimation, (ii)
the second term corresponds to A(λ), a complexity
measure of fH, (iii) the third term is due to the S1

bound, (iv) the fourth term expresses N(λ), a com-
plexity index of the hypothesis space H according to
the marginal measure ρX . As an example, let us take
two rows from Table 2:

1. First row: In this case the first and second terms
dominate r(l, N, λ) in (8); in other words the error is
determined by the mean embedding estimation pro-
cess and the complexity of fH. Let us assume that
b is large in the sense that 1/b ≈ 0, (b + 1)/b ≈ 1
(hence, the effective dimension of the input space is
small); and assume that K is Lipschitz (h = 1). Un-
der these conditions the lower bound for a is approx-
imately max(c/(c + 3), 1/(c + 3)) = c/(c + 3) ≤ a
(since c ≥ 1). Using such an a (i.e., the exponent
in l = Na is not too small), then the convergence

rate is [log(N)/N ]
c

c+3 . Thus, for example, if c = 2

(fH = T
c−1
2 g is smoothed by T from a g ∈ H),

then a = 2
2+3 = 0.4 and the convergence rate is

[log(N)/N ]
0.4

; in other words the rate is approxi-
mately 1/N0.4. If c takes its minimal value (c = 1;
fH is less smooth), then a = 1

1+3 = 1
4 results in an

approximate rate of 1/N0.25. Alternatively, if we keep
the total number of samples processed t = lN = Na+1

fixed, r(t) ≈ 1/Na = 1/ta/(a+1) = 1/t1−1/(a+1), i.e.,
the convergence rate becomes larger for smoother re-
gression problems (increasing c).
2. Last row: At this extreme, two terms dominate: the
complexity of H according to ρX , and a term from the
bound on S1. Under this condition, although one can
solve the matching criterion for λ, and it is possible
to drive the individual terms of r to zero, l cannot

6Note that the N ≥ log(l)/λ
2
h constraint has been dis-

carded; it is implied by the convergence of the first term in
r [Eq. (8)] (see the supplementary material).

be chosen large enough (within the analysed l = Na

(a > 0) scheme) to satisfy the l ≥ λ− 1
b
−1 constraint;

thus convergence fails.

Proof of main theorem: We present the main steps
of the proof of our theorem; detailed derivations can
be found in the supplementary material. Let us define
x = {xi}li=1 and x̂ = {{xi,n}Nn=1}li=1 as the ‘x-part’ of
z and ẑ. One can express fλ

z
[5], and similarly fλ

ẑ
as

fλ
z
= (Tx + λ)−1gz, Tx =

1

l

l
∑

i=1

Tµxi
, (9)

fλ
ẑ
= (T

x̂
+ λ)−1g

ẑ
, T

x̂
=

1

l

l
∑

i=1

Tµx̂i
, (10)

gz =
1

l

l
∑

i=1

K(·, µxi
)yi, g

ẑ
=

1

l

l
∑

i=1

K(·, µx̂i
)yi. (11)

In Eqs. (9), (10), (11), Tx, Tx̂
: H → H, gz, gẑ ∈ H.

• Decomposition of the excess risk: We derive the
upper bound for the excess risk

E
[

fλ
ẑ

]

− E [fH]≤5 [S−1 + S0 +A(λ) + S1 + S2] . (12)

• It is sufficient to upper bound S−1 and S0: [5]

has shown that ∀η > 0 if l ≥ 2CηBKN(λ)
λ and λ ≤

‖T ‖
L(H), then P(Θ(λ, z) ≤ 1/2) ≥ 1− η/3, where

Θ(λ, z) = ‖(T − Tx)(T + λ)−1‖L(H)

and one can obtain upper bounds on S1 and S2 which
hold with probability 1− η. For A(λ) no probabilistic
argument was needed.

• Probabilistic bounds on ‖g
ẑ
− gz‖2H, ‖Tx −

T
x̂
‖2
L(H), ‖

√
T (T

x̂
+λ)−1‖2

L(H), ‖fλ
z
‖2H: By using the

‖Mu‖H ≤ ‖M‖L(H)‖u‖H (M ∈ L(H), u ∈ H) in-
equality, we bound S−1 and S0 as

S−1 ≤ ‖
√
T (T

x̂
+ λ)−1‖2L(H)‖gẑ − gz‖2H,

S0 ≤ ‖
√
T (T

x̂
+ λ)−1‖2L(H)‖Tx − T

x̂
‖2L(H)‖fλ

z
‖2H.

For the terms on the r.h.s., we can derive the upper
bounds [for α see Eq. (13)]:

‖g
ẑ
− gz‖2H ≤ L2C2 (1 +

√
α)

2h
(2Bk)

h

Nh
,

‖
√
T (T

x̂
+ λ)−1‖L(H) ≤

2√
λ
,

‖Tx − T
x̂
‖2
L(H) ≤

(1 +
√
α)

2h
2h+2(Bk)

hBKL2

Nh
,

∥

∥fλ
z

∥

∥

2

H
≤ C2BK

λ2
.

The bounds hold under the following conditions:
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Table 2: Convergence conditions, convergence rates. Rows from top: 1 − 2, 1 − 3, 1 − 4, 2 − 3, 2 − 4, 3 − 4th

terms are matched in r(l, N, λ), the upper bound on the excess risk; see Eq. (8). First column: convergence
condition. Second column: conditions for the dominance of the matched terms while they also converge to zero.
Third column: convergence rate of the excess risk.

Convergence condition Dominance + convergence condition Convergence rate

max
(

h
(c+3)min(2,b) ,

h(b+1)
(c+3)b

)

≤ a max

(

h( 1
b
+c)

c+3 , h(b+1)
(c+3)b

)

≤ a
[

log(N)
N

]
hc
c+3

max
(

h
6 ,

h
2(b+1) ,

h(b+1)
2(2b+1)

)

≤ a < h
2 max

(

h
6 ,

h(b+1)
2(2b+1)

)

≤ a < min

(

h
2 − h

c+3 ,
h
2 (

1
b
−1)

1
b
−2

)

1

N3a− h
2 log

h
2 (N)

max
(

hb
7b−2 ,

h
3b ,

h(b+1)
4b

)

≤ a < h max
(

h(b−1)
4b−2 , h

3b ,
h(b+1)

4b

)

≤ a < h(bc+1)
3b+bc

1

N
a+

a−h
3b−1 log

h
3b−1 (N)

a < h(c+1)
6 , 1 > 2(b+1)

(c+1)b never never

a < h(bc+1)
3b , 1 > b+1

bc+1 a < h(bc+1)
3b+bc , 1 > b+1

bc+1
1

N
abc
bc+1

never never never

1. ‖g
ẑ
− gz‖2H: if the empirical mean embeddings are

close to their population counterparts, i.e.,

‖µxi
− µx̂i

‖H ≤ (1 +
√
α)

√
2Bk√

N
(13)

for ∀i = 1, . . . , l. This event has probability 1 − le−α

over all l samples by a union bound.
2. ‖Tx − T

x̂
‖2
L(H): (13) is assumed.

3. ‖
√
T (T

x̂
+ λ)−1‖2

L(H):
(1+

√
α)

2
2

h+6
h Bk(BK)

1
h L

2
h

(λ)
2
h

≤
N , (13), and Θ(λ, z) ≤ 1

2 .
4. ‖fλ

z
‖2H: This upper bound always holds (under the

model assumptions).

• Union bound: By applying an α = log(l) + δ
reparameterization, and combining the received upper
bounds with [5]’s results for S1 and S2, the theorem
follows with a union bound.

Finally, we note that

• existing results were used at two points to sim-
plify our analysis: bounding S1, S2, Θ(λ, z) [5] and
‖µxi

− µx̂i
‖H [25].

• although the primary focus of our paper is clearly
theoretical, we have provided some illustrative exper-
iments in the supplementary material. These include
1. a comparison with the only alternative, theoreti-
cally justified distribution regression method [1]3 on
supervised entropy learning, where our approach gives
better performance,
2. an experiment on aerosol prediction based on satel-
lite images, where we perform as well as recent domain-
specific, engineered methods [35] (which themselves
beat state-of-the-art multiple instance learning alter-
natives).

5 CONCLUSION

In this paper we established the learning theory of dis-
tribution regression under mild conditions, for proba-
bility measures on separable, topological domains en-
dowed with kernels. We analysed an algorithmically
simple and parallelizable7 ridge regression scheme de-
fined on the embeddings of the input distributions to
a RKHS. As a special case of our analysis, we proved
the consistency of regression for set kernels [7, 23] in
the distribution-to-real regression setting (which was
a 15-year-old open problem), and for a recent ker-
nel family [29], which we have expanded upon (Ta-
ble 1). To keep the presentation simple we focused
on the quadratic loss (E), bounded kernels (k, K),
real-valued labels (Y ), and mean embedding (µ) based
distribution regression with i.i.d. samples ({xi,n}Nn=1).
In future work, we will relax these assumptions, and
also consider deriving bounds with approximation er-
ror (capturing the richness of class H in the bounds).8

Another exciting open question is whether (i) lower
bounds on convergence can be proved, (ii) optimal con-
vergence rates can be derived, (iii) one can obtain error
bounds for non-point estimates.

Acknowledgements

This work was supported by the Gatsby Charita-
ble Foundation, and by NSF grants IIS1247658 and
IIS1250350. The work was carried out while Bharath
K. Sriperumbudur was a research fellow in the Sta-
tistical Laboratory, Department of Pure Mathematics
and Mathematical Statistics at the University of Cam-
bridge, UK.

7Recently, [36] has constructed theoretically sound par-
allelization algorithms for kernel ridge regression.

8The extension to separable Hilbert output spaces and
the misspecicified case with approximation error are al-
ready available [37].

955
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