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Abstract

This supplementary material provides an ap-
proach of optimizing the covariance func-
tion in the proposed choice model, as well
as the objective evaluation function. While
the isotropic RBF covariance function was
sufficient for our datasets, optimization of
the covariance function in the proposed dis-
crete choice model is algorithmically possible.
Based on an approximate Maximum A Pos-
teriori estimation, a convex optimization al-
gorithm for the covariance function is newly
derived. The nice convexity stems from a
quadratic form of the covariance function and
an approximation of the log-determinant of a
matrix by its trace.

Quadratic Form of the Covariance
Function and Optimizing Its Metric

Instead of the parametric covariance function
1
η exp(− ξ

2‖x
′ − x‖2), let us introduce a more flex-

ible nonparametric form of the covariance function
K : RdX ×RdX →R as

K(x,x′)=φ(x)>Ωφφ(x′),

where Rdφ×dφ 3 Ωφ � 0 is a positive definite ma-
trix that quantifies humans’ intuitions for prioritiz-
ing features in comparing options. In other words,
the similarity is defined as an inner product in the
dφ-dimensional feature space, which is mapped by the
function φ and rotated by the matrix Ωφ.
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One direct way to optimize the covariance matrix
is gradient ascending of the optimization objective,
which is Eq. (7) in the main paper, with respect to
Ωφ. By using the fact that Hi , (ΦiΩφΦ>

i )(Im[i] +
ΦiΩφΦ>

i )−1, we can reach a local optimum of the met-
ric matrix Ωφ.

Instead of such direct optimization, however, an ap-
proximated MAP estimation using a multi-task learn-
ing technique yields an efficient convex optimization of
the matrix Ωφ. We can exploit the fact that the poste-
rior mode, which is equivalent to the mean in GPR, is
given by maximizing the sum of the log-likelihoods by
the observation process N (µi, σ

2Im[i]) and the subjec-
tive prior N (0m[i], σ

2K(Xi)). We aim maximization
of a joint log-likelihood, whose term related with con-
text i is given as a constant plus

`(u∗
i , yi)−

m[i]
2

log σ2− 1
2σ2

∥∥u∗
i −b1m[i]−Φiwφ

∥∥2

−1
2

log |ΦiΩφΦ>
i |−

1
2σ2

‖u∗
i ‖

2
ΦiΩφΦ>

i
. (1)

In (1), the term log |ΦiΩφΦ>
i | mainly constrains the

volume of the matrix Ωφ. Let us constrain the trace of
the matrix Ωφ instead of its log-determinant. As an-
other modification, we replace the term ‖u∗

i ‖
2
ΦiΩφΦ>

i

by ‖Φ†
iu

∗
i ‖2

Ωφ
with exploiting the Moore-Penrose pseu-

doinverse (·)†.

We replace the matrix Ωφ by (Aφ/η) such that
Tr(Aφ) = dφ, and regularize the matrix Aφ with a
prior p(Aφ)∝exp(− δη

2σ2 Tr(A−1
φ )) by introducing a hy-

perparameter δ. Given the mapping function φ and
the hyperparameters (σ2, η, c, δ), an alternative opti-
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mization to approximate (1) is given as

max
(u∗

i )n
i=1,b

wφ,Aφ

n∑
i=1

[
`(u∗

i , yi)−
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2σ2
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− c

2
‖wφ‖2− δη

2σ2
Tr(A−1

φ )

subject to Aφ�0 and Tr(Aφ) = dφ. (2)

The optimization (2) is jointly convex with respect
to the variables ((u∗

i )
n
i=1, b, wφ,Aφ) (Zhang and Ye-

ung, 2010), and hence gradient ascending conse-
quently converges into the global optimum. We iter-
ate Newton-Raphson updating in which Hessian ma-
trix for each vector u∗

i is computed. The updat-
ing procedure for the matrix Aφ is Aφ ∝ [δIdφ

+∑n
i=1(Φ

†
iu

∗
i )(Φ

†
iu

∗
i )

>]1/2, as derived in (Zhang and
Yeung, 2010). Because iterative updating between the
evaluations (u∗

i )
n
i=1 and the parameters (b,wφ, Aφ)

causes slow convergence, one should consider a warm
start by setting Ωφ = Idφ

/η and initializing the pa-
rameters (b, wφ) and the evaluations (u∗

i )
n
i=1.

Algorithm 1 summarizes the entire fitting algorithm
involving the optimization of the metric. After setting
Ωφ = Aφ/η, we should once again refit the values of
(b, wφ) using the Optimization (7) in the main paper.
This refitting provides better estimates than those pro-
duced only by Eq. (2), because the marginalization to
compute the posterior mean compensates the errors
induced by the trace-based MAP approximation.

Note that we could not confirm additional perfor-
mance gains at least when we applied Algorithm 1
for our datasets. Gains by optimizing the covari-
ance matrix would become clearer when the option
attributes become more high-dimensional, while the
option attributes of our datasets are only two- or three-
dimensional.

Algorithm 1 Estimation for all of the model param-
eters
input Choices and features (yi ∈ {1, . . . m[i]},Φi ∈

Rm[i]×dφ)n
i=1, hyperparameters (σ2, η, c, δ)

1: Initialize (b, wφ) by taking the values when Ωφ :=
Idφ

/η.
2: for i = 1 to n do
3: Hi :=(ΦiΦ>

i )(ηIm[i]+ΦiΦ>
i )−1

4: u∗
i :=bHi1m[i]+HiΦi

5: end for
6: Aφ := Idφ

, R := cσ2Idφ
+

∑n
i=1 Φ>

i Φi

7: repeat
8: bN :=0,ρ :=0dφ

, AN
φ :=δIdφ

9: for i = 1 to n do
10: gi := (exp(u∗

i1), . . . , exp(u∗
im[i]))

>/(
∑m[i]

j=1 exp(u∗
ij))

11: Σi := ΦiAφΦ>
i

12: f i :=σ2Σi(eyi−gi)−Σi

(
u∗

i −b1m[i]−Φiwφ

)
−ηu∗

i

13: F i :=σ2Σi

(
gig

>
i − diag(gi)

)
−Σi−ηIm[i]

14: u∗
i :=u∗

i −F−1
i f i

15: bN := bN+1>
m[i](u

∗
i −Φiwφ)

16: ρ := ρ+Φ>
i (u∗

i −b1m[i])
17: AN

φ := AN
φ +(Φ†

iu
∗
i )(Φ

†
iu

∗
i )

>

18: end for
19: bN := bN/(

∑n
i=1 m[i]), wφ := R−1ρ

20: Aφ := (AN
φ )1/2/Tr((AN

φ )1/2)
21: until Convergence
22: Refit (b,wφ) by applying Ωφ := Aφ/η for Opti-

mization (7)
output Parameters (b, wφ,Ωφ := Aφ/η)
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