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Abstract

Modeling of a product or service’s attrac-
tiveness as a function of its own attributes
(e.g., price and quality) is one of the foun-
dations in econometric forecasts, which have
been provided with an assumption that each
human rationally has a consistent preference
order among his choice decisions. Yet the
preference orders by real humans become ir-
rationally reversed, when the choice set of
available options is manipulated. In order to
accurately predict choice decisions involving
preference reversals, which existing econo-
metric methods have failed to incorporate,
the authors introduce a new cognitive choice
model whose parameters are efficiently fit-
ted with a global convex optimization algo-
rithm. The proposed model captures each
human as a Bayesian decision maker facing
a mental conflict between objective evalua-
tion samples and a subjective prior, where
the underlying objective evaluation function
is rationally independent from contexts while
the subjective prior is irrationally determined
by each choice set. As the key idea to ana-
lytically handle the irrationality and to yield
the convex optimization, the Bayesian deci-
sion mechanism is implemented as a closed-
form Gaussian process regression using simi-
larities among the available options in each
context. By explaining the irrational de-
cisions as a consequence of averting uncer-
tainty, the proposed model outperformed the
existing econometric models in predicting the
irrational choice decisions recorded in real-
world datasets.
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1 INTRODUCTION

Accurately predicting which option a human prefers
to the other alternatives based on their attributes is
one of the central interests in social science. Random
utility maximization approaches have been adopted in
lots of econometric applications, such as product de-
sign (Brownstonea et al., 2000), demand forecasting
(Train and Winston, 2007; Frischknecht et al., 2010),
and various marketing problems as summarized in
(Chandukala et al., 2007). These approaches have as-
sumed independence among every option’s attractive-
ness, based on the rationale that attributes of uncho-
sen options are irrelevant to the chosen option’s bene-
fit. If this rationale holds probabilistically, each deci-
sion maker must have his own random utility function
that satisfies probabilistic Independence from Irrele-
vant Alternatives (IIA) (Luce, 1959). Random utility
function quantifies the attractiveness of an option as
random noise plus a function of only its own attributes,
such as costs and benefits (e.g., Gaussian-distributed
probit (Louviere, 1988) or Gumbel-distributed logit
(McFadden, 1980)). By applying advanced functional
approximators (e.g., (Chu and Ghahramani, 2005)),
machine learners have played essential roles in esti-
mating random utility functions.

1.1 Context Effects as Irrational Behavior

In the real world, however, experimental psychologists
have clarified the dependence of an option’s attrac-
tiveness on the other options, which is referred to as
context effects including the similarity effect (Tversky,
1972), the attraction effect (Huber et al., 1982), and
the compromise effect (Simonson, 1989; Kivetz et al.,
2004). The actual choice by real human is affected by
the set of available options, which is called the choice
set. As we show in Figure 1, attractiveness for each
of multiple options is observed to be not independent
but correlated with one another. One possible rea-
son of such correlation is humans’ limited abilities in
processing perceived information, where grouping of
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Change of shares by introducing option A′ Interpretation as grouping of options

Figure 1: The similarity effect (Tversky, 1972) as a violation of probabilistic IIA. When option A′ is closer to
option A than to option D, introduction of option A′ grabs market share more from option A than from option D.
Then option D often has the highest share among the three options, even when option A was more preferred to
option D in the two-option context. As shown in the right figure, one plausible mechanism behind the similarity
effect is mental grouping of available options. Choosers of option A or A′ are supposed to experience two-step
evaluation processes, whose first step is comparison of option D with a set {A,A′}, and whose second step is choice
of one option from the set {A,A′}. Such hierarchical evaluation can be regarded as an outcome of correlation
among the random utilities, where a pair of similar options is assigned high correlation.

options into a smaller number of categories can reduce
the high mental workload of independently evaluating
every option. An interesting phenomena caused by the
correlation is called the similarity effect, with which an
option grabs market share more from similar ones than
from dissimilar ones. In the literature, various models
of the correlated random utilities have been proposed,
such as full-covariance probit (Hausman and Wise,
1978; Louviere, 1988), nested logit (Williams, 1977),
mixed multinomial logit (McFadden and Train, 2000;
Brownstonea et al., 2000; Glasgow, 2001; Karabatsos
and Walkerbbook, 2012), and generalized nested logit
(Wen and Koppelman, 2001). These predictive models
are designed to accurately fit the structure of correla-
tion, and have provided successful forecasts in practice.

Unlike the similarity effect, the attraction and the
compromise effects cannot be explained solely with
correlation. In the cases of these two context effects,
Figure 2 illustrates how reversals of preference orders
occur when the choice sets are manipulated. For in-
stance of abuse in marketing, such manipulations force
parts of consumers to select not what they want but
what firms intend to sell for high profits (e.g., an on-
line shopping case in (Kivetz et al., 2004)). In sta-
tistical viewpoints, these context effects imply non-
existence of the consistent mean utility function, and
hence strikingly shake the foundation of many eco-
nomic implications that have implicitly adopted con-
sistent mean utility functions. The non-existence of
mean utility functions may also cause unpleasant feel-
ings for many machine learners, because most of func-
tional approximators as their main expertise fail to
predict the actual choices, as long as they view choice
decision as a result of scoring based on consistent mean

plus random noise.

1.2 Discrete Choice Models as Related Work

Despite the necessity of quantitatively predicting the
total impacts by all of the context effects, the liter-
ature of choice modeling provides neither generaliza-
tion capability for choice sets that do not appear in
training data, nor tractable learning algorithms. A
promising direction to handle the preference rever-
sals is to model the correlation as a function of op-
tion attributes, and/or to introduce relative features
(e.g., price difference) in forming the mean utility func-
tion. Many of existing correlation models except the
structured probit (Yai, 1997; Dotson et al., 2009) and
mixed multinomial logit, however, formalize the cor-
relation not as a function of option attributes, but
as a constant parameter that cannot be generalized
for the contexts that do not occur in training data.
Custom engineering of the relative features adopted in
the Proportional Difference Model (González-Vallejo,
2002) and a marketing study (Kivetz et al., 2004) re-
quires ad hoc selection of variable pairs, though the
desirable selection criteria have not yet been clari-
fied. Multialternative Decision Field Theory (MDFT)
(Roe et al., 2001) is able to explain the three con-
text effects, and experimentally exhibits high predic-
tive powers (Scheibehenne et al., 2009; Berkowitsch
et al., 2014) thanks to the combination of correlation
and relative features. Unfortunately, optimizing the
parameters of MDFT is a hard problem (Chandukala
et al., 2007), and applying machine learning algorithms
for MDFT is not promising. Another Bayesian mod-
eling is proposed in (Shenoy and Yu, 2013), while this
work neither provides effective learning algorithms.
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Attraction effect Compromise effect

Figure 2: Preference reversals with the attraction (Huber et al., 1982) and the compromise (Simonson, 1989)
effects. Options (A,B,C,D) are on a two-dimensional Pareto efficient frontier. For a market in which options
A and D exist, introduction of option A−, which is absolutely inferior to option A, shifts portions of shares
from option D to option A while option A− is never chosen. In each choice set containing three options, the
moderate option obtains the highest share. Preference order for options A and D, and that for options B and C
are reversed with these context effects.

1.3 Bayesianism to Represent Irrationality

We propose a new choice model that is able to predict
the preference reversals for choice sets that are not con-
tained in training data, and whose parameters are sta-
bly fitted with global convex optimization. The core
component required in predicting the preference rever-
sals is a systematic feedback mechanism from correla-
tion or variance into the expected utility. To directly
link the mean with correlation, we borrow an idea of
regarding each human as a Bayesian shrinkage estima-
tor of utility (Natenzon, 2010), while this prior work
does not model the mean and correlation as functions
of option attributes. Our Bayesianism captures each
human as a decision maker facing a mental conflict be-
tween a subjective prior that essentially generates the
irrationality, and objective evaluation samples whose
values are rationally determined by independent appli-
cation of one consistent evaluation function for each
option’s own attributes. One core trick to generate
the preference reversals is dependence of the subjec-
tive prior on the limited number of available options
in each choice set, and this set-dependent prior natu-
rally embodies the required feedback from correlation
into mean. Because the expected attractiveness of an
option dissimilar to the others is strongly shrunk into
the prior mean, our approach generates the attraction
and compromise effects as a result of uncertainty aver-
sion by each decision maker.

In order to yield tractable predictions and the con-
vex optimization, we further add one key assumption
that the Bayesian decision making process involves a
Gaussian Process Regression (GPR), in addition to the
Gumbel-distributed random noises. The training sam-
ples in this GPR are the objective evaluations as re-
sults of applying the consistent evaluation function for

the attributes of every option, and hence the total at-
tractivenesses of all of the options are simultaneously
evaluated through simple matrix operations. The set-
dependent subjective prior is formalized with similar-
ities among the available options. Our GPR’s tricky
embedding of the evaluation function in labels, instead
of providing constant label data as in ordinary GPRs,
leads a unique optimization objective that still consists
of simple matrix multiplications and whose convexity
is guaranteed.

The remainder of this paper is organized as follows.
Section 2 introduces our cognitive GPR mechanism
and the uncertainty-aversion interpretation to explain
the context effects. Then Section 3 addresses the op-
timization formula to fit the parameters. The experi-
mental prediction results using real-world datasets ap-
pear in Section 4, and Section 5 concludes the paper.

2 PRODUCING CONTEXT
EFFECTS VIA GAUSSIAN
PROCESS REGRESSION

The prediction formulas of our model are provided in
this section. We define the choice prediction task in
Section 2.1. Then we capture the irrational choice as a
conflict between the objective evaluations and a sub-
jective prior introduced in Section 2.2. Section 2.3
clarifies how the proposed model yields the context
effects, while Section 2.4 discusses a cognitive inter-
pretation of our model.

2.1 Stochastic Choice Containing Logit as a
Special Case

Assume that a decision maker in a context indexed by
i∈N is shown m[i] available options (e.g., products or
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services) denoted as a choice set Mi = {1, . . . , m[i]},
and he stochastically chooses one option yi∈Mi. The
characteristics of the decision maker (e.g., demograph-
ics and queries to retrieve the choice set) is given as
a vector qi ∈ RdQ , and each option j ∈ Mi is as-
sociated with a vector rij ∈ RdR to represent its at-
tributes (e.g., price and quality). For notational con-
venience, we define an input vector xij by a concate-
nation xij , (q>

i , r>
ij)

>∈RdX such that dX ≡dQ+dR,
and Xi ,(xi1, . . . ,xim[i])>∈Rm[i]×dX .

We aim to probabilistically predict the choice yi given
the matrix Xi for any context i. Let us define the
final evaluation function u : RdX × Rm×dX → R such
that u(x,X) embodies the total attractiveness of an
option whose attributes are represented as input vector
x, while attributes of the available options are repre-
sented by matrix X. For notational convenience, we
also define ui(x) , u(x, Xi) for every context i. The
final choice yi is given as yi = arg maxj(ui(xij) + εij),
where εij ∈ R is an independent and identically dis-
tributed noise variable for option j.

Because it is natural to regard an option’s attractive-
ness as depending on its own attributes and charac-
teristics of each decision maker, we also assume that
every decision maker has a vector of objective evalua-
tions vi ,(vi1, . . ., vim[i])>∈Rm[i] computed as

vij = b+w>
φ φ (xij) , (1)

where b is a bias term, φ : RdX→dφ is a mapping func-
tion into a dφ-dimensional feature space, and wφ∈Rdφ

is a vector of absolute importance. Evaluating options
only with Eq. (1) is rational, because every option’s at-
tractiveness is independent from each other’s and ma-
nipulation of choice sets never changes the preference
orders. In matrix representation, vi = b1m[i] +Φiwφ

where Φi , (φ(xi1), . . .,φ(xim[i]))> ∈ Rm[i]×dφ , and
1m is the m-dimensional vector whose elements are all
one. When the mapping function φ is non-linear, pri-
ority of each option attribute is heterogeneous among
the decision makers.

An important aspect in our modeling is that the fi-
nal evaluation ui(xij) and the objective evaluation
vij are not always identical. For analytical tractabil-
ity, we assume the noise εij to obey a type-I extreme
value distribution whose probability density function
is p(εij) = exp(−εij −exp(−εij)). Before proceeding
into the novel parts of our approach, let us confirm
the special case when ∀j ∈ {1, . . .,m[i]} ui(xij) ≡ vij .
Then ui(x)≡u(x),b+w>

φ φ(x) yields the logit model
(McFadden, 1980), whose probability of choosing op-
tion j is

P (j|Mi, Xi, wφ, φ)=
exp(w>

φ φ(xij))∑
j′∈Mi

exp(w>
φ φ(xij′))

(2)

and whose formalism is identical to the well-known
multinomial logistic regression. The bias term b is can-
celed and has no effect at least in the logit model (2),
whereas it is essential for generating the preference re-
versals as we show in the next sections.

2.2 Gaussian Process Regression to Shrink
the Evaluations

We consider generalized cases in which the final eval-
uations are different from the objective evaluations.
Each decision maker is assumed to be a Bayesian who
estimates the evaluation function ui(·), by regarding
the vector of objective evaluations vi as just a sample
in fitting instead of fully relying on their values. The
sample vi and the final evaluation ui(x∗) for any test
input x∗ are perceived as noisy observations around
the latent values µi ∈ Rm[i] and µi(x∗), respectively.
This observation process in context i is modeled as(

v>
i , ui(x∗)

)>∼N
((

µ>
i , µi(x∗)

)>
, σ2Im[i]+1

)
, (3)

where N (µ,Σ) denotes the multivariate Gaussian
distribution whose mean is µ and whose variance-
covariance matrix is Σ, σ2 is a noise level, and Im

is the m-dimensional identity matrix.

When decision makers have limited information and
do not fully rely on the sample vi, we imagine that an
alternative stochastic process supports their subjec-
tive decision making. Our key assumption is that this
subjective process is implemented as a Gaussian pro-
cess prior formed solely with each choice set Mi and
the similarity among the m[i] options. Let K : RdX ×
RdX →R be a covariance function to measure the simi-
larity between two options. The actual instance of the
covariance function K(·, ·) is later introduced in Sec-
tion 3.2. Then let K(Xi)∈Rm[i]×m[i] be a variance-
covariance matrix whose (j, j′) element is K(xij , xij′)
and ki(x∗) , (K(x∗, xi1), . . . K(x∗, xim[i]))> ∈ Rm[i].
The subjective Gaussian process prior is(

µi

µi(x∗)

)
∼ N

(
0m[i]+1, σ

2

(
K(Xi) ki(x∗)
ki(x∗)> K(x∗, x∗)

))
,

(4)
where 0m denotes the m-dimensional zero vector. Us-
ing Eqs. (3) and (4), each decision maker obtains a
posterior of the final evaluation function as

ui(x∗)|vi∼N
(
ki(x∗)>

(
Im[i]+K(Xi)

)−1
vi,

σ2
[
1+K(x∗, x∗)−‖ki(x∗)‖2

Im[i]+K(Xi)

])
, (5)

where ‖β‖2
Σ ,β>Σ−1β.

For analytical tractability, every decision maker is as-
sumed to adopt the posterior mean as the final evalu-
ation, while full-Bayesian approaches to sample from
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Figure 3: Preference reversals caused by utility shrinkage into the prior mean. For each option in the left-most
figure and for each choice set, the mean and variance of the final evaluation function are provided in the right
two figures, where K(x, x′)=3 exp(− 1

4‖x−x′‖2), b=1, wφ =0dφ
, and σ=0.3. While all of the options have the

same objective evaluation b=1, the perceptual shrinkage discounts the final evaluations of the options dissimilar
to the others. As clarified in the center figure, evaluations of extreme options involve high posterior variance, as
well as the strong shrinkage.

the posterior should be considered in the future. Let
u∗

i ,(u∗
i1, . . ., u

∗
im[i])

>∈Rm[i] be the posterior mean for
the options in choice set Mi. The probability of se-
lecting option j is exp(u∗

ij)/[
∑m[i]

j′=1 exp(u∗
ij′)]. By sub-

stituting x∗ = xij into Eq. (5) and by using Eq. (1),
we get

u∗
i = K(Xi)

(
Im[i]+K(Xi)

)−1 (
b1m[i]+Φiwφ

)
.
(6)

The logit model such that u∗
i ≡ vi is a special case

when the prior is non-informative as |K(Xi) | → ∞.
The noise level σ2 may matter in fitting the param-
eters, while it is ignored in predictions as long as we
merely use the posterior mean.

2.3 Attraction and Compromise Effects as
Uncertainty Aversion

In the posterior mean (6), the attraction and compro-
mise effects appear as aversion toward options that do
not resemble the others. As we illustrate in Figure 3,
Eq. (5) makes the final evaluation of an extreme op-
tion strongly shrunk into the prior mean 0, and makes
the posterior variance high. The reason of the strong
shrinkage is high uncertainty, which is caused by ab-
sence of reliable samples for a decision maker to in-
terpolate an evaluation with one another. The shrink-
age makes the decision makers uncertainty-averse, as
long as the score of the objective evaluations are pos-
itive. While shrinking negative objective evaluations
makes decision makers uncertainty-seeking, such op-
posite behaviors are not implied statistically, because
of the observed avoidance of extreme options.

We would like to stress that what the decision makers
are avoiding are not risks but uncertainties. Someone

would say that choosing extreme options looks risky,
because higher variance leads to more avoidance. Yet
posterior variance does not correspond to risks involv-
ing explicit losses such as drop of a stock price, but
merely reflects the lack of training samples or prior
knowledge. A more plausible description is that out-
comes by choosing extreme options are felt to be more
uncertain than those by choosing moderate options.

2.4 Cognitive Interpretations

For deeper understanding, let us address possible in-
terpretations of the proposed model from the view-
points of bounded rationality (Rieskamp et al., 2006;
Manzini and Mariotti, 2009) and brain structure. Our
assumptions may look strange, because each decision
maker possesses double personality involving both the
rational objective evaluations and the irrational sub-
jective prior. Parts of these decision makers discard
the merits of the rationality that the objective evalu-
ations provide.

By expressing understanding of the high uncertainty
in the real world, we partly defend humans exhibiting
the context effects, whose vulnerability to intentional
manipulations of the choice sets looks irrational for
economists. The decision makers exploit available in-
formation as maximally as possible, may possess “wis-
dom of unknown,” and are different from the true näıve
who considers nothing. Humans sometimes neither
know which option attributes are absolutely important
for them, nor rely on their poor utility functions. An-
other clue they can exploit is merely the relative sim-
ilarity among the existing options they know, i.e., the
current choice set. The vulnerability to manipulation
is an inevitable compensation in discounting the dubi-
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ous objective evaluations. Remember that our model
can also produce rational choices satisfying the prob-
abilistic IIA, when non-informative prior is placed.

Our model is an implementation of the dual process
theory (Barrett et al., 2004), which captures decision
making as a conflict between two fictitious characters,
System 1 and System 2, that yield quick intuitions
and time-consuming deliberations, respectively. Such
a conflicting dual personality is a radical simplification
of the interaction among multiple brain tissues, where
System 1 and System 2 mimic older and newer regions
such as the limbic system and the cerebral neocortex,
respectively.

3 OPTIMIZATION AND CHOICE
OF THE PARAMETERS

This section discusses the efficient fitting and choice of
the model parameters. Section 3.1 derives the convex
optimization objective in fitting the objective evalua-
tion function. Then Section 3.2 discusses the choices
of the mapping function φ(·) and the covariance func-
tion K(·, ·), for the objective evaluation function, and
the similarity between options, respectively.

3.1 Convex Optimization of the Objective
Evaluation Function

Our training data consist of n contexts and choices
(Xi, yi)n

i=1. For each context i, let us denote its log-
likelihood term by `(u∗

i , yi),u∗
iyi
−log(

∑m[i]
j′=1 exp(u∗

ij′))
and its vector of choice probabilities by g(u∗

i ) ,
(exp(u∗

i1), . . . , exp(u∗
im[i]))

>/[
∑m[i]

j=1 exp(u∗
ij)]. Based

on Eq. (6), let Hi , K(Xi)(Im[i] +K(Xi))−1 be a
constant matrix during the updates. With placing a
Gaussian prior in order to avoid over-fitting of the vec-
tor wφ, we perform a MAP estimation by solving an
optimization problem

max
b,w

n∑
i=1

`(bHi1m[i]+HiΦiw) − c

2
‖wφ‖2, (7)

where ‖ · ‖ is the L2-norm and c is a regulariza-
tion hyperparameter. Thanks to the log-concavity of
the likelihood of multinomial logistic regression, Opti-
mization (7) is convex with respect to the parameters
(b, w), whose global optimum is attained with Newton-
Raphson methods. This convexity is a nice property
of the proposed GPR model, which quickly predicts
the context effects solely by multiplying the similarity
matrix for the vector of the objective evaluations.

3.2 Selection of the Mapping and the
Covariance Functions

In the actual implementation, we adopt a Radial-
Basis-Function (RBF) for each of the mapping func-
tion φ and the covariance function K(·, ·).

Like the diminishing returns observed in real economy,
attractiveness of an option is usually non-linear to the
increase of each option attribute. One of the simplest
way to universally incorporate such non-linearity is to
adopt nonparametrics using RBF kernels. We adopt
a mapping function φ whose inner product becomes
an isotropic RBF. After standardizing every element
of the input vectors ((xij)

m[i]
j=1)n

i=1 to have the unit
variance, the mapping function φ is chosen to realize
φ(x)>φ(x′) = exp(−γ

2 ‖x−x′‖2), where γ is a band-
width hyperparameter.

For computational efficiency, we explicitly introduce
a finite-dimensional mapping function instead of han-
dling only the inner products as in many kernel ma-
chines. An isotropic RBF kernel is efficiently approx-
imated with random Fourier features (Rahimi and
Recht, 2008). Let us distribute L < n vectors (β` ∈
RdX )L

`=1 such that ∀` β` ∼N (0dX
, IdX

). Every inner
product between two mapping functions designed as

R2L3φ(x) = L−1/2(cos(
√

γβ>
1 x), . . ., cos(

√
γβ>

Lx),

sin(
√

γβ>
1 x), . . ., sin(

√
γβ>

Lx))>

converges into an RBF kernel when L→∞. The proof
is provided in (Rahimi and Recht, 2008), and we adopt
L=100.

As the covariance function K(·, ·), we adopt another
isotropic RBF kernel parametrized as

K(x, x′)=
1
η

exp
(
−ξ

2
‖x′−x‖2

)
, (8)

where η is a scaling hyperparameter and ξ is another
bandwidth hyperparameter. The scaling hyperparam-
eter η represents the strength of the subjective prior,
where η→0 corresponds to the non-informative prior
that yields rational decisions. The bandwidth hyper-
parameter ξ determines a universal resolution in per-
ceiving the similarity among multiple options.

Because every input vector xij contains a decision
maker’s characteristics vector qi, the similarity criteria
(8) is heterogeneous among the decision makers.

4 EXPERIMENTAL EVALUATIONS

We compared the proposed model with existing dis-
crete choice models, by validating their predictability
for real-world datasets. For reproducibility in the fu-
ture, we aimed to use public datasets while most of

963



Rikiya Takahashi, Tetsuro Morimura

Table 1: Two datasets exhibiting the compromise effect. Each subject in the PC and SP datasets is required to
choose one option from a given choice set. Every subject is randomly assigned to one of the prepared choice sets.
The highest shares of moderate options evidence the compromise effect.

Attributes of each portable PC (PC)
A B C D E

CPU [MHz] 250 300 350 400 450
Mem. [MB] 192 160 128 96 64

Result of context-dependent choice
Choice Set #subjects
{A, B, C} 36:176:144
{B, C, D} 56:177:115
{C, D, E} 94:181:109

Attributes of each speaker (SP)
A B C D E

Power [Watt] 50 75 100 125 150
Price [USD] 100 130 160 190 220

Result of context-dependent choice
Choice Set #subjects
{A, B, C} 45:135:145
{B, C, D} 58:137:111
{C, D, E} 95:155: 91

the prior work adopted proprietary and undisclosed
datasets (e.g., (Keane and Wasi, 2012)). Given the
limitation of public data, we simulated the real shares
described in a marketing paper (Kivetz et al., 2004).
Section 4.1 addresses the experimental settings includ-
ing the properties of the datasets and reference models.
The prediction results are summarized in Section 4.2.

4.1 Datasets and Settings

The tables attached in (Kivetz et al., 2004), which
specify the number of decision-making subjects and
shares of options, allowed us for reproducing two
datasets PC (n = 1, 088) and SP (n = 972) about the
choice of a personal computer and a speaker, respec-
tively. Every option in these datasets has (dR = 2)-
dimensional attributes, while absence of every sub-
ject’s characteristics, i.e., dQ = 0, imposed us to as-
sume homogeneity among the subjects. Here the com-
promise effect matters as shown in Table 1.

We also tested a larger (n=10, 719) SwissMetro (SM)
dataset (Antonini et al., 2007). In this dataset, ev-
ery subject, whose characteristics and route in travel
are represented by (dQ = 23)-dimensional vector qi,
is asked of choosing one transportation method ei-
ther from a choice set {train, car, SwissMetro} or an-
other choice set {train, SwissMetro} where numeri-
cal attributes of each transportation vary among the
contexts. Each vector of the option attributes ri is
(dR = 7)-dimensional and reflects cost, travel time,
headway, seat type, and the three dummy variables
to specify the type of transportation.

Each of the three datasets was randomly split into 20
folds of 80%-training and 20%-test sets, and we eval-
uated the average test-set log-likelihood with 20-fold
cross-validation. By picking up the highest-probability
option, we also evaluated the average test-set classifi-
cation accuracy for easier understanding of the pre-
dictability.

We denote the proposed model by GPUA whose nam-
ing is the acronym of “Gaussian Process Uncertainty
Aversion”. As the first class of reference models, we
fit linear and nonparametric logit models denoted as
LinLogit and NpLogit, respectively. The LinLogit
model assumes φ(x) ≡ x, while the NpLogit model
adopts the same random Fourier features as GPUA.

As the second class of reference models, we prepared
Mixed Multinomial Logit Models (MMLMs) providing

P (j|Mi, Xi, Θ)=
T∑

t=1

λt

exp(w>
φ,tφ(xij))∑

j′∈Mi
exp(w>

φ,tφ(xij′))
,

where λ,(λ1, . . ., λT )> is a vector of mixture weights
such that

∑T
t=1 λt ≡ 1, wφ,t is a vector of coef-

ficients assigned for the tth component, and Θ ,
{φ, λ, (wφ,t)T

t=1}. Choice probabilities by any discrete
choice model can be approximated arbitrarily well by
an MMLM (McFadden and Train, 2000). Hence we
regard MMLMs as good representatives of the state-
of-the-art random utility models that can be fitted to
real data, but cannot predict some irrational decisions
(Rieskamp et al., 2006) and lack psychological inter-
pretations (Stern and Richardson, 2005). Depending
on the choice of the mapping function φ, we prepared
both linear and nonparametric MMLMs denoted as
LinMix and NpMix, respectively. In the fitting, we ap-
plied a variational Bayes method (e.g., Blei and Jordan
(2006)) to obtain the posterior mean of the mixture
vector λ, and applied the MAP estimation for the set
of vectors {wφ,t}T

t=1. We placed a symmetric Dirich-
let distribution prior λ ∼ Dir(1/T, . . . , 1/T ) and an
isotropic Gaussian prior p(wφ,t)∝exp(− c

2‖wφ,t‖2).

The hyperparameters in every model were chosen with
3-fold likelihood cross-validation that further divides
the 80% training data. The L2 hyperparameter c was
chosen from {10−2, 10−1, 1, 10, 102} in all of the three
models. For parsimonious computations, two band-
width hyperparameters are constrained to be the same,
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Figure 4: Prediction performances measured as average log-likelihood (left) and classification accuracy (center),
and an estimated final evaluation function ui(x∗) compared with the objective evaluation function b+w>

φ φ(x∗)
(right). Each error bar represents one standard deviation among the 20 folds. We took an example of applying
the GPUA model for the SP dataset in drawing the right-most figure. The highest evaluation for option C in the
choice set {A, B,C} and those for the moderate options in other two choice sets are consistent with the shares
of speakers in Table 1.

i.e., γ ≡ ξ. The bandwidth hyperparameter γ(≡ ξ)
in each of the NpLogit, NpMix, and GPUA models was
chosen from {10−1, 10−1/2, 1, 101/2, 10} for the PC and
SP datasets, and from {10−4, 10−3, . . ., 1} for the SM
dataset. The strength of the subjective prior η in GPUA
was chosen from {10−3, 10−2, 10−1, 1}. We tried to
choose the mixture number T in each MMLM from
{16, 64}. Yet models with T = 64 performed almost
equally to those with T = 16, and hence we provide
only the T =16 cases for making the results simpler.

4.2 Prediction Results

Figure 4 provides the prediction performances and
illustrates how choice sets affect the posterior-mean
evaluations. For all of the three datasets, the pro-
posed GPUA model outperformed the logit models
LinLogit and NpLogit, in terms of both average log-
likelihood and classification accuracy. For the large SM
dataset, the most outperforming was the nonparamet-
ric MMLM NpMix while the proposed model is ranked
as the second best. Yet the poor performances of the
MMLMs against the PC and SP datasets, for which pre-
dicting the compromise effect is essential, imply the
limited applicability of MMLMs. In contrast, we ex-
pect higher generalization capability of the proposed
model in many contexts causing irrationality.

The advantage of having a good psychological interpre-
tation is further clarified when we compare the right-
most graph in Figure 4 with Table 1. Let us remember
that preferences in the SP dataset are more complex
than those in the the PC dataset, because the choice
criteria is a combination of the compromise effect and
prioritization of speaker power over cheapness. Unlike
the PC dataset that allows for a heuristic to always
pick up the moderate option as the highest-share one,

the SP dataset is a real example that needs a finely-
tuned quantitative model that evaluates the total at-
tractiveness involving the complex combination. The
proposed model accurately predicted which of the con-
flicting objective and subjective criteria matters, for
every of the three choice sets.

5 Conclusion

We proposed a new discrete choice model to predict
choice decisions involving preference reversals, with
providing a Bayesian mechanism of mental conflict
between objective evaluations and a subjective prior.
Each decision maker is assumed to perform a GPR
whose Bayesian shrinkage leads irrational decisions as
a consequence of aversion toward uncertainty. The
parameters of the proposed model are fitted with a
convex optimization algorithm and high predictability
of the proposed model is validated by using real-world
datasets that exhibit the context effects.

In the future work, we will apply our methodology for
larger-size and higher-dimensional choice tasks. De-
sign or fitting of more detailed covariance functions
in the subjective prior will yield interesting economic
implications about what types of option attributes
strongly lead irrational decisions. Such covariance
structure would also clarify how humans perceive the
values of options having complex attributes, such as
shaping in product designs and tastes of foods. An-
other considerable application is improvement of infor-
mation retrieval systems for economic decision making,
such as travel planning and accommodation search.
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