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1 Derivation of Global Update

This section motivates the use of the mean field update for the global variables, given in Eq. (19) of the main
text, as an approximation to the optimal update for ADF. The presentation adapts that of [1]] for ADF-NRM.

Let (0, z1.n|T1:n) X p(2n]0, 20)D(2n|21:0)d(0, 21.n—1) denote the approximate posterior under the past
variational updates after adding in the nth observation. The optimal ¢(6x) under ADF is given by the
marginal distribution of p:
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Both the sums and integrals are intractable so we use the approximations: ﬁ(9\k|z1;n, T1p) A (jn(ﬁ\k) and
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where the inequality follows by Jensen’s inequality [1]. The approximation is tight when §(21.,,) and G(6\)
approach Dirac measures. Eq. (6) is that of the standard mean field update for §(6y) [2]. Since the ¢(6y)
distributions are unknown for all k, we could perform coordinate ascent and cycle through these updates for
each of the ¢;, given the other 6\ ;, and G(z1.,,). Conveniently, since the G(z1.,,) is already optimized and the
s are conditionally independent given the assignments in the mixture model we can perform a single mean
field update for each 6y,

qAn (gk) X p(xn|znk7 ek)d(znk)(jnfl(ek) (7)



2 Derivation of approximate NRM predictive rule

In this section we provide the derivation of ¢P*(z,,) for NRMs given in Eq. (25) of the main text. We start
by presenting the derivation for general NRMs and then demonstrate how to apply ideas to NGGPs. The
presentation in this section is adapted from [3} 14]].

2.1 General NRMs

We assume the mixture model specification in Eq. (3) from the main text. In particular we note that the
unnormalized mixture weights 7 = (71, 7o, .. .) are drawn from a completely random measure with Lévy
measure \(dr). We also introduce the exponentially tilted Lévy measure as e~Y™ \(dr) which will appear
below.

First, we expand the sum in the approximate predictive distribution, ¢P*(z,,), to include the unnormalized
masses, 7, and the auxiliary variable U,,_1:
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where the conditional distribution of the auxiliary variables U,,_; given the past assignments is given by:
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where ¢(U) is the Laplace exponent of the underlying CRM, ¢(U) = [(1 — e=Y*)A\(ds), and £, (U)
denotes the mth moment of the exponentially tilted Lévy measure, k,, = f sme~Us\(ds).

Let K,,_; denote the number of components considered for the observations z;.,—1. The conditional distri-

bution of the random measure, 7 = (7%, 71, ..., 7k, _, ), given U,_1 and the assignments, z1.,,—1, is:
K1
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where 7.k, , are the masses of all the instantiated components and 7* denotes the mass assigned to the
uninstantiated components. The distribution of 7, is given by
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where ny, is the number of observations assigned to component % in 23.,—1 and 7* follows a Poisson process
(PP) with exponentially tilted Lévy measure, 7* ~ PP(e~U»~17" \(dr*)), where again \(ds) is the Lévy
measure of the unnormalized masses. Since the integral in Eq (9) is intractable, we introduce a variational
approximation for 7 and U,,_;. In particular, we use a partially factorized approximation

p(ﬂ—‘Unfly Zl:nfl)p(Unfl |len71)q(zlzn71) ~ q(ﬂ—|Unfl)q(Unfl)q(zlznfl)u (13)

where §(21.n,-1) = H?;ll Gn—1(z:) is fixed and given from previous iterations. We perform a mean field step
to minimize the KL divergence between the left and right hand sides of Eq (13). Specifically, we compute
the optimal ¢(U,,—1) and then given that we compute the optimal ¢(7|U,,—1). Because of the factorization



given in the left hand of Eq. (I3) this procedure gives the optimal distributions. According to standard mean
field updates the optimal distribution for ¢(U,,_1) is given by:
log q(Unfl) = EQ(zlm_l) 10gp<Un71 |Z1:n71) +C (14)

where p(U,,—1|21.n,—1) is given in Eq. (T0). The tractability of this variational approximation for U,,_; will
depend on the NRM under consideration. For the NGGP it is conveniently given in closed form, as detailed
below in Section[2.2] However, efficient numerical algorithms can be used to compute the necessary integrals
for general NRMs.

Given the optimal ¢(U,_1), the optimal variational approximations to the masses, ¢(7|Up—1) =
* Kn— .
q(m*|\Up=1) [[;.25 " ¢(7j]Up—1), are given by
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where E4[ny] is the expected number of assignments to component k and is given by:
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Under ¢(7*|U,,—1), 7* is still drawn from PP(e~U»-1%\(dw)). Using these approximations Eq. (9) be-
comes
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Eq. arises from by an application of Prop. 2.1 in [3]]. In Eq. (20), the maximum with zero is
necessary since if the expected number of clusters assigned to a cluster k, E4[ny], is small then the variational
distribution for 7, given in Eq. (I3) might be degenerate at zero and so there will be zero probability of a
new observation being assigned to that cluster. More details for the NGGP case are given in Section

(20)

2.2 Predictive Rule for the NGGP
For NGGPs, the general equations for NRMs described above reduce to simple, analytically tractable forms.
In particular, the variational approximation ¢(U,,—1) is given by
Un —1
n—1
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where Eg.,  ,y[K],_4] is the expected number of clusters instantiated thus far. This expectation is given
by:
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Note that Eq. (22)) does not require all past soft assignments to be saved; instead, only H?;ll(l — §(2i5))
must be stored for each component and updated after each observation. In practice we find that using
Eg(z1.n 1)K 1] = K1 leads to comparable performance to evaluating the complete expectation. This
occurs because, given our thresholding scheme for mixture components, each component has a few §(z;x)
that are close to one, making the product close to zero.

Additionally, in the case of the NGGP the ., (U) functions needed in Eq. (T9) are given by
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When we approximate the integral in Eq. (I9) with a delta function about the maximum, U,_; =
argmax q(U,—1) we see that ¢*"(z,x) =~ q(znkWn_l), which is exactly Eq. (25) of the main text. Al-
ternatively, one could compute the integral in Eq. (T9) numerically by first performing a change of variables,
Vn—1 = logU,_1, to obtain a log-convex density over V;,_; and then use adaptive rejection sampling to
sample from V;,_1, as proposed in [3]]. The efficiency of this method depends on the sampling process and we
leave such investigations to future work. Intuitively, ¢(2px|U,—1) = 0 for some k& when ZZ__II Gi(zix) < o
since q(mg|Un—1) will be degenerate in Eq. (I3). This means that o acts as a natural threshold for the in-
stantiated clusters as clusters with mass (under the variational distribution) smaller than ¢ will have zero
probability of having observations assigned to it.

3 EP-NRM derivation

In this section we modify the EP derivation in [5] for our EP-NRM algorithm for batch inference. The
resulting algorithm is conceptually similar to ADF-NRM, except now we also save a local contribution to
the variational approximation for each data point. The algorithm cycles through the observations repeatedly,
refining the variational approximations for z1. 5 and 6. Due to the fact that local contributions must be saved,
the algorithm is applicable to moderately sized data sets. The full EP-NRM algorithm is shown in Alg.[I]

Assume we have an approximation to the batch posterior
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where G; (0, z1.,,) are the local contributions as described in the main text. Furthermore, assume that
G0, 21:0) = Gi(2:) [ [ @(0r) 27
k=1

and that g;(z;) = ¢(z;). This holds initially since since g; (0, z1.,,) is initialized during ADF to g; (8, z1.,,) x
Gi(0,21:4)

Y (e B Since g;(0, z1.n) only depends on z; we henceforth refer to this quantity as g;(6, z;). Under



these assumptions we can rewrite the approximation to the full posterior excluding data point ¢ as
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The EP-NRM algorithm consists of the following two steps. First, update the global variational ap-
proximations, ¢(f)) and ¢(z;). Second, use these to refine ¢;(fx) and g;(z;) (see Alg. [1). Define

p(0, z1.N) & G\i (0, 2\5)p(i]2i, 0)p(2i|2\;). The optimal variational distributions are found by solving
(j(oa Zl:n) = arg Igin KL(ZA)(Q, Zl:N) | ‘Q(07 Zl:N))' (32)
qe
As in ADF-NRM we do not need to update §(z;) for j # ¢; the optimal update for §(z;) is given by:
aleie) o< a5 () [ plaifen, OO0 k=1, K+ 1, (33)

where K is the number of instantiated clusters and §(0x+1) = p(0x+1). Similar to ADF, the predictive
distribution for the NGGP in Eq.(33) is given by:
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where K is the number of unique assignments in z\; and U\i = argmax q(U\;).
Following the ADF discussion in the main text, the optimal variational distributions for the 6s are given by:
Q(0r) o p(;]zi, O) 1) G 5 (0. (36)

Given updated approximations §(6) and §(z;), the local contribution for observation i is refined as:
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which takes the form we assumed in Eq. (27).

When §(6},) is in the exponential family with sufficient statistics 7*, then Egs. and are given adding
and subtracting the corresponding sufficient statistics [5].

Algorithm 1 EP-NRM algorithm

G(01.x),51:x,4(21:~), 1.~ (01.x ) < ADF-NRM(x1.x) // Initialize via ADF with data contributions.
while G(6;.x ) not converged do
fori =1to N do
U\; = argmax q(U\;)
for k =1toKdo
Sk = Sk — @i(zir)
qP* (zi;) x max(Sk — 0,0)
Cj\i(ak) X ,;((691))
G(zin) o< @*" (zi) [ P(@i|zik, Ok )G\i (Ok ) dOy.
end for .
0" (2, 41) o< a(Uy; +7)7
4(zi,k+1) < ¢ (23, k1) [ p(@ilzi k11, 0)P(Ok +1)dOK 11
normalize §(2;(1.x+1)
if (j(zi,K+1) > € then
K=K+1,5¢=0,q0x) = p(0x)
else
normalize §(z;(1:x))
end if
for k =1to K do A
4(0k) o p(xi]2ik, O1) 1= Gy (O,
Sk = Sk + §(zix)
Gi(zir) = 4(zir) )
3i(0r) o< p(izin, O) 1%
end for
Remove all clusters for which Sj, < €
end for
end while

4 Experiments

In this section we provide details on how we select hyperparameter values of the IG and DP for the ex-
periments in the main text. We also present additional experimental results regarding the convergence of
EP-NRM and comparisons with the Gibbs sampler.

4.1 Selecting Hyperparameters: a, 7, and «

In order to compare the modeling performance of the IG and DP on the document corpora considered in the
main text, we must first select the values of the hyperparameters, a and 7 (since ¢ is known in both cases). It
is well known that the hyperparameters of both the IG (a and 7) and the DP (a) strongly affect the posterior
distribution over the number of inferred clusters. For all experiments where the IG and DP are compared
we adapt a method to determine the hyperparameters for GGP mixture models originally developed for
batch inference [|6] to the streaming setting of interest. Specifically, for a given corpus, we consider a small



subset of the entire corpus (5% for the NYT corpus and 10% for both the KOS and synthetic data) which
we then split into a training and testing sets used to determine the hyperparameters. We run ADF-NRM
on the training portion of the subset of documents (95% of the subset for NYT and 80% for both KOS and
synthetic data) for a grid of parameters a € [1, 10,100, 1000] and 7 € [.1,1, 10, 100, 1000]. For the DP we
only consider a and for the IG we consider both a and 7. For each parameter value we compute the heldout
log-likelihood of the test portion of the subset and choose the values of a and 7 with the largest heldout
log-likelihood to use when running ADF-NRM and EP-NRM on the remainder of the corpora. This setup
mimics a streaming scenario in that an initial subset of the data is collected for preliminary analysis and then
the algorithm is let loose on the entire data set as it arrives.

For the Pitman-Yor data set, the grid search resulted in @ = 100 for the DP and a = 1,7 = 1000 for the IG.
The resulting parameter values for the KOS corpus were a = 100 for the DP and @ = 10, 7 = 100 for the
IG. Last, on the NYT corpus we obtained the parameter values ¢ = 1000 for the DP and a = 100, 7 = 100
for the IG.

In the synthetic bars experiments o was set to 0.5, however correct recovery of the bars was robust to values
within a reasonable range, « € [0.1,0.9]. For the Pitman-Yor synthetic data, the cluster centers were drawn
from a Dirichlet with o = 0.75 to ensure overlap between clusters; o = 0.75 was used for inference as well.
For the KOS corpus o« = 0.1 was used because it was found to provide the best overall fit under repeated
trials. Finally, for the NYT data set « = 0.5 was used, as is common for this corpus [1]].

4.2 KOS Corpus

While the ADF-NRM algorithm makes a single pass through the corpus, a more accurate posterior approxi-
mation can be achieved by revisiting observations as in EP-NRM. Figure[T|shows the predictive performance
for EP-NRM applied to the KOS corpus. We see a rapid increase in predictive performance in the first epoch
which corresponds to ADF-NRM. Predictive performance continues to rise during subsequent epochs indi-
cating an improved variational posterior.
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Figure 1: (left) EP predictive performance on KOS corpus for both models continues to rise after the pass
through the data (equivalent to ADF-NRM). The black vertical line indicates the completion of the first pass
through the data. The other grey vertical lines indicate subsequent epochs. (right) Zoom in of the plot on
the left.

We compare the predictive performance of ADF-NRM, EP-NRM, and the Gibbs sampler for the IG model on
the KOS corpus and present the results in Figure 2] In particular, we compare the predictive log-likelihood
of held-out data versus the number of complete passes through the data (epochs). Both ADF-NRM and
EP-NRM are initialized as in the main text and the Gibbs sampler is initialized so that all data points are
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Figure 2: Comparison of the predictive performance of ADF-NRM, EP-NRM, and the Gibbs sampler for
both the IG model. The predictive log-likelihood is plotted against the number of epochs through the KOS
corpus.

assigned to a single component. We found this Gibbs initialization to outperform random cluster initializa-
tion. ADF-NRM performs significantly better than Gibbs after the first epoch and it takes three full epochs
for Gibbs to outperform ADF-NRM and EP-NRM method. Both methods are implemented in Python and
a per epoch timing comparison shows that ADF-NRM takes an average of 220 seconds per epoch while the
Gibbs sampler takes an average of 160 seconds per epoch. The ADF-/EP-NRM methods take longer since
the auxiliary variable U must be updated after each data point has been processed, while in the collapsed
sampler U is only sampled once per epoch. Furthermore, in the Gibbs sampler, after a cluster assignment
has been sampled only the sufficient statistics for the corresponding component must be updated, while in
ADF-NRM, all component parameters are updated after every data point. Importantly, our goal is not to beat
the Gibbs sampler, neither in performance nor compute time, but only to show that the streaming ADF-NRM
reaches competitive performance to Gibbs after only a single pass through the data. Remember, Gibbs is
inherently not suited to our streaming data of interest.

4.3 New York Times

As seen in the main paper, the IG both introduces more clusters than the DP and attains superior predictive
performance. To further explore the difference in the inferred clusters between the two models we plot the

normalized variational cluster weights in decreasing order in Figure In particular, let Sy, = Zfil Gi(zir)

be the total weight assigned to cluster k after a full pass through the data and p, = S ;;gh’; S be the normalized
j=1%27J

weight. We can interpret p; as the posterior probability of an observation being assigned to cluster k. We

see in Figure [3that the distribution of weights for the IG has a heavier tail than the DP. The plots are similar

for the large and medium sized clusters but diverge for the small clusters, indicating that the IG emphasizes

capturing structure at a finer scale.
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Figure 3: Variational cluster weights in decreasing order. The IG exhibits a heavier tail than the DP.
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