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Abstract

The notion of missing at random (MAR) plays
a central role in the theory underlying current
methods for handling missing data. However the
standard definition of MAR is dlicult to inter-
pret in practice. In this paper, we assume the
missing data model is represented as a directed
acyclic graph that not only encodes the depen-
dencies among the variables but also explicitly
portrays the causal mechanisms responsible for
the missingness process. We introduce an intu-
itively appealing notion of MAR in such graph-
ical models, and establish its relation with the
standard MAR and a few versions of MAR used
in the literature. We address the question of
whether MAR is testable, given that data are cor-
rupted by missingness, by proposing a general
method for identifying testable implications im-
posed by the graphical structure on the observed
data.

Introduction

leads to missing data. For example, most work in ma-
chine learning assumes MAR in dealing with missing data
and proceeds with maximum likelihood or Bayesian infer-
ence. For exceptions see [Jaeger, 2006a], and recent work
on collaborative filtering that explicitly incorporate rais

ing data mechanism into the model [Maréhal., 2007,
Marlin and Zemel, 2009, Marliet al,, 2011].

Many authors find Rubin’s definition of MAR flicult to
apply in practice because it invokes subtle event-level con
ditional independences (Cls) [Schafer and Graham, 2002,
McKnightet al,, 2007, Graham, 2012]. Indeed the MAR
definition is quite unnatural from the modelling point of
view (see Example 2 in Section 2). In Practice many au-
thors often work with random variable level Cls when in-
terpreting MAR. Recently Mohan et al (2013) have pro-
posed to use graphical models to encode the missing data
model, calledn-graphs by representing both CI relations
among variables and the causal mechanims responsible for
the missingness process. Mohan et al. (2013) derived
graphical conditions under which a probability quantity ca

be estimated consistently from data with missing values.
Mohan and Pearl (2014) investigated whether such graphi-
cal models are subjected to statistical test, noting téisab

of Cls is impeded when data are contaminated by missing
values.

The missing data problem is ubiquitous in every experi-n this paper we investigate several versions of definition o
mental science. There is a vast literature on missing datAR used in the literature and propose a graphical version.
in diverse fields such as social science, blOlOgy, StmsthWe then address the question of whether a hypothesized

and machine learning. Most of the current methods forgraphical model is testable and whether MAR is testable in
handling missing data are based on the seminal theorety given model. Our main contributions are:

cal work of Rubin [Rubin, 1976, Little and Rubin, 2002].
Central to Rubin’s missing data theory is the concept of
missing at random (MAR) Under the MAR assumption,
likelihood-based inference (as well as Bayesian infergnce
can be carried out while ignoring the mechanism that

e We introduce a version of MAR defined in terms of
graphical structures, called G-MAR, and formally es-
tablish its relation with variable level MAR and with
the standard MAR. G-MAR is intuitively appealing
from the modelling point of view, and is much eas-
ier to interpret and to justiffalsify than the standard
MAR.

IMissing data is a special case obarse data and MAR
is a special case of coarsening at random (CAR). We will not
consider CAR in this paper. For theories on CAR we refer to
[Heitjan and Rubin, 1991, Gikt al,, 1997, Jaeger, 2005b].

We propose a method for identifying testable implica-

tions in graphical missing data models, and for testing
MAR assumption in those models, given that data are
corrupted by missingness.
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Missing at Random in Graphical Models

The paper is organized as follows. In Section 2, we reP(V|®)P(R®). As a consequence, assuming that the pa-
view Rubin’s missing data theory. Section 3 defines therameters® and ® are distinct, the likelihood function of
notion of m-graphs as introduced in [Mohanal, 2013]. ® and® decouples, and we can maximize the likelihood
In Section 4 we investigate several versions of MAR defini-of ® parameters independently, ignoring the missingness
tion, introduce our graphical version G-MAR, and establishmechanisnP(R®).
their relations with each other and with the stardard MAR. . .

. . . . .. "MCAR is a very strong requirement. It turns out there are
In Section 5 we discuss how to identify testable implica- o : - .
. N : weaker conditions under which the likelihood-based infer-
tions implied by m-graphs on the observed data in the face

of data corrupted with missing values, and how to test theee can proceed while ignoring the missingness mecha-

G-MAR assumption. Section 6 concludes the paper. hism. For any missingness pattemetyob's denote the ob-
served components of andvmis the missing components.

o A missing data model is MAR if, for alP(r, v) > 0,
2 Missing Data Theory
P(r|Vobs Vmis, @) = P(r|Vops, @) for all vimis values (2)
In this section we review the theory of missing data mainly,;nere the values of are given byry, = 0 if Vi € Vops
due to Rubin [Rubin, 1976, Little and Rubin, 2002]. andry, = 1if Vi € Vs The MAR éssumption requires

Let V = {Vi,...,Vn) be a set of random variables with that missingness is independent of the missing valgs
probability distributionP(V|®) where® denotes model pa- given the observed values,s. Note that this isvent-level
rameters. Assume that we observe an i.i.d set of data caségnditional independence with specifiwalues, not con-
that may contain missing values. It is crucial in the anal-ditional independence between random variables. Also it
ysis of data with missing values to understand the mechaasks for diferent conditional independences for data cases
nisms that lead to missing data, in particular whether thevith different missingness patterns.

fact that variables are missing is related to the underlyq \;ngerstand the requirements by the MAR assumption,
ing value; of the varlables_ in the datg set. For_ this puryye consider a couple of examples.

pose we introduce a set ofissingness indicatorariables

R={Ry,,...,Ry,} suchthaRy, = 1 where the value of cor- Example 1 In the case that there is only one single vari-
responding/; is missing andRy, = 0 whereV; is observed. able X with missing values and all other variables S
LetV* = {V],...,V;} be a set of random variables that rep- are fully observed, the MAR assumption requirdRP=
resent the values &f we actually observe suchthateagh  1jx,s) = P(Rx = 1|s). This also leads to fRx = 0[x, ) =

is a deterministic function o¥; andRy,: V" = f(Vi,Ry), P(Rx = 0]s). Therefore in the case that missingness only
defined by occurs for a single variable X, the MAR assumption re-
quires that the random variablexRs independent of the

Vi ifry =0 (1)  random variable X given observed variables.

W= T ) :{ o ifry=1
Example 2 Now consider two variables X and Y both with
missing values. The MAR assumption requires the fol-
Assume our goal is to estima@parameters given an i.i.d lowing parameterization (Little and Rubin 2002, Example
set of observationg(v,r)}. With the presence of miss- 1.13, page 18)
ing values, we must consider not only the data-generatio
model P(V|®), but also the mechanism for missingness.'q’(RX =LRy=1xy)=PRx=1Ry=1)=0u
The joint distributionP(V, R®, ®) = P(V|®)P(RV,®) will  P(Rx = LRy = 0Ix,y) = P(Rx = 1, Ry = Oly) = g10(Y)
be called themissing data modeihere® and® denote 3)
model parameters, and thassingness mechanisschar-  P(Ry = 0,Ry = 1|x,y) = P(Rx = 0,Ry = 1|X) = go1(X)
acterized by the conditional distributi®{R)V, ®). P(Ry = 0, Ry = 0[%,Y) = Goo(%,¥) = 1 — 911 — gro(Y) — Gor(¥)
g;glsn r:?sssiﬁlslison;f;ertzllilslar;grgﬁtsjf)rrr??hsl@:%rgssiLng;[oa: hrev?/here Gj (-) represents some _function. W_e see that t_he MAR
random (MAR) andmissing not at random (MNARThe assumption allows thatm|_55|ngr1e§s variabjes@metimes

o . B . depends on X and sometimes is independent of X depend-
missing data model is MCAR ®(r|v, ®) = P(r|®), thatis, .
missingness does not depend on the valu&s afissing or ing on the values of R
pbserved. In other words, a missing data model is MCAR: o, 4 modelling point of view, the MAR assumption
if VILR? One example of MCAR is when respondents g quite unnatural and appears to be artificially made.
decide to reveal their income levels based on com-fllpsThe importance of the MAR assumption lies in that it
If the missing data model is MCAR, the(V,R®,®) = 5 g4id to be the weakest general condition under which

2\We useX L Y|Z to denote thaX is conditionally independent W€ can maximize the likelihood function in the parame-
of Y givenZ. ters® of the data generation distributid®(V|®) based on

where thex symbol represents a missing value.
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observed data while ignoring the missingness mechanismy, € R such that, in any observed data cadg,= 1 if the
P(RV, ®) (assuming that the paramet®sand® are dis- value of correspondiny; is missing andRy, = 0 if V; is
tinct) [Rubin, 1976]. This is based on the observation thabbserved. We require th& variables may not be parents
the distribution of the observed data can be decomposed g variables inv UU.® For any seB C Vp, letRs represent
the set ofR variables corresponding to variablesSn
P(Vobs» re, (I)) = Z P(Vobs Vmis|®) P(r|V0bs Vimis, (D)

Vmis

The DAGG provides a compact representation of the miss-
ing data modelP(V,U,R) = P(V,U)P(RV,U), and will

be called a m-graph of the model. We will often say the
modelP is compatiblewith the DAGG. The m-graph de-

A missing data model is MNAR if it is not MAR. For picts both the dependency relationships among variables in
example, online users were found to rate an item mor&/ U U and the missingness mechanisms, and it encodes
likely either if they love the item or if they hate it conditional independence relationships that can be réfad o
[Marlin et al, 2007]. In other words, the probability that the graph by d-separation criterion [Pearl, 1988] such that
a rating is missing is dependent on the user’s underlyingvery d-separation in the graghimplies conditional inde-
preferences. If the model is MNAR, then the full missing pendence in the distributio®. On the other hand, if every
data model including the missingness mechanism is needagbnditional independence relation truefs also captured

for likelihood-based inference f@. by the d-separation i, then we say is faithful to G. See

In Section 4 we will investigate the MAR assumption artic- Figures 1(a) and 2(a) for examples of m-graphs. We use

ulated as conditional independences between random vart> I(ldecwclishto”reprgselnt etllways obsetrvedty elllrlabll)e‘ﬁoln q
ables and then define a version of MAR when the missini:n » and noflow circles to represent partially observe

data model can be represented as a directed acyclic gra ﬁmables Vin
(DAG). For every variableV; € Vp, we introduce a proxy vari-
ableV; to represent the values df that are actually ob-

3 Graphical Representation of Missing Data served* such that;" is a det_erministic function of; and
Model Ry: Vi = f(V, Rvi)., as defln_ed by Eq. (1). We may ex-
pand a m-grapks with V;* variables by adding eadlf as
. . a common child o¥; andRy,, and will denote the resulting
Graphical models are widely used for repre-pag G- calledenrichedm-graph. See Figures 1(b) and
senting dgta generation  models  [Pearl, 2000Q(b) for examples of enriched m-graphs. Note that Mohan
Koller and Fr|edman,.2909]. Mohan et al. (2013) et al (2013) defined the gra@r as the m-graph, and did
used DAGs, callednissingness grapher m—graphsfor ot introduce the notion of enriched graph. However it is
short, to represent _both the data_l generation model anlamortant for us in this paper to distinguighwith G* as
the causal mechanlsms responsible for the missingNesk, onstrated in Section 5.
process. Next we define m-graphs, mostly following the
notations used in [Mohaet al., 2013]. We remark that we do not require the m-graphs to be
“causal’. However we would like to emphasize that the
: X ) power of DAG models often stems from its causal interpre-
V is the set of observable variablés,is the set of unob- tation, and we find it hard to imagine how a m-graph in-

served Ia_tent variables, aﬁds the set of missingqess indi- volving missingness mechanism would be formed without
cator variables representing the causal mechanisms that aausal thinking. Although Rubin’s MAR does not include

responsible for missingneds\We assume that is parti- causal assumption, it fiers from the cognitive diculty of

tlone%mtovo da.nd\flm dSUCh tha/, is the shet of varflabl_esbtlhat whether researchers are capable of judging the plaugibilit
are observed in all data cases afilis the set of variables ¢y <o assumptions.

that are missing in some data cases and observed in other
cased. Every variableV; € Vi is associated with a variable )
4 MAR in M-graphs

Note that we do not allow selection variables as we do not
consider selection bias issue in this paper. . . . L
“We assume we can partition thevariables intoV, andV,, In this section, W? 90”3_'der the MAR assumption 'n.m'

based on domain knowledge (or modeling assumption). In man@raphs. But we will first investigate the MAR assumption
applications, we have the knowledge that some variablealare articulated as conditional independences between random
ways observed in all data cases. In others, the partitiolddm  yariables as often (implicitly) used in the literature.

based on the modeling assumption whether a variable (tinat is

actually missing in the given data set) could be potentimigs-  The missing data model is MCAR RiL(V U U). In m-

ing. Note this is not some extra assumption of m-graphserath

Rubin’s MAR faces the same issue whether the MAR condition  °R variables are missingness indicator variables and we as-
is required only for the realized missing patterns in givatacdbr ~ sume that the data generation process &et) variables does

not. not depend on the missingness mechanism.

= P(Vopd®)P(I |Vobs D). (4)

Let G be a DAG over a set of variablésu U U R, where
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Y RUL(X, Y)IZ, RIL(X, 2)|Y, andRLL(Y, Z)|X.

& — —0O An easier to interpret definition called MARhas been
suggested by Pottlficet al. (2006) and is used as defini-
tion for MAR in [Mohanet al., 2013], which has addressed

° . subtlety (b) . RecalN/, is the set of variables that are always
g Y observed an¥y, is the set of variables that are missing in

Ry Ry
some cases.
@G (b) G

® X
'
O
x
<

Definition 2 (MAR +) A missing data model is called
Figure 1: A m-graplG and its enriched m-grap@* for ~ MAR+ if R1L(Vim U U)|Vo.
a model that is MCAR. Her&/, = {X}, Vi, = {Y}, and ) ) .
R = {Ry}. We use solid circles to represent always observedloW is MAR+ related to MAR*? If the possible miss-

variables, and hollow circles to represent partially opedr  ingness patterns include = (ry, = 1ry, = 0), then
variables inVy,. the MAR+ conditionR1L (Vi U U)|V, is also required by

MAR*. However, in general MAR may be a slightly

stronger requirementthan MAR* as shown in the following
graphs, this corresponds to that there will be no edges béroposition.

tweenR variables and the variables M U U. The two

conditions are equivalent if the distributid®(V,U,R) is  Proposition 1

faithful to its m-graphG. For example the model shown

in Figure 1 is MCAR. 1. If a missing data model is MARthen it is MAR*.

2. If the data model §/) is strictly positive, then MAR

4.1 Variable-level MAR and MAR* are equivalent.

As we have seen in Section 2, the standard MAR assump-3 | P(Ry. = L,Ry, = 0) > 0, then MAR- and MAR*
tion appears to be artificially made so that likelihood-lolase " °
inference can be performed while ignoring the missingness
mechanism. The assumption is quite unnatural from th
modelling point of view. Many authors find the definition
difficult to apply in practice and often work with random-
variable-level independences [Schafer and Graham, 2002
McKnightet al,, 2007, Graham, 2012]. There are two sub-
tleties with the MAR definition in Eqg. (2): (a) it in-
vokes event-level independences, and (b) it asks for in-
dependences betweerffdrent sets of variables forfeer-

ent missingness patterns (i.e ffdient partitions oV into

Vobs andVpis). To address subtlety (a), we formally define
MAR in terms of variable-level independences and name it 2. We show MAR* impliesR1L(Vi, U U)|V, if P(V) > 0.

are equivalent.

%roof: The proofs are based on the graphoid axioms
[Pearl, 1988] shown in the Appendix.

1. Consider any missingness patteNysg Vimis). Let
C = Vops\ Vo = Vops N Vi, be the set of variables
that are observed in this case but missing in some
other cases. Then we haVg, = Vpis U C. Given
R1L(Vmis U C U U)|V,, by the weak union axiom, we
obtainR1L(Vmis U U)|(Vo U C) whereV, U C = Vgps.

MAR*.6 If the missing data model is MAR*, then for any two
o o . missingness patterns we haRe (V. U U)IV2 _and

Definition 1 (MAR*) A missing data model is called Ru(V2_ U U)VZ. We obtainRL(VL U VZ._uU

MAR* if, for all possible missingness pattern= (ry,,, = UI(VE=A V2 ) By the generalized intersection rule

L v, = 0) with (1, v, U) > 0, RAL(Vimis U U)IVobs given in Lemma 1 in the Appendix (witd = V4, N

. . , VZ,S = (Vi .NnV2)uU,Y = Vi nVZ_ and
* obs’ mis mi ’ mis obs’
In general MAR* is a StI’ICtly stronger requwement than W = Vr%is n ngs). Keep using the generalized inter-

MAR since it asks for variable-level independences (i.e.,
it requires Eq. (2) holds for all possible valuesrahstead

of a specific value). MAR* may still be dicult to apply

in practice because it asks for a number of independences
between dierent sets of variables. For example, assume
we have three variable$, Y, andZ, such that in each data 3. With (R, = 1,Ry, = 0) being an allowed missingness
case the value of one and only one variable is revealed to  pattern, the MAR conditionRiL(Vy, U U)|V, is also
us (based on some random process). Then MAR* asks for  required by MAR*.

section rule to all missingness patterns and we obtain
Rl (VmUU)|V, sinceV, is the set of variables that are
always observed and, is the set of variables that are
missing in at least one missingness pattern.

6Although many authors work implicitly with variable-level
independences in using the MAR assumption, we have not seen o
such a formal definition in the literature.
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4.2 MAR in M-graphs X Y

Next we assume that the missing data modeés com-
patible with a m-graplt, and we look for graphical con-
ditions under whichMAR will hold such that likelihood-

based inference can be correctly performed while ignoring o Py v
the missingness mechanism. Ry Ry
For any missingness patteiyfs, Vmis), the distribution of @G (b)G*

the observed data can be computed as
Figure 2: A m-graph and its enriched m-graph for a model

P(Vops 110, ©) that is G-MAR.
= Z P(Vobs Vimis, UI®)P(r [Vobs Vmis, U, D)
Vimis of the unobservel variables or latent variables are parents

= Z P(Vobs Vimis, U|®) l—[ P(rv|paf™s pd™s, pa!, pd,, ),0f Ry, (i.e., Pgl" = Pg! = 0). We then have
Vmis,U {i:VieVm}
(5)  P(vobs 110, @)) = Z P(Vobs Vimis, UI®) 1_[ P(ri|pa®s, pdf , @)
Vmis,U i
where pa?ibs, parrf“s, pa;, andpg, represent the parents of = P(Vopd®)P(F [Vops D). 7)
Ry, in G that are observeW variable, unobserved vari-
ables, latent variables, arRivariables respectively. The The presence of any edge from some latent variable or a
MAR assumption would hold if each term in the productin yariable inVi, to someRy, will not guarantee the decouple
Eq. (5) is independent gfaf}"* andpa values, and we will  of the likelihood function without further more subtle as-
call this condition the local MAR. sumptions. We therefore use this requirement as the MAR

_ . condition in m-graphs and call it G-MARyaphical MAR.
Definition 3 (Local MAR) A missing data model

P(V, U, R) compatible with m-graph G is callddcal MAR  Definition 4 (G-MAR) A missing data model compatible
if, for every R, € R, for all pg"*and p& values, with a m-graph is called3-MAR if none of the variables
, in Vi, U U are parents of R variables.
P(rvIpa’, pal™, pal, pa),, @) = P(ry|pa™, pa), ®).
(6) In other words, this definition says the model is G-MAR if
missingness is not (directly) caused by any variables with

Note Eq. (6) represents context-specific independences ffissing values. This assumption is intuitively appealing
the fixedpa,, values since it holds for both values (0 or 1) and is much easier to understand than the standard MAR

of Ry, that is, it requires thaR, is independent oPa™s assumption. As an example, the model shown in Figure 2 is
and Fl’ar given Pat®s in the context pa. Local MARis ~G-MAR. Note thatifV, = 0, thatis, every variable is miss-

somewhat easier to interpret thsiARby taking advantage Nd in some data cases, then G-MAR is reduced to MCAR.

of the conditional independences encoded in the m-grapll; can be expected that G-MAR is a stronger requirement
however it is also a stronger requirement than MAR. than MAR. In fact, G-MAR is more closely related with

random-variable-level MAR* and MAR, and we have the
Proposition 2 If a missing data model P compatible with following results.

m-graph G is local MAR then it is MAR.

Theorem 1

Proof: If Eq. (?’) holds, - then P(”V‘?b? Vimis, U, D) = Let P be a missing data model compatible with a m-graph
[Tiivievy P(rvi[pal®s, pa™s, pa, pd , @) is independent of G
Vmis andu values. Therefore the model is MAR. O

1. If Pis G-MAR, then it is MAR.
In general local MAR is a stronger requirement than
MAR because thatP(r|Vops Vmis, U, ®) is independent 2. If Pis MARs, then it is MAR*.
of vmis values does not necessarily mean each term
P(rv|pal®s, pas, pal, pal., @) in the product is indepen-
dent ofvmis values. We have confirmed this by constructing
a counter example.

3. If P is faithful to G, then the three conditions G-MAR,
MAR+, and MAR* are equivalent.

4. If P is faithful to G, and there are no edges between
A general graphical condition to guarantee that Eq. (6) al- R variables in G, then G-MAR is equivalent to local
ways holds for all possible missingness patterns is tha¢ non MAR.
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Proof: X &
1. Any path from any variablBy, € Rto any variable in \ /
Vm or U is blocked byR's parents which are variables Ry X Ry o
in V, (recall we do not allowR variables to havey o ¢ O — o X
variables oU variables as children in the m-graph). (@) Gy (b) G2 (©)G;

2. This has been proved in Proposition 1. Figure 3: The two model&; andG, are indistinguishable,

3. (a) We show MAR* implies MAR-. If P is faithful ~ despite of the independeneaL Rx encoded byG;.
to G then all the conditional independencesHrare
captu_red by the d-sepa_lranon.crlterlon which is knownform of conditional independences can be redkl the
to satisfy the intersection axiom [Pearl, 1988]. Then . L

. ) . raph through the d-separation criterion, and they con-
the generalized intersection rule holds (see Lemma gr A ) .
. ) % ot stitute all the testable implications if there is no latent
in the Appendix). Therefore MAR* implies MAR : :
o variables in the model [Pearl, 1988]. In the presence
by the same proof for Proposition 1.2. . . ; . .
of latent variables, algorithms for identifying equality

o o constraints (often called Verma constraints) are given

(b)we show MAR- implies G-MAR. If P is faithful in [Tian and Pearl, 2002, Shpitser and Pearl, 2008], and

to G then all the conditional independencesirare  methods for identifying inequality constraints are given

captured by the d-separationRiL (Vi UU)NVo in P, in  [Pearl, 1995, Geiger and Meek, 1999, Bonet, 2001,

then there cannot exist edges between@griable  kang and Tian, 2006]. When data are complete, these

and anyVr, or U variable. Therefore the modelis G- constraints can be tested against data. The testability,

MAR. however, is impeded when the data available are corrupted

4. First it is obvious that ifP is G-MAR then it DY missing values.

is local MAR. Now if Pg. = 0, then Eqg. (6)

becomes a conditional independence requiremerf-1 Peculiarity of Testability in Missing Data

Ry, IL(P&™s, Pal')|PaPswith the disappearance of the _

C(\)/Inte(xtgé{ . S?Hz:'esrils faithful to G, tﬁ?s means none Mohan and Pearl (20,14_) noted a peculiar phe_nomgnon that

of the variables i/ U U are parents oR variables. in the presence of missing data, some conditional indepen-
dences conveyed by the m-graph may not be testable even
when the full joint distribution is estimable unbiasedly, a
shown in the following example.

O

In conclusion, G-MAR is a strictly stronger requirement Example 3 Consider a model Pcompatible with the m-
than MAR, with the main dference being the former re- graph G, shown in Figure 3(a). Pis MCAR, and encodes
quires variable-level independences while the latter onljindependence XRx. The joint distribution can be esti-
asks for event-level independences. From modelling poinmated from the observed data as

of view, if a model is judged as MNAR by G-MAR, then

most likely it will not be MAR, unless certain subtle inde- P1(X,Rx) = P1(X|Rx = 0)P1(Rx) = P1(X"IRx = 0)P1(Rx).
pendences between events are satisfied which are not cap- (8)
tured by graphical structures and are normallidiilt to Can we then test the independence claimB in data
judge or justify. An example of subtle independences that

are dfficult to justify and capture by graphical structure is gnd therefore distinguish this model with the model G

) ” - .
the model specified by Eq. (3) in Example 2. An m-graphm Figure 3(b)? Perhaps surprisingly, the independence

compatible with this model would hawx (andRy) de- XJJ.‘RX Is not testable, and th‘? .tWO models are i”diSt"?‘
pending onX andY, and the model would be considered guishable. Next we show explicitly that any observed dis-

' tribution P(X*, Rx) (produced by @) can be emulated by
MNAR by G-MAR.

G;. Formally, for any observed distribution(R*, Rx), we

o _ can construct a model (shown in the following) satisfying
5 Testable Implications in M-graphs XJ1LRx that produces PX*, Ry):

Does G-MAR assumption lend itself to statistical tests P1(X, Rx) = P1(X)P1(Rx), 9)
from data? To answer this question, we first address the

more general question of whether a m-graph is testabl¥/here
given that data are corrupted by missing values. The W . _ _
problem of identifying constraints implied by graphi- P1(X = %) = PX" = XIRx = 0) (10)
cal models has been well studied. Constraints in the P1(Rx) = P(Rx)- (11)
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X Y é X
O X Y
: / / Q\\
/ X ® L ] Z@———~0——~0—@
Y Ry Y Ry X
o . oV (@) G (b)G*
Ry Ry
(@G (b)G* Figure 5: A m-graph in which whether there is an edge

from X to Ry can be tested by independerielLZ.
Figure 4. The m-grapfs encodes<LY, howeverG* en-

codes no Cls but inequality constraints. Example 5 To see whether the model G in Fig-

ure 4(a) is testable (note this model is considered in

Mohan and Pearl (2014) addressed this issue by investLMOhan and Pearl, 2014, Example 8]), we consider the en-

gating the following question: what conditional indepen-"'ched graph G showniin Figure 4(b). Although G encodes

dences (CIX1LY|Z are (syntactically) testable, wheke X1LY, there is no CI.S among X,*,Yapd R n G How-

Y, andZ may includeVy, andR variables? Note they stud- e\:gr, for X and Y being dlsgretel variables, it is known_that
ied the syntactic testability of a given CI, not with respectG |mplles testable ponstra_lnts in the form of inequalities
to a given model or m-graph. WhetherLY|Z is testable or called m_strumental mequal_m[PearI, 199_5]' For a com- )
not depends only on the syntax of the CI sentence, that igrehenswe treatment of this model using convex analysis
the type Vo, Vin, R) of variables that appear in the CI. For Pléase see [Bonet, 2001].

example, ifX, Y, Z c V,, thenX1LY|Z is said to be testable. -

They have developed a number offitient conditions un-  9-3  Testability of G-MAR

der which ClI claims involving/, U Vi, andR variables can
be expressed in terms of the observed variagle¥*, and
R.

In the literature, in general MCAR is considered testable
[Little, 1988], while MAR is said to be not testable.
However, when assumptions are made on the data gen-
] o eration model (such as compatible with a hypothesized
5.2 Resolving the Peculiarity m-graphG), MAR may become testable [Jaeger, 2005a,
Jaeger, 2006b]. The testability of MARhas been studied

In this paper, we study the following question: what are; [Potthaf et al, 2006, Mohan and Pearl, 2014].

the testable implications implied by a given model struc-
ture on the observed data given that data are corrupted bhe testability of G-MAR concerns with the question of
missing values? In the presence of missing data, the obwhether there exist edges betweeR &ariable and vari-
served distribution is specified B(V,, V*,R). Our idea ablesinVy, U U. In general, whether an edge is testable or
is that, to determine constraints implied by the m-gr@h notis sensible to the graphical structure, and can be judged
on P(V,, V*, R), we could directly work with the enriched by looking for testable implications in the enriched graph,
graphG* which addsV* variables toG. It is not neces- for which many techniques have been developed (see the
sary to first look for testable implications & on P(V,R)  discussion in the beginning of Section 5).

and then to try to figure out whether these implications are

testable or not in terms of observe@V,, V*,R) (as done EX@mple 6 The model in Figure 1(a) is MCAR. Gen-
in [Mohan and Pearl, 2014]). codes a testable independencelRX, which can be used

to test whether there is an edge from X or Y to R
In other words, in order to identify testable implications

implied by the m-graplG on the observed data, we look Example 7 The model in Figure 2(a) is G-MAR.*Gn-

for testable implications implied by the enriched gr&gih  codes no testable implications. Therefore G-MAR assump-
on P(V,, V*, R) assuming that th¥, variables are latent tion is not testable.

variables (as well ag). This latter problem has been well

studied and many techniques have been developed (see th¥ample 8 The model in Figure 5(a) is G-MAR."Gen-
discussion in the beginning of Section 5). In conclusion, wecodes a testable independencelfZ, which can be used
have converted the peculiar testability problem in missingf© test whether there is an edge from X to. R5-MAR as-
data into a problem well understood and studied. sumption is testable in this sense.

Example 4 To see whether the model in Figure 3(a) is6 Conclusions

testable, we consider the enriched graph shown in Fig-

ure 3(c), and conclude that the model imposes no conMAR plays a central role in the theory underlying the
straints on X", Rx). The peculiarity is resolved. current methods for handling missing data. Under the
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MAR assumption, likelihood-based inference (as well asLemma 1 Generalized intersection ruld P(Y, Z, W) > 0,
Bayesian inference) can be carried out while ignoring the

missingness mechanism. However the standard difinition XLYuszuw) & XuWus)Zuy)
of MAR is difficult to apply in practice. We have proposed = Xu(YuWu S)iz

G-MAR as an alternative definition for MAR in graphical

missing data models and established its relation with théroof: X1 (Y U S)|(Z U W) leads toX1LY|(Z U W), and
standard MAR and a few versions of MAR used in the lit- X1 (W U S)|(Z U Y) leads toX1.W|(Z U Y) by decom-
erature. G-MAR is intuitively appealing from the model- position. We then obtaiiXi.(Y U W)|Z by intersection,

ing point of the view and is easier to interpret and to ap-and further X1.Y|Z by decomposition. NowXl1LY|Z

ply in practice than the standard MAR. We have addressednd X1L(W U S)|(Z U Y) lead toX1L(Y U W U S)|Z by

the question of whether G-MAR is testable and whethercontraction. O

the missing data model is testable, given that data are cor-

rupted by missingness, by converting the problem into a

well studied problem of identifying constraints in graphi- Acknowledgements
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