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Abstract

The notion of missing at random (MAR) plays
a central role in the theory underlying current
methods for handling missing data. However the
standard definition of MAR is difficult to inter-
pret in practice. In this paper, we assume the
missing data model is represented as a directed
acyclic graph that not only encodes the depen-
dencies among the variables but also explicitly
portrays the causal mechanisms responsible for
the missingness process. We introduce an intu-
itively appealing notion of MAR in such graph-
ical models, and establish its relation with the
standard MAR and a few versions of MAR used
in the literature. We address the question of
whether MAR is testable, given that data are cor-
rupted by missingness, by proposing a general
method for identifying testable implications im-
posed by the graphical structure on the observed
data.

1 Introduction

The missing data problem is ubiquitous in every experi-
mental science. There is a vast literature on missing data
in diverse fields such as social science, biology, statistics
and machine learning. Most of the current methods for
handling missing data are based on the seminal theoreti-
cal work of Rubin [Rubin, 1976, Little and Rubin, 2002].
Central to Rubin’s missing data theory is the concept of
missing at random (MAR).1 Under the MAR assumption,
likelihood-based inference (as well as Bayesian inference)
can be carried out while ignoring the mechanism that

1Missing data is a special case ofcoarse data, and MAR
is a special case of coarsening at random (CAR). We will not
consider CAR in this paper. For theories on CAR we refer to
[Heitjan and Rubin, 1991, Gillet al., 1997, Jaeger, 2005b].
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leads to missing data. For example, most work in ma-
chine learning assumes MAR in dealing with missing data
and proceeds with maximum likelihood or Bayesian infer-
ence. For exceptions see [Jaeger, 2006a], and recent work
on collaborative filtering that explicitly incorporate miss-
ing data mechanism into the model [Marlinet al., 2007,
Marlin and Zemel, 2009, Marlinet al., 2011].

Many authors find Rubin’s definition of MAR difficult to
apply in practice because it invokes subtle event-level con-
ditional independences (CIs) [Schafer and Graham, 2002,
McKnight et al., 2007, Graham, 2012]. Indeed the MAR
definition is quite unnatural from the modelling point of
view (see Example 2 in Section 2). In Practice many au-
thors often work with random variable level CIs when in-
terpreting MAR. Recently Mohan et al (2013) have pro-
posed to use graphical models to encode the missing data
model, calledm-graphs, by representing both CI relations
among variables and the causal mechanims responsible for
the missingness process. Mohan et al. (2013) derived
graphical conditions under which a probability quantity can
be estimated consistently from data with missing values.
Mohan and Pearl (2014) investigated whether such graphi-
cal models are subjected to statistical test, noting testability
of CIs is impeded when data are contaminated by missing
values.

In this paper we investigate several versions of definition of
MAR used in the literature and propose a graphical version.
We then address the question of whether a hypothesized
graphical model is testable and whether MAR is testable in
a given model. Our main contributions are:

• We introduce a version of MAR defined in terms of
graphical structures, called G-MAR, and formally es-
tablish its relation with variable level MAR and with
the standard MAR. G-MAR is intuitively appealing
from the modelling point of view, and is much eas-
ier to interpret and to justify/falsify than the standard
MAR.

• We propose a method for identifying testable implica-
tions in graphical missing data models, and for testing
MAR assumption in those models, given that data are
corrupted by missingness.
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The paper is organized as follows. In Section 2, we re-
view Rubin’s missing data theory. Section 3 defines the
notion of m-graphs as introduced in [Mohanet al., 2013].
In Section 4 we investigate several versions of MAR defini-
tion, introduce our graphical version G-MAR, and establish
their relations with each other and with the stardard MAR.
In Section 5 we discuss how to identify testable implica-
tions implied by m-graphs on the observed data in the face
of data corrupted with missing values, and how to test the
G-MAR assumption. Section 6 concludes the paper.

2 Missing Data Theory

In this section we review the theory of missing data mainly
due to Rubin [Rubin, 1976, Little and Rubin, 2002].

Let V = {V1, . . . ,Vn} be a set of random variables with
probability distributionP(V|Θ) whereΘ denotes model pa-
rameters. Assume that we observe an i.i.d set of data cases
that may contain missing values. It is crucial in the anal-
ysis of data with missing values to understand the mecha-
nisms that lead to missing data, in particular whether the
fact that variables are missing is related to the underly-
ing values of the variables in the data set. For this pur-
pose we introduce a set ofmissingness indicatorvariables
R= {RV1, . . . ,RVn} such thatRVi = 1 where the value of cor-
respondingVi is missing andRVi = 0 whereVi is observed.
Let V∗ = {V∗1, . . . ,V

∗
n} be a set of random variables that rep-

resent the values ofV we actually observe such that eachV∗i
is a deterministic function ofVi andRVi : V∗i = f (Vi ,RVi ),
defined by

v∗i = f (vi , rvi ) =

{

vi if rvi = 0
∗ if rvi = 1

(1)

where the∗ symbol represents a missing value.

Assume our goal is to estimateΘ parameters given an i.i.d
set of observations{(v∗, r)}. With the presence of miss-
ing values, we must consider not only the data-generation
model P(V|Θ), but also the mechanism for missingness.
The joint distributionP(V,R|Θ,Φ) = P(V|Θ)P(R|V,Φ) will
be called themissing data modelwhereΘ andΦ denote
model parameters, and themissingness mechanismis char-
acterized by the conditional distributionP(R|V,Φ).

Rubin has classified missingness mechanisms into three
types: missing completely at random (MCAR), missing at
random (MAR), andmissing not at random (MNAR). The
missing data model is MCAR ifP(r |v,Φ) = P(r |Φ), that is,
missingness does not depend on the values ofV, missing or
observed. In other words, a missing data model is MCAR
if V⊥⊥R.2 One example of MCAR is when respondents
decide to reveal their income levels based on coin-flips.
If the missing data model is MCAR, thenP(V,R|Θ,Φ) =

2We useX⊥⊥Y|Z to denote thatX is conditionally independent
of Y givenZ.

P(V|Θ)P(R|Φ). As a consequence, assuming that the pa-
rametersΘ andΦ are distinct, the likelihood function of
Θ andΦ decouples, and we can maximize the likelihood
of Θ parameters independently, ignoring the missingness
mechanismP(R|Φ).

MCAR is a very strong requirement. It turns out there are
weaker conditions under which the likelihood-based infer-
ence can proceed while ignoring the missingness mecha-
nism. For any missingness patternr, let vobs denote the ob-
served components ofv, andvmis the missing components.
A missing data model is MAR if, for allP(r, v) > 0,

P(r |vobs, vmis,Φ) = P(r |vobs,Φ) for all vmis values, (2)

where the values ofr are given byrVi = 0 if Vi ∈ Vobs

and rVi = 1 if Vi ∈ Vmis. The MAR assumption requires
that missingness is independent of the missing valuesvmis

given the observed valuesvobs. Note that this isevent-level
conditional independence with specificr values, not con-
ditional independence between random variables. Also it
asks for different conditional independences for data cases
with different missingness patterns.

To understand the requirements by the MAR assumption,
we consider a couple of examples.

Example 1 In the case that there is only one single vari-
able X with missing values and all other variables S
are fully observed, the MAR assumption requires P(RX =

1|x, s) = P(RX = 1|s). This also leads to P(RX = 0|x, s) =
P(RX = 0|s). Therefore in the case that missingness only
occurs for a single variable X, the MAR assumption re-
quires that the random variable RX is independent of the
random variable X given observed variables.

Example 2 Now consider two variables X and Y both with
missing values. The MAR assumption requires the fol-
lowing parameterization (Little and Rubin 2002, Example
1.13, page 18)

P(RX = 1,RY = 1|x, y) = P(RX = 1,RY = 1) = g11

P(RX = 1,RY = 0|x, y) = P(RX = 1,RY = 0|y) = g10(y)
(3)

P(RX = 0,RY = 1|x, y) = P(RX = 0,RY = 1|x) = g01(x)

P(RX = 0,RY = 0|x, y) = g00(x, y) = 1− g11− g10(y) − g01(x)

where gi j (·) represents some function. We see that the MAR
assumption allows that missingness variable RX sometimes
depends on X and sometimes is independent of X depend-
ing on the values of RX.

From a modelling point of view, the MAR assumption
is quite unnatural and appears to be artificially made.
The importance of the MAR assumption lies in that it
is said to be the weakest general condition under which
we can maximize the likelihood function in the parame-
tersΘ of the data generation distributionP(V|Θ) based on
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observed data while ignoring the missingness mechanism
P(R|V,Φ) (assuming that the parametersΘ andΦ are dis-
tinct) [Rubin, 1976]. This is based on the observation that
the distribution of the observed data can be decomposed as

P(vobs, r |Θ,Φ) =
∑

vmis

P(vobs, vmis|Θ)P(r |vobs, vmis,Φ)

= P(vobs|Θ)P(r |vobs,Φ). (4)

A missing data model is MNAR if it is not MAR. For
example, online users were found to rate an item more
likely either if they love the item or if they hate it
[Marlin et al., 2007]. In other words, the probability that
a rating is missing is dependent on the user’s underlying
preferences. If the model is MNAR, then the full missing
data model including the missingness mechanism is needed
for likelihood-based inference forΘ.

In Section 4 we will investigate the MAR assumption artic-
ulated as conditional independences between random vari-
ables and then define a version of MAR when the missing
data model can be represented as a directed acyclic graph
(DAG).

3 Graphical Representation of Missing Data
Model

Graphical models are widely used for repre-
senting data generation models [Pearl, 2000,
Koller and Friedman, 2009]. Mohan et al. (2013)
used DAGs, calledmissingness graphsor m-graphsfor
short, to represent both the data generation model and
the causal mechanisms responsible for the missingness
process. Next we define m-graphs, mostly following the
notations used in [Mohanet al., 2013].

Let G be a DAG over a set of variablesV ∪ U ∪ R, where
V is the set of observable variables,U is the set of unob-
served latent variables, andR is the set of missingness indi-
cator variables representing the causal mechanisms that are
responsible for missingness.3 We assume thatV is parti-
tioned intoVo andVm such thatVo is the set of variables that
are observed in all data cases andVm is the set of variables
that are missing in some data cases and observed in other
cases.4 Every variableVi ∈ Vm is associated with a variable

3Note that we do not allow selection variables as we do not
consider selection bias issue in this paper.

4We assume we can partition theV variables intoVo andVm

based on domain knowledge (or modeling assumption). In many
applications, we have the knowledge that some variables areal-
ways observed in all data cases. In others, the partition could be
based on the modeling assumption whether a variable (that isnot
actually missing in the given data set) could be potentiallymiss-
ing. Note this is not some extra assumption of m-graphs, rather
Rubin’s MAR faces the same issue whether the MAR condition
is required only for the realized missing patterns in given data or
not.

RVi ∈ R such that, in any observed data case,RVi = 1 if the
value of correspondingVi is missing andRVi = 0 if Vi is
observed. We require thatR variables may not be parents
of variables inV∪U.5 For any setS ⊆ Vm, letRS represent
the set ofR variables corresponding to variables inS.

The DAGG provides a compact representation of the miss-
ing data modelP(V,U,R) = P(V,U)P(R|V,U), and will
be called a m-graph of the model. We will often say the
modelP is compatiblewith the DAGG. The m-graph de-
picts both the dependency relationships among variables in
V ∪ U and the missingness mechanisms, and it encodes
conditional independence relationships that can be read off

the graph by d-separation criterion [Pearl, 1988] such that
every d-separation in the graphG implies conditional inde-
pendence in the distributionP. On the other hand, if every
conditional independence relation true inP is also captured
by the d-separation inG, then we sayP is faithful to G. See
Figures 1(a) and 2(a) for examples of m-graphs. We use
solid circles to represent always observed variables inVo

and R, and hollow circles to represent partially observed
variables inVm.

For every variableVi ∈ Vm we introduce a proxy vari-
ableV∗i to represent the values ofVi that are actually ob-
served such thatV∗i is a deterministic function ofVi and
RVi : V∗i = f (Vi ,RVi ), as defined by Eq. (1). We may ex-
pand a m-graphG with V∗i variables by adding eachV∗i as
a common child ofVi andRVi , and will denote the resulting
DAG G∗, calledenrichedm-graph. See Figures 1(b) and
2(b) for examples of enriched m-graphs. Note that Mohan
et al (2013) defined the graphG∗ as the m-graph, and did
not introduce the notion of enriched graph. However it is
important for us in this paper to distinguishG with G∗ as
demonstrated in Section 5.

We remark that we do not require the m-graphs to be
“causal”. However we would like to emphasize that the
power of DAG models often stems from its causal interpre-
tation, and we find it hard to imagine how a m-graph in-
volving missingness mechanism would be formed without
causal thinking. Although Rubin’s MAR does not include
causal assumption, it suffers from the cognitive difficulty of
whether researchers are capable of judging the plausibility
of those assumptions.

4 MAR in M-graphs

In this section, we consider the MAR assumption in m-
graphs. But we will first investigate the MAR assumption
articulated as conditional independences between random
variables as often (implicitly) used in the literature.

The missing data model is MCAR ifR⊥⊥(V ∪ U). In m-

5R variables are missingness indicator variables and we as-
sume that the data generation process overV, U variables does
not depend on the missingness mechanism.
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*

X Y
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Y

(a)G (b) G∗

Figure 1: A m-graphG and its enriched m-graphG∗ for
a model that is MCAR. HereVo = {X}, Vm = {Y}, and
R= {RY}. We use solid circles to represent always observed
variables, and hollow circles to represent partially observed
variables inVm.

graphs, this corresponds to that there will be no edges be-
tweenR variables and the variables inV ∪ U. The two
conditions are equivalent if the distributionP(V,U,R) is
faithful to its m-graphG. For example the model shown
in Figure 1 is MCAR.

4.1 Variable-level MAR

As we have seen in Section 2, the standard MAR assump-
tion appears to be artificially made so that likelihood-based
inference can be performed while ignoring the missingness
mechanism. The assumption is quite unnatural from the
modelling point of view. Many authors find the definition
difficult to apply in practice and often work with random-
variable-level independences [Schafer and Graham, 2002,
McKnight et al., 2007, Graham, 2012]. There are two sub-
tleties with the MAR definition in Eq. (2): (a) it in-
vokes event-level independences, and (b) it asks for in-
dependences between different sets of variables for differ-
ent missingness patterns (i.e., different partitions ofV into
Vobs andVmis). To address subtlety (a), we formally define
MAR in terms of variable-level independences and name it
MAR*. 6

Definition 1 (MAR*) A missing data model is called
MAR* if, for all possible missingness pattern r= (rVmis =

1, rVobs = 0) with P(r, v, u) > 0, R⊥⊥(Vmis∪ U)|Vobs.

In general MAR* is a strictly stronger requirement than
MAR since it asks for variable-level independences (i.e.,
it requires Eq. (2) holds for all possible values ofr instead
of a specific value). MAR* may still be difficult to apply
in practice because it asks for a number of independences
between different sets of variables. For example, assume
we have three variablesX, Y, andZ, such that in each data
case the value of one and only one variable is revealed to
us (based on some random process). Then MAR* asks for

6Although many authors work implicitly with variable-level
independences in using the MAR assumption, we have not seen
such a formal definition in the literature.

R⊥⊥(X,Y)|Z, R⊥⊥(X,Z)|Y, andR⊥⊥(Y,Z)|X.

An easier to interpret definition called MAR+ has been
suggested by Potthoff et al. (2006) and is used as defini-
tion for MAR in [Mohanet al., 2013], which has addressed
subtlety (b) . RecallVo is the set of variables that are always
observed andVm is the set of variables that are missing in
some cases.

Definition 2 (MAR+) A missing data model is called
MAR+ if R⊥⊥(Vm∪ U)|Vo.

How is MAR+ related to MAR*? If the possible miss-
ingness patterns includer = (rVm = 1, rVo = 0), then
the MAR+ conditionR⊥⊥(Vm ∪ U)|Vo is also required by
MAR*. However, in general MAR+ may be a slightly
stronger requirement than MAR* as shown in the following
proposition.

Proposition 1

1. If a missing data model is MAR+, then it is MAR*.

2. If the data model P(V) is strictly positive, then MAR+
and MAR* are equivalent.

3. If P(RVm = 1,RVo = 0) > 0, then MAR+ and MAR*
are equivalent.

Proof: The proofs are based on the graphoid axioms
[Pearl, 1988] shown in the Appendix.

1. Consider any missingness pattern (Vobs,Vmis). Let
C = Vobs \ Vo = Vobs ∩ Vm be the set of variables
that are observed in this case but missing in some
other cases. Then we haveVm = Vmis ∪ C. Given
R⊥⊥(Vmis∪ C ∪ U)|Vo, by the weak union axiom, we
obtainR⊥⊥(Vmis∪ U)|(Vo ∪C) whereVo ∪C = Vobs.

2. We show MAR* impliesR⊥⊥(Vm∪U)|Vo if P(V) > 0.
If the missing data model is MAR*, then for any two
missingness patterns we haveR⊥⊥(V1

mis∪ U)|V1
obs and

R⊥⊥(V2
mis ∪ U)|V2

obs. We obtainR⊥⊥(V1
mis ∪ V2

mis ∪

U)|(V1
obs∩ V2

obs) by the generalized intersection rule
given in Lemma 1 in the Appendix (withZ = V1

obs∩

V2
obs, S = (V1

mis ∩ V2
mis) ∪ U, Y = V1

mis ∩ V2
obs, and

W = V2
mis ∩ V1

obs). Keep using the generalized inter-
section rule to all missingness patterns and we obtain
R⊥⊥(Vm∪U)|Vo sinceVo is the set of variables that are
always observed andVm is the set of variables that are
missing in at least one missingness pattern.

3. With (RVm = 1,RVo = 0) being an allowed missingness
pattern, the MAR+ conditionR⊥⊥(Vm ∪ U)|Vo is also
required by MAR*.

�
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4.2 MAR in M-graphs

Next we assume that the missing data modelP is com-
patible with a m-graphG, and we look for graphical con-
ditions under whichMAR will hold such that likelihood-
based inference can be correctly performed while ignoring
the missingness mechanism.

For any missingness pattern (Vobs,Vmis), the distribution of
the observed data can be computed as

P(vobs, r |Θ,Φ)

=
∑

vmis,u

P(vobs, vmis, u|Θ)P(r |vobs, vmis, u,Φ)

=
∑

vmis,u

P(vobs, vmis, u|Θ)
∏

{i:Vi∈Vm}

P(rVi |paobs
r i
, pamis

r i
, pau

r i
, par

r i
,Φ),

(5)

wherepaobs
r i
, pamis

r i
, pau

r i
, and par

r i
represent the parents of

RVi in G that are observedV variable, unobservedV vari-
ables, latent variables, andR variables respectively. The
MAR assumption would hold if each term in the product in
Eq. (5) is independent ofpamis

r i
andpau

r i
values, and we will

call this condition the local MAR.

Definition 3 (Local MAR) A missing data model
P(V,U,R) compatible with m-graph G is calledlocal MAR
if, for every RVi ∈ R, for all pamis

r i
and paur i

values,

P(rVi |paobs
r i
, pamis

r i
, pau

r i
, par

r i
,Φ) = P(rVi |paobs

r i
, par

r i
,Φ).

(6)

Note Eq. (6) represents context-specific independences in
the fixedpar

r i
values since it holds for both values (0 or 1)

of RVi , that is, it requires thatRVi is independent ofPamis
r i

and Pau
r i

given Paobs
r i

in the context parr i
. Local MAR is

somewhat easier to interpret thanMARby taking advantage
of the conditional independences encoded in the m-graph,
however it is also a stronger requirement than MAR.

Proposition 2 If a missing data model P compatible with
m-graph G is local MAR then it is MAR.

Proof: If Eq. (6) holds, thenP(r |vobs, vmis, u,Φ) =
∏

{i:Vi∈Vm}
P(rVi |paobs

r i
, pamis

r i
, pau

r i
, par

r i
,Φ) is independent of

vmis andu values. Therefore the model is MAR. �

In general local MAR is a stronger requirement than
MAR because thatP(r |vobs, vmis, u,Φ) is independent
of vmis values does not necessarily mean each term
P(rVi |paobs

r i
, pamis

r i
, pau

r i
, par

r i
,Φ) in the product is indepen-

dent ofvmis values. We have confirmed this by constructing
a counter example.

A general graphical condition to guarantee that Eq. (6) al-
ways holds for all possible missingness patterns is that none

Y

X Y

R
*

X Y

RY

Y

(a)G (b) G∗

Figure 2: A m-graph and its enriched m-graph for a model
that is G-MAR.

of the unobservedV variables or latent variables are parents
of RVi (i.e.,Pamis

r i
= Pau

r i
= ∅). We then have

P(vobs, r |Θ,Φ)) =
∑

vmis,u

P(vobs, vmis, u|Θ)
∏

i

P(r i |paobs
r i
, par

r i
,Φ)

= P(vobs|Θ)P(r |vobs,Φ). (7)

The presence of any edge from some latent variable or a
variable inVm to someRVi will not guarantee the decouple
of the likelihood function without further more subtle as-
sumptions. We therefore use this requirement as the MAR
condition in m-graphs and call it G-MAR (graphical MAR).

Definition 4 (G-MAR) A missing data model compatible
with a m-graph is calledG-MAR if none of the variables
in Vm ∪U are parents of R variables.

In other words, this definition says the model is G-MAR if
missingness is not (directly) caused by any variables with
missing values. This assumption is intuitively appealing
and is much easier to understand than the standard MAR
assumption. As an example, the model shown in Figure 2 is
G-MAR. Note that ifVo = ∅, that is, every variable is miss-
ing in some data cases, then G-MAR is reduced to MCAR.

It can be expected that G-MAR is a stronger requirement
than MAR. In fact, G-MAR is more closely related with
random-variable-level MAR* and MAR+, and we have the
following results.

Theorem 1
Let P be a missing data model compatible with a m-graph
G.

1. If P is G-MAR, then it is MAR+.

2. If P is MAR+, then it is MAR*.

3. If P is faithful to G, then the three conditions G-MAR,
MAR+, and MAR* are equivalent.

4. If P is faithful to G, and there are no edges between
R variables in G, then G-MAR is equivalent to local
MAR.
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Proof:

1. Any path from any variableRVi ∈ R to any variable in
Vm or U is blocked byR’s parents which are variables
in Vo (recall we do not allowR variables to haveV
variables orU variables as children in the m-graph).

2. This has been proved in Proposition 1.

3. (a) We show MAR* implies MAR+. If P is faithful
to G then all the conditional independences inP are
captured by the d-separation criterion which is known
to satisfy the intersection axiom [Pearl, 1988]. Then
the generalized intersection rule holds (see Lemma 1
in the Appendix). Therefore MAR* implies MAR+
by the same proof for Proposition 1.2.

(b)We show MAR+ implies G-MAR. If P is faithful
to G then all the conditional independences inP are
captured by the d-separation. IfR⊥⊥(Vm∪ U)|Vo in P,
then there cannot exist edges between anyR variable
and anyVm or U variable. Therefore the model is G-
MAR.

4. First it is obvious that ifP is G-MAR then it
is local MAR. Now if Par

r i
= ∅, then Eq. (6)

becomes a conditional independence requirement
RVi⊥⊥(Pamis

r i
,Pau

r i
)|Paobs

r i
with the disappearance of the

contextpar
r i
. SinceP is faithful toG, this means none

of the variables inVm∪ U are parents ofRvariables.

�

In conclusion, G-MAR is a strictly stronger requirement
than MAR, with the main difference being the former re-
quires variable-level independences while the latter only
asks for event-level independences. From modelling point
of view, if a model is judged as MNAR by G-MAR, then
most likely it will not be MAR, unless certain subtle inde-
pendences between events are satisfied which are not cap-
tured by graphical structures and are normally difficult to
judge or justify. An example of subtle independences that
are difficult to justify and capture by graphical structure is
the model specified by Eq. (3) in Example 2. An m-graph
compatible with this model would haveRX (and RY) de-
pending onX andY, and the model would be considered
MNAR by G-MAR.

5 Testable Implications in M-graphs

Does G-MAR assumption lend itself to statistical tests
from data? To answer this question, we first address the
more general question of whether a m-graph is testable
given that data are corrupted by missing values. The
problem of identifying constraints implied by graphi-
cal models has been well studied. Constraints in the

X RX X RX
*

X RX

X

(a)G1 (b) G2 (c) G∗1

Figure 3: The two modelsG1 andG2 are indistinguishable,
despite of the independenceX⊥⊥RX encoded byG1.

form of conditional independences can be read off the
graph through the d-separation criterion, and they con-
stitute all the testable implications if there is no latent
variables in the model [Pearl, 1988]. In the presence
of latent variables, algorithms for identifying equality
constraints (often called Verma constraints) are given
in [Tian and Pearl, 2002, Shpitser and Pearl, 2008], and
methods for identifying inequality constraints are given
in [Pearl, 1995, Geiger and Meek, 1999, Bonet, 2001,
Kang and Tian, 2006]. When data are complete, these
constraints can be tested against data. The testability,
however, is impeded when the data available are corrupted
by missing values.

5.1 Peculiarity of Testability in Missing Data

Mohan and Pearl (2014) noted a peculiar phenomenon that
in the presence of missing data, some conditional indepen-
dences conveyed by the m-graph may not be testable even
when the full joint distribution is estimable unbiasedly, as
shown in the following example.

Example 3 Consider a model P1 compatible with the m-
graph G1 shown in Figure 3(a). P1 is MCAR, and encodes
independence X⊥⊥RX. The joint distribution can be esti-
mated from the observed data as

P1(X,RX) = P1(X|RX = 0)P1(RX) = P1(X∗|RX = 0)P1(RX).
(8)

Can we then test the independence claim X⊥⊥RX in data
and therefore distinguish this model with the model G2

in Figure 3(b)? Perhaps surprisingly, the independence
X⊥⊥RX is not testable, and the two models are indistin-
guishable. Next we show explicitly that any observed dis-
tribution P(X∗,RX) (produced by G2) can be emulated by
G1. Formally, for any observed distribution P(X∗,RX), we
can construct a model (shown in the following) satisfying
X⊥⊥RX that produces P(X∗,RX):

P1(X,RX) = P1(X)P1(RX), (9)

where

P1(X = x) = P(X∗ = x|RX = 0) (10)

P1(RX) = P(RX). (11)
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Figure 4: The m-graphG encodesX⊥⊥Y, howeverG∗ en-
codes no CIs but inequality constraints.

Mohan and Pearl (2014) addressed this issue by investi-
gating the following question: what conditional indepen-
dences (CI)X⊥⊥Y|Z are (syntactically) testable, whereX,
Y, andZ may includeVm andR variables? Note they stud-
ied the syntactic testability of a given CI, not with respect
to a given model or m-graph. WhetherX⊥⊥Y|Z is testable or
not depends only on the syntax of the CI sentence, that is,
the type (Vo,Vm,R) of variables that appear in the CI. For
example, ifX,Y,Z ⊂ Vo, thenX⊥⊥Y|Z is said to be testable.
They have developed a number of sufficient conditions un-
der which CI claims involvingVo ∪Vm andRvariables can
be expressed in terms of the observed variablesVo, V∗, and
R.

5.2 Resolving the Peculiarity

In this paper, we study the following question: what are
the testable implications implied by a given model struc-
ture on the observed data given that data are corrupted by
missing values? In the presence of missing data, the ob-
served distribution is specified byP(Vo,V∗,R). Our idea
is that, to determine constraints implied by the m-graphG
on P(Vo,V∗,R), we could directly work with the enriched
graphG∗ which addsV∗ variables toG. It is not neces-
sary to first look for testable implications ofG on P(V,R)
and then to try to figure out whether these implications are
testable or not in terms of observedP(Vo,V∗,R) (as done
in [Mohan and Pearl, 2014]).

In other words, in order to identify testable implications
implied by the m-graphG on the observed data, we look
for testable implications implied by the enriched graphG∗

on P(Vo,V∗,R) assuming that theVm variables are latent
variables (as well asU). This latter problem has been well
studied and many techniques have been developed (see the
discussion in the beginning of Section 5). In conclusion, we
have converted the peculiar testability problem in missing
data into a problem well understood and studied.

Example 4 To see whether the model in Figure 3(a) is
testable, we consider the enriched graph shown in Fig-
ure 3(c), and conclude that the model imposes no con-
straints on P(X∗,RX). The peculiarity is resolved.

X

X

Z
Y R *

X

Z
Y RX X

(a)G (b) G∗

Figure 5: A m-graph in which whether there is an edge
from X to RX can be tested by independenceRX⊥⊥Z.

Example 5 To see whether the model G in Fig-
ure 4(a) is testable (note this model is considered in
[Mohan and Pearl, 2014, Example 8]), we consider the en-
riched graph G∗ shown in Figure 4(b). Although G encodes
X⊥⊥Y, there is no CIs among X, Y∗, and RY in G∗. How-
ever, for X and Y being discrete variables, it is known that
G∗ implies testable constraints in the form of inequalities
called instrumental inequality[Pearl, 1995]. For a com-
prehensive treatment of this model using convex analysis
please see [Bonet, 2001].

5.3 Testability of G-MAR

In the literature, in general MCAR is considered testable
[Little, 1988], while MAR is said to be not testable.
However, when assumptions are made on the data gen-
eration model (such as compatible with a hypothesized
m-graphG), MAR may become testable [Jaeger, 2005a,
Jaeger, 2006b]. The testability of MAR+ has been studied
in [Potthoff et al., 2006, Mohan and Pearl, 2014].

The testability of G-MAR concerns with the question of
whether there exist edges between aR variable and vari-
ables inVm ∪ U. In general, whether an edge is testable or
not is sensible to the graphical structure, and can be judged
by looking for testable implications in the enriched graph,
for which many techniques have been developed (see the
discussion in the beginning of Section 5).

Example 6 The model in Figure 1(a) is MCAR. G∗ en-
codes a testable independence RY⊥⊥X, which can be used
to test whether there is an edge from X or Y to RY.

Example 7 The model in Figure 2(a) is G-MAR. G∗ en-
codes no testable implications. Therefore G-MAR assump-
tion is not testable.

Example 8 The model in Figure 5(a) is G-MAR. G∗ en-
codes a testable independence RX⊥⊥Z, which can be used
to test whether there is an edge from X to RX. G-MAR as-
sumption is testable in this sense.

6 Conclusions

MAR plays a central role in the theory underlying the
current methods for handling missing data. Under the
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MAR assumption, likelihood-based inference (as well as
Bayesian inference) can be carried out while ignoring the
missingness mechanism. However the standard difinition
of MAR is difficult to apply in practice. We have proposed
G-MAR as an alternative definition for MAR in graphical
missing data models and established its relation with the
standard MAR and a few versions of MAR used in the lit-
erature. G-MAR is intuitively appealing from the model-
ing point of the view and is easier to interpret and to ap-
ply in practice than the standard MAR. We have addressed
the question of whether G-MAR is testable and whether
the missing data model is testable, given that data are cor-
rupted by missingness, by converting the problem into a
well studied problem of identifying constraints in graphi-
cal models with latent variables. The results presented in
this paper should be useful for practitioners in many fields
since the missing data problem is common across many dis-
ciplines including artificial intelligence and machine learn-
ing, statistics, economics, and the health and social sci-
ences.

Appendix - Graphoid Axioms

The probability distributions satisfy the following so-called
semi-graphoid axioms[Pearl, 1988]:

• Symmetry
X⊥⊥Y|Z⇐⇒ Y⊥⊥X|Z

• Decomposition

X⊥⊥(Y∪W)|Z =⇒ X⊥⊥Y|Z & X⊥⊥W|Z

• Weak Union

X⊥⊥(Y∪W)|Z =⇒ X⊥⊥Y|(Z ∪W)

• Contraction

X⊥⊥Y|Z & X⊥⊥W|(Z ∪ Y) =⇒ X⊥⊥(Y∪W)|Z

The four axioms together with the following intersection
axiom are known as thegraphoid axioms.

• Intersection: ifP(Y,Z,W) > 0,

X⊥⊥Y|(Z∪W) & X⊥⊥W|(Z∪Y) =⇒ X⊥⊥(Y∪W)|Z.

Note that in the literature the intersection axiom is said to
hold only if the distributionP is strictly positive. However,
if following its proof carefully, it can be shown that we only
need the marginal distributionP(Y,Z,W) to be strictly pos-
itive for intersection to hold (see, e.g., the proof of Propo-
sition 3.1 in [Lauritzen, 1996]). We need this version of
intersection in the proof of Proposition 1.

The intersection, decomposition, and contraction axioms
imply the following rule that we will call ”Generalized in-
tersection rule”.

Lemma 1 Generalized intersection rule: if P(Y,Z,W) > 0,

X⊥⊥(Y∪ S)|(Z∪W) & X⊥⊥(W∪ S)|(Z∪ Y)

=⇒ X⊥⊥(Y∪W∪ S)|Z.

Proof: X⊥⊥(Y ∪ S)|(Z ∪ W) leads toX⊥⊥Y|(Z ∪ W), and
X⊥⊥(W ∪ S)|(Z ∪ Y) leads toX⊥⊥W|(Z ∪ Y) by decom-
position. We then obtainX⊥⊥(Y ∪ W)|Z by intersection,
and further X⊥⊥Y|Z by decomposition. NowX⊥⊥Y|Z
and X⊥⊥(W ∪ S)|(Z ∪ Y) lead to X⊥⊥(Y ∪ W ∪ S)|Z by
contraction. �
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