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1 Derivation of REPS Solution

We start out with the constrained optimization prob-
lem

max
π,µπ

J(π) = max
π,µπ

¨
A×S
π(a|s)µπ(s)Ra

sdads (1)

s.t.

¨
A×S
π(a|s)µπ(s)dads = 1 (2)

∀s′
¨
A×S
π(a|s)µπ(s)Pa

ss′dads = µπ(s
′)(3)

¨
A×S
π(a|s)µπ(s) log

π(a|s)µπ(s)
q(s,a)

dads ≤ ε. (4)

For every constraint, we introduce a Lagrangian mul-
tiplier. Because (3) represents a continuum of con-
straints, we integrate over the value of this constraint
multiplied by a state-dependent Lagrangian multiplier
V (s). We will write p(s,a) = π(a|s)µπ(s) to keep the
exposition brief. Therefore, the Lagrangian

L(p, η, V, λ) =

¨
A×S
p(s,a)Ra

sdads

+ λ

(
1−
¨
A×S
p(s,a)dads

)
+

ˆ
S

V (s′)

(¨
A×S
p(s,a)Pa

ss′dads− µπ(s
′)

)
ds′

+ η

(
ε−
¨
A×S
p(s,a) log

p(s,a)

q(s,a)
dads

)
.

The Lagrangian can be re-shaped, using µπ(s) =´
A
p(s,a)da, in the more convenient form

L(p, η, V, λ) = λ− Ep(s,a) [V (s)] + ηε

+Ep(s,a)
[
Ra

s − λ+

ˆ
S

V (s′)Pa
ss′ds

′ − η log p(s,a)
q(s,a)

]
.

To find the optimal p, we take the derivative of L w.r.t.
p and set it to zero

0 =
∂L

∂p(s,a)

=Ra
s − λ+

ˆ
S

V (s′)Pa
ss′ds

′ − η log p(s,a)
q(s,a)

− η − V (s)

therefore,

η log
p(s,a)

q(s,a)
= Ra

s − λ+

ˆ
S

V (s′)Pa
ss′ds

′ − η − V (s)

p(s,a) =q(s,a) exp

(Ra
s −
´
S
V (s′)Pa

ss′
ds′ − V (s)

η

)
· exp

(
−λ− η
η

)
∝q(s,a) exp

(Ra
s −
´
S
V (s′)Pa

ss′
ds′ − V (s)

η

)
.

The function V (s) resembles a value function, so that
δ(s,a, V ) = Ra

s −
´
S
V (s′)Pa

ss′
ds′ − V (s) can be identi-

fied as a Bellman error. Since p(s,a) is a probability
distribution we can identify exp (−λ/η − 1) to be a
normalization factor

Z−1 =

(¨
A×S

q(s,a) exp (δ(s,a, V )/η) dads
)−1

=
(
Eq(s,a) exp (δ(s,a, V )/η)

)−1
.
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2 The Dual and its Derivatives

We can re-insert the state-action probabilities in the
Lagrangian to obtain the dual

g(η, V, λ) =λ+ ηε

+ Ep(s,a)
[
δ(s,a, V )− λ− η log p(s,a)

q(s,a)

]
=λ+ ηε+ Ep(s,a) [−λ+ λ]

+ Ep(s,a) [δ(s,a, V )− δ(s,a, V ) + η]

=λ+ ηε+ Ep(s,a)η dads
=λ+ ηε+ η = ηε+ η log(Z)

=ηε+ η log
(
Eq(s,a) exp (δ(s,a, V )/η)

)
,

where we used the identity

exp (−λ/η − 1) = Z−1

λ+ η = η log(Z).

The expected value over q can straightforwardly be ap-
proximated by taking the average of samples 1, . . . , n
taken from q. Note that λ and q do not appear in the
final expression.

g(η, V ) = ηε+ η log

(
1

n

n∑
i=1

exp (δ(si,ai, V )/η)

)
.

When employing the kernel embedding, the Bellman
error is written as

δ(si,ai,α) = Rai
si +αT (Kβ(si,ai)− ks(si)).

We define

wi =
exp (δ(si,ai,α)/η)∑n
i=j exp (δ(sj ,aj ,α)/η)

to keep equations brief and readable. The partial
derivatives can be written as:

∂g(η,α)

∂η
= −1

η

n∑
i=1

wiδ(si,ai,α) + ε

+ log

(
1

n

n∑
i=1

exp (δ(si,ai,α)/η)

)
,

∂g(η,α)

∂α
=

n∑
i=1

wi (Kβ(si,ai)− ks(si)) ,

and furthermore, for the Hessian we obtain

∂2g(η,α)

∂η∂η
=

1

η

n∑
i=1

wi (δ(si,ai,α))
2

− 1

η

(
n∑
i=1

wiδ(si,ai,α)

)2

∂2g(η,α)

∂α∂αT
= −1

η

n∑
i=1

wi (Kβ(si,ai)− ks(si))

·
n∑
i=1

wi (Kβ(si,ai)− ks(si))
T
+

n∑
i=1

wi
η

(Kβ(si,ai)−ks(si)) (Kβ(si,ai)−ks(si))
T
,

∂2g(η,α)

∂η∂α
= −1

η

n∑
i=1

wi (Kβ(si,ai)− ks(si))

+

n∑
i=1

wi
η
δ(si,ai,α)

n∑
i=1

wi (Kβ(si,ai)− ks(si))

+
1

η

n∑
i=1

wi (Kβ(si,ai)− ks(si))

− 1

η

n∑
i=1

wiδ(si,ai,α) (Kβ(si,ai)− ks(si))

.
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3 Fitting a Generalizing Policy to
State-Action Samples

To fit a generalizing policy π̃(a|s;θ) to the samples-
based policy p(si,ai) = π(ai|si)µπ(si) (defined only
on samples i ∈ {1, . . . , n}), we minize the expected
Kullback-Leibler divergence

θ∗ = argmin
θ

Eµπ(s) KL(π(a|s)||π̃(a|s))

=

ˆ
S

µπ(s)

ˆ
A

π(a|s) log π(a|s)
π̃(a|s;θ)

dads.

This is a standard objective for matching two distribu-
tions. Note that the alternative Kullback-Leibler di-
vergence KL(π̃(a|s)||π(a|s)) is undefined since π(a|s)
is 0 at most places. Since the contribution to the in-
tegral is 0 for any (s,a) /∈ {(s1,a1), . . . , (sn,an)}, we
can equivalently write:

θ∗ = argmin
θ

n∑
i=1

µπ(si)π(ai|si) log
π(ai|si)
π̃(ai|si;θ)

= argmin
θ

n∑
i=1

µπ(si)π(ai|si) log
1

π̃(ai|si;θ)

+

n∑
i=1

µ(si)π(ai|si) log(π(ai|si))

= argmax
θ

n∑
i=1

µπ(si)π(ai|si) log π̃(ai|si;θ)

where we used the fact that we can subtract terms
constant in θ and apply monotonously increasing func-
tions to the terms to be minimized without changing
the location of the minimum. Note that the final result
is simply a weighted maximum-likelyhood estimate of
θ. This result can be used to fit a parametric policy,
or, as we demonstrate in the main material, a non-
parametric policy to the weighted samples.

4 Optimization with Respect to V

In order to show that we can minimize the dual func-
tion g, we need to show that the optimal solution of
the value function has the following form

V ∗ =
∑
s̃∈S̃

αs̃ks(s̃, ·) (5)

We follow some steps in the proof of Schölkopf et al.
[2001]. They consider arbitrary functions c mapping
to R ∪ {∞} of the form

c((s1, y1, V (s1)), . . . , (sm, ym, V (sm))), (6)

which typically defines an error function of function
V (s) on the samples si with desired output yi. In our
case, we do not have desired output values yi for our
objective function. This is inconsequential as c can be
arbitrary, and so can be independent of all y values.

Any function V can be written as V =∑
s̃∈S̃ αs̃ks(s̃, ·) + v(s), where v(s) is an addi-

tional bias term. If V is constrained to be in the
Hilbert space defined by k, Schölkopf et al. [2001]
show that c is independent of the bias term v(s).
This means that for any optimal V ′ that is not of the
proposed form, there is a V ∗ of the proposed form
that has the same objective value which is obtained
by subtracting v(s) from V ′.

As the dual function g satisfies the conditions to cost
function c, for us this means that there is at least
one V ∗ optimizing g of the proposed form. Note
that it is inconsequential that the dual g also de-
pends on Langrangian parameter η. For any opti-
mum (η∗, V ′∗), if V ′∗ is not of the proposed form,
the projection V ∗ of V ′∗ on the proposed basis sat-
isfies g(η∗, V ′∗) = g(η∗, V ∗), so (η∗, V ∗) must be an
optimum as well.


