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1 Derivation of REPS Solution

We start out with the constrained optimization prob-
lem
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For every constraint, we introduce a Lagrangian mul-
tiplier. Because (3) represents a continuum of con-
straints, we integrate over the value of this constraint
multiplied by a state-dependent Lagrangian multiplier
V(s). We will write p(s,a) = w(als)ux(s) to keep the
exposition brief. Therefore, the Lagrangian
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The Lagrangian can be re-shaped, using pur(s) =
J4p(s,a)da, in the more convenient form
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To find the optimal p, we take the derivative of L w.r.t.
p and set it to zero
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The function V( ) resembles a value function, so that
i(s,a, V) — [V (s')P2,ds’ — V(s) can be identi-
fied as a Bellman error. S1nce p(s,a) is a probability
distribution we can identify exp (—=A\/n—1) to be a
normalization factor
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2 The Dual and its Derivatives

We can re-insert the state-action probabilities in the
Lagrangian to obtain the dual
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where we used the identity
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The expected value over g can straightforwardly be ap-
proximated by taking the average of samples 1,...,n
taken from q. Note that A and ¢ do not appear in the
final expression.
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When employing the kernel embedding, the Bellman
error is written as
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We define
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to keep equations brief and readable.
derivatives can be written as:
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and furthermore, for the Hessian we obtain
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3 Fitting a Generalizing Policy to
State-Action Samples

To fit a generalizing policy 7(als; @) to the samples-
based policy p(s;,a;) = 7w(a;|s;)ur(s;) (defined only
on samples ¢ € {1,...,n}), we minize the expected
Kullback-Leibler divergence

0" = arg n}gin E,.. s KL(7(als)||7(als))
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This is a standard objective for matching two distribu-
tions. Note that the alternative Kullback-Leibler di-
vergence KL(7(als)||w(als)) is undefined since m(als)
is 0 at most places. Since the contribution to the in-
tegral is O for any (s,a) ¢ {(s1,a1),...,(sn,a,)}, we
can equivalently write:
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where we used the fact that we can subtract terms
constant in @ and apply monotonously increasing func-
tions to the terms to be minimized without changing
the location of the minimum. Note that the final result
is simply a weighted maximum-likelyhood estimate of
6. This result can be used to fit a parametric policy,
or, as we demonstrate in the main material, a non-
parametric policy to the weighted samples.

4 Optimization with Respect to V'

In order to show that we can minimize the dual func-
tion g, we need to show that the optimal solution of
the value function has the following form

V= asks(3, ) (5)
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We follow some steps in the proof of Schélkopf et al.
[2001]. They consider arbitrary functions ¢ mapping
to RU {oo} of the form

C((Shylvv(sl))v'"7(Smaymvv(sm)))7 (6)

which typically defines an error function of function
V(s) on the samples s; with desired output y;. In our
case, we do not have desired output values y; for our
objective function. This is inconsequential as ¢ can be
arbitrary, and so can be independent of all y values.

Any function V can be written as V =
> scs @sks(8,-) + v(s), where wv(s) is an addi-
tional bias term. If V is constrained to be in the
Hilbert space defined by k, Scholkopf et al. [2001]
show that ¢ is independent of the bias term wv(s).
This means that for any optimal V’ that is not of the
proposed form, there is a V* of the proposed form
that has the same objective value which is obtained
by subtracting v(s) from V’.

As the dual function g satisfies the conditions to cost
function ¢, for us this means that there is at least
one V* optimizing ¢g of the proposed form. Note
that it is inconsequential that the dual g also de-
pends on Langrangian parameter 7. For any opti-
mum (n*,V'*), if V'« is not of the proposed form,
the projection V* of V'* on the proposed basis sat-
isfies g(n*,V'*) = g(n*,V*), so (n*,V*) must be an
optimum as well.



