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A Proof of Theorem 2.2

Theorem. Basic Decomposition of Information

If Y is a representation of X and we define,

TC
L

(X;Y ) ⌘
nX

i=1

I(Y : X
i

)�
mX

j=1

I(Y
j

: X),

then the following bound and decomposition holds.

TC(X) � TC(X;Y ) = TC(Y ) + TC
L

(X;Y )

Proof. The first inequality trivially follows from Eq. 2
since we subtract a non-negative quantity (a KL di-
vergence) from TC(X). For the second equality, we
begin by using the definition of TC(X;Y ), expanding
the entropies in terms of their definitions as expec-
tation values. We will use the symmetry of mutual
information, I(A : B) = I(B : A), and the iden-
tity I(A : B) = E

A,B

log(p(a|b)/p(a)). By definition,
the full joint probability distribution can be written as
p(x, y) = p(y|x)p(x) =

Q
j

p(y
j

|x)p(x).
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�
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m
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Q

m
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#

= �TC(Y ) +
mX

j=1

I(Y
j

: X) (19)

Replacing I(X : Y ) in Eq. 2 completes the proof.

B Proof of Theorem 2.4

Theorem. Upper Bounds on TC(X)

If Y 1:r is a hierarchical representation of X and we
define Y 0 ⌘ X, and additionally m

r

= 1 and all vari-
ables are discrete, then,

TC(X)  TC(Y 1) + TC
L

(X;Y 1) +
nX

i=1

H(X
i

|Y 1)

TC(X) 
rX

k=1

 
TC

L

(Y k�1;Y k) +

mk�1X
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H(Y k�1
i

|Y k)

!
.

Proof. We begin by re-writing Eq. 4 as TC(X) =
TC(X|Y 1) + TC(Y 1) + TC

L

(X;Y 1). Next, for dis-
crete variables, TC(X|Y 1) 

P
i

H(X
i

|Y ), giving the
inequality in the first line. The next inequality fol-
lows from iteratively applying the first inequality as
in the proof of Thm. 2.3. Because m

r

= 1, we have
TC(Y r) = 0.

C Derivation of Eqs. 9 and 10

We want to optimize the objective in Eq. 8.

max
p(y|x)

nX

i=1

↵
i

I(Y : X
i

)� I(Y : X)

s.t.
X

y

p(y|x) = 1
(20)

For simplicity, we consider only a single Y
j

and drop
the j index. Here we explicitly include the condi-
tion that the conditional probability distribution for
Y should be normalized. We consider ↵ to be a fixed
constant in what follows.

We proceed using Lagrangian optimization. We intro-
duce a Lagrange multiplier �(x) for each value of x to
enforce the normalization constraint and then reduce
the constrained optimization problem to the uncon-
strained optimization of the objective L.
L =

X

x̄,ȳ

p(x̄)p(ȳ|x̄)
�X

i

↵
i

(log p(ȳ|x̄
i

)� log p(ȳ))

�(log p(ȳ|x̄)� log p(ȳ))
�

+
X

x̄

�(x̄)(
X

ȳ

p(ȳ|x̄)� 1)

Note that we are optimizing over p(y|x) and so the
marginals p(y|x

i

), p(y) are actually linear functions of
p(y|x). Next we take the functional derivatives with
respect to p(y|x) and set them equal to 0. We re-use
a few identities. Unfortunately, � on the left indicates
a functional derivative while on the right it indicates
a Kronecker delta.
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Taking the derivative and using these identities, we
obtain the following.

�L
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Performing the sums over x̄, ȳ leads to cancellation
of the last three lines. Then we set the remaining
quantity equal to zero.

�L
�p(y|x) = �(x) + p(x) log

Q
i

p(y|x
i

)/p(y)

p(y|x)/p(y)
= 0
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This leads to the following condition in which we have
absorbed constants like �(x) in to the partition func-
tion, Z(x).

p(y|x) = 1

Z(x)
p(y)

nY

i=1

✓
p(y|x

i

)

p(y)

◆
↵i

We recall that this is only a formal solution since the
marginals themselves are defined in terms of p(y|x).

p(y) =
X

x̄

p(x̄)p(y|x̄)

p(y|x
i

) =
X
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p(y|x̄)p(x̄)�
xi,x̄i/p(x
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)

If we have a sum over independent objectives like
Eq. 15 for j = 1, . . . , m, we just place subscripts appro-
priately. The partition constant, Z

j

(x) can be easily
calculated by summing over just |Y

j

| terms.

D Updates Do Not Decrease the
Objective

The detailed proof of this largely follows the conver-
gence proof for the iterative updating of the informa-
tion bottleneck [3].

Theorem D.1. Assuming ↵1, . . . , ↵n

2 [0, 1], iter-
ating over the update equations given by Eq. 11 and
Eq. 10 never decreases the value of the objective in
Eq. 8 and is guaranteed to converge to a stationary
fixed point.

Proof. First, we define a functional of the objective
with the marginals considered as separate arguments.
F [p(x

i

|y), p(y), p(y|x)] ⌘
X
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!

As long as ↵
i

 1, this objective is upper bounded
by TC

L

(X;Y ) and Thm. 2.3 therefore guarantees
that the objective is upper bounded by the constant
TC(X). Next, we show that optimizing over each ar-
gument separately leads to the update equations given.
We skip re-calculation of terms appearing in Sec. C.
Keep in mind that for each of these separate optimiza-
tion problems, we should introduce a Lagrange multi-
plier to ensure normalization.
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Setting each of these equations equal to zero recovers
the corresponding update equation. Therefore, each
update corresponds to finding a local optimum. Next,

note that the objective is (separately) concave in both
p(x

i

|y) and p(y), because log is concave. Furthermore,
the terms including p(y|x) correspond to the entropy
H(Y |X), which is concave. Therefore each update is
guaranteed to increase the value of the objective (or
leave it unchanged). Because the objective is upper
bounded this process must converge (though only to a
local optimum, not necessarily the global one).

E Convergence for S&P 500 Data

Fig. E.1 shows the convergence of the lower bound on
TC(X) as we step through the iterative procedure in
Sec. 3.2 to learn a representation for the finance data
in Sec. 5. As in the synthetic example in Fig. 3(a),
convergence occurs quickly. The iterative procedure
starts with a random initial state. Fig. E.1 compares
the convergence for 10 di↵erent random initializations.
In practice, we can always use multiple restarts and
pick the solution that gives the best lower bound.

Figure E.1: Convergence of the lower bound on TC(X)
as we perform our iterative solution procedure, using
multiple random initializations.
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