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Abstract

Falling rule lists are classification models con-
sisting of an ordered list of if-then rules,
where (i) the order of rules determines which
example should be classified by each rule, and
(ii) the estimated probability of success de-
creases monotonically down the list. These
kinds of rule lists are inspired by healthcare
applications where patients would be strati-
fied into risk sets and the highest at-risk pa-
tients should be considered first. We provide
a Bayesian framework for learning falling rule
lists that does not rely on traditional greedy
decision tree learning methods.

1 Introduction

In healthcare, patients and actions need to be priori-
tized based on risk. The most at-risk patients should
be handled with the highest priority, patients in the
second at-risk set should receive the second highest
priority, and so on. This decision process is perfectly
natural for a human decision-maker – for instance a
physician – who might check the patient for symptoms
of high severity diseases first, then check for symptoms
of less serious diseases, etc.; however, the traditional
paradigm of predictive modeling does not naturally
contain this type of logic. If such clear logic were well-
founded, a typical machine learning model would not
usually be able to discover it: most machine learning
methods produce highly complex models, and were not
designed to provide an ability to reason about each
prediction. This leaves a gap, where predictive models
are not directly aligned with the decisions that need
to be made from them.

The algorithm introduced in this work aims to resolve
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this problem, and could be directly useful for clinical
practice. A falling rule list is an ordered list of if-then
rules, where (i) the order of rules determines which
example should be classified by each rule (falling rule
lists are a type of decision list), and (ii) the estimated
probability of success decreases monotonically down
the list. Thus, a falling rule list directly contains the
decision-making process, whereby the most at-risk ob-
servations are classified first, then the second set, and
so on. A falling rule list might say, for instance, that
patients with a history of heart disease are in the high-
est risk set with a 7% stroke risk, patients with high
blood pressure (who are not in the highest risk set) are
in the second highest risk set with a 4% stroke risk,
and patients with neither conditions of these are in the
lowest risk set with a 1% stroke risk.

Table 1 shows an example of one of the decision lists
we constructed for the mammographic mass dataset
(Elter et al. , 2007) as part of our experimental study.
It took 35 seconds to construct this model on a lap-
top. The model states that if biopsy results show that
the tumor has irregular shape, and the patient is over
age 60, then the tumor is at the highest risk of be-
ing malignant (the risk is 85%). The next risk set is
for the remaining tumors that have spiculated mar-
gins and are from patients above 45 years of age (the
risk is 78%), and so on. The right column of Table 1
shows how many patients fit into each of the rules (so
that its sum is the size of the dataset), and the risk
probabilities were directly calibrated to the data.

Falling rule lists serve a dual purpose: they rank rules
to form a predictive model, and stratify patients into
decreasing risk sets. This saves work for a physi-
cian; sorting is an expensive mental operation, and
this model does the sorting naturally. If one were to
use a standard decision tree or decision list method
instead, identifying the highest at-risk patients could
be a much more involved calculation, and the number
of conditions the most at-risk patients need to satisfy
might be difficult for physicians to memorize.

Most of the models currently in use for medical deci-
sion making were designed by medical experts rather
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Conditions Probability Support
IF IrregularShape AND Age ≥ 60 THEN malignancy risk is 85.22% 230
ELSE IF SpiculatedMargin AND Age ≥ 45 THEN malignancy risk is 78.13% 64
ELSE IF IllDefinedMargin AND Age ≥ 60 THEN malignancy risk is 69.23% 39
ELSE IF IrregularShape THEN malignancy risk is 63.40% 153
ELSE IF LobularShape AND Density ≥ 2 THEN malignancy risk is 39.68% 63
ELSE IF RoundShape AND Age ≥ 60 THEN malignancy risk is 26.09% 46
ELSE THEN malignancy risk is 10.38% 366

Table 1: Falling rule list for mammographic mass dataset.

than by data-driven or algorithmic approaches. These
manually-created risk assessment tools are used in pos-
sibly every hospital; e.g., the TIMI scores, CHADS2

score, Apache scores, and the Ranson score, to name a
few (Antman et al. , 2000; Morrow et al. , 2000; Gage
et al. , 2001; Knaus et al. , 1981, 1985, 1991; Ranson
et al. , 1974). These models can be computed without
a calculator, making them very practical as decision
aids. Of course, we aim for this level of interpretabil-
ity in purely data-driven classifiers, with no manual
feature selection or rounding coefficients.

Algorithms that discretize the input space have gained
in popularity purely because they yield interpretable
models. Decision trees (Breiman et al. , 1984; Quinlan,
1986, 1993), as well as decision lists (Rivest, 1987), or-
ganize a collection of simple rules into a larger logical
structure, and are popular despite being greedy. In-
ductive logic programming (Muggleton & De Raedt,
1994) returns an unstructured set of conjunctive rules
such that an example is classified as positive if it sat-
isfies any of the rules in that set. An extremely sim-
ple way to induce a probabilistic model from the un-
ordered set of rules given by an ILP method is to place
them into a decision list (e.g., see Fawcett, 2008), or-
dering rules by empirical risk. This is also done in as-
sociative classification (e.g., see Thabtah, 2007). How-
ever, the resulting model cannot be expected to exhibit
good predictive performance, as its constituent rules
were chosen with a different objective.

Since it is possible that decision tree methods can pro-
duce results that are inconsistent with monotonicity
properties of the data, there is a subfield dedicated to
altering these greedy decision tree algorithms to obey
monotonicity properties (Ben-David, 1995; Feelders &
Pardoel, 2003; Altendorf et al. , 2005). Studies showed
that in many cases, no accuracy is lost in enforcing
monotonicity constraints, and that medical experts
were more willing to use the models with the mono-
tonicity constraints (Pazzani et al. , 2001).

Even with (what seem like) rather severe constraints
on the hypothesis space such as monotonicity or spar-
sity in the number of leaves and nodes, it still seems

that the set of accurate classifiers is often large enough
so that it contains interpretable classifiers (see Holte,
1993). Because the monotonicity properties we enforce
are much stronger than those of Ben-David (1995);
Feelders & Pardoel (2003); Altendorf et al. (2005)
(we are looking at monotonicity along the whole list
rather than for individual features), we do find that
accuracy is sometimes sacrificed, but not always, and
generally not by much. On the other hand, it is pos-
sible that our method gains a level of practicality and
interpretability that other methods simply cannot.

Interpretability is very context dependent (see Ko-
dratoff, 1994; Pazzani, 2000; Freitas, 2014; Huysmans
et al. , 2011; Allahyari & Lavesson, 2011; Martens &
Baesens, 2010; Rüping, 2006; Verbeke et al. , 2011;
Martens et al. , 2011), and no matter how one mea-
sures it in one domain, it can be different in the next
domain. A falling rule list used in medical practice has
the benefit that it can, in practice, be as sparse as de-
sired. Since it automatically stratifies patients by risk
in the order used for decision making, physicians can
choose to look at as much of the list as they need to
make a decision; the list is as sparse as one requires it
to be. If physicians only care about the most high risk
patients, they look only at the top few rules, and check
whether the patient obeys any of the top clauses.

The algorithm we provide for falling rule lists aims to
have the best of all worlds: accuracy, interpretability,
and computation. The algorithm starts with a statisti-
cal assumption, which is that we can build an accurate
model from pre-mined itemsets. This helps tremen-
dously with computation, and restricts us to build-
ing models with only interpretable building blocks (see
also Letham et al. , 2014; Wang et al. , 2014). Once the
itemsets are discovered, a Bayesian modeling approach
chooses a subset and permutation of the rules to form
the decision list. The user determines the desired size
of the rule list through a Bayesian prior. Our gener-
ative model is constructed so that the monotonicity
property is fully enforced (no “soft” monotonicity).

The code for fitting falling rule lists is available online1.

1http://web.mit.edu/rudin/www/falling_rule_list
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2 Falling Rule Lists Model

We consider binary classification, where the goal is to
learn a distribution p(Y |x), where Y is binary. For
example, Y might indicate the presence of a disease,
and x would be a patient’s features. We represent this
conditional distribution as a decision list, which is an
ordered list of IF...THEN... rules. We require a special
structure to this decision list: that the probability of
Y = 1 associated with each rule is decreasing as one
moves down the decision list.

We use a Bayesian approach to characterize the pos-
terior over falling rule lists given training data D =
{(xn, yn)}n=1,...,N (of size N), xn ∈ X, the patient
feature space, hyperparameters H, and yn ∈ {0, 1}.
We represent a falling rule list with a set of pa-
rameters θ, specify the prior pθ(·;H) and likelihood
pY({yn}|θ; {xn}), and use simulated annealing and
Monte Carlo sampling to approximate the MAP es-
timate and posterior over falling rule lists,

2.1 Parameters of Model

A falling rule list is parameterized by the following
objects:

L ∈ Z+ (size of list) (1)

cl(·) ∈ BX(·), for l = 0, . . . , L− 1 (IF clauses) (2)

rl ∈ R, for l = 0, . . . , L (risk scores) (3)

such that

rl+1 ≤ rl for l = 0, . . . , L− 1 (monotonic) (4)

where BX(·) denotes the space of boolean functions on
patient feature space X. BX(·) is the space of possible
IF clauses; cl(x) will be 1 if x satisfies a given set
of conditions. For this work, we will not assume L,
the size of the decision list, to be known in advance.
The value of rl will be fed into the logistic function
to produce a risk probability between 0 and 1. Thus,
c0(·) corresponds to the rule at the top of the list,
determining the patients with the highest risk, and
there are L+ 1 nodes and associated risk probabilities
in the list: L associated with the cl(·)’s, plus one for
default patients - those matching none of the L rules.

2.2 Likelihood

Given these parameters, the likelihood is as follows:
Given L, let Z(x; {cl(·)}L−1

l=0 ) : X → {0, . . . , L} be the
mapping from feature x to the index of the length L
rule list it “belongs” to (equals L for default patients):

Z(x; {cl(·)}L−1
l=0 ) = (5){

L if cl(x) = 0 for l = 0, . . . , L− 1

min(l : cl(x) = 1, l = 0, . . . , L− 1) otherwise.

Then, the likelihood is:

yn|L, {cl(·)}L−1
l=0 , {rl}

L
l=0;xn ∼

Bernoulli(logistic(rzn)), where (6)

zn = Z(xn; {cl(·)}L−1
l=0 ). (7)

2.3 Prior

Here, we describe the prior over the parameters L,
{cl}L−1

l=0 , {rl}Ll=0. We will provide a reparameterization
that enforces monotonicity constraints, and finally give
a generative model for the parameters.

As discussed earlier, to help with computation, we
place positive prior probability of {cl}L−1

l=0 only over
lists consisting of boolean clauses B returned by a fre-
quent itemset mining algorithm, where for c(·) ∈ B,
we have c(·) : X → {0, 1}. For this particular work
we used FPGrowth (Borgelt, 2005), whose input is
a binary dataset where each x is a boolean vector,
and whose output is a set of subsets of the features
of the dataset. For example, x2 might indicate the
presence of diabetes, and x15 might indicate the pres-
ence of hypertension, and a boolean function returned
by FPGrowth might return 1 for patients who have
diabetes and hypertension. It does not matter which
rule mining algorithm is chosen because they all per-
form breadth-first searches to return a set of clauses
that have sufficient support. Here, B needs to be suf-
ficiently large, so that the hypothesis space of consid-
ered models is not too small. B can be viewed as a
hyperparameter, and the maximum length a decision
list can have under our model is |B|, the number of
rules in B.

2.3.1 Reparameterization

To ensure the monotonicity constraints that rl ≥ rl−1

for l = 1 . . . L in the posterior, we choose the scores rl
to, on a log scale, come from products of real numbers
constrained to be greater than 1. That is, conditioned
on L, we let

rl = log(vl) for l = 0, . . . , L (8)

vl = KΠL−1

l̀=l
γl̀ for l = 0, . . . , L− 1 (9)

vL = K (10)

and require that

γl ≥ 1 for l = 0, . . . , L− 1 (11)

K ≥ 0, (12)

so that rL, the risk score associated with the default
rule, equals logK. The prior we place over {γl}L−1

l=0

and K will respect those constraints.

Thus, after reparameterizing, the parameters are

θ = {L, {cl(·)}L−1
l=0 , {γl}

L−1
l=0 ,K}. (13)
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2.3.2 Prior Specifics

The prior over parameters L, {cl(·)}L−1
l=0 , {γl}

L−1
l=0 ,K is

generated through the following process:

1. Let hyperparameters

H = {B, λ, {αl}|B|−1
l=0 , {βl}|B|−1

l=0 , αK , βK , {wl}|B|−1
l=0 }

be given.
2. Initialize Θ← {}.
3. Draw L ∼ Poisson(λ).
4. For l = 0, . . . , L− 1 draw

cl(·) ∼ pc(·)
(
·|Θ;B, {wl}|B|−1

l=0

)
(14)

pc(·)

(
c(·) = cj(·)|Θ;B, {wl}|B|−1

l=0

)
(15)

∝ wj if cj(·) /∈ Θ and 0 otherwise. (16)

Update Θ← Θ ∪ {cl(·).} (17)

5. For l = 0, . . . , L − 1 draw γl ∼ Gamma1(αl, βl),
which is a Gamma distribution truncated to have
support only above 1.
6. Draw K ∼ Gamma(αK , βK).

We now elaborate on our choice for each involved dis-
tribution. We let L ∼ Poisson(λ), where λ reflects the
prior decision length desired by the user. We let cl(·)
be the result of a draw from a discrete distribution
over the yet unchosen rules, B \ {cl̀(·)}

l−1

l̀=0
, where the

l-th rule is drawn with probability proportional to a
user designed weight wl. For example, a rule might
be chosen with probability proportional to the num-
ber of clauses in it. This allows the user to express
preferences over different types of clauses in the list.
Given L, only {c(·)l}L−1

l=1 are observed, though note
this process specifies a joint distribution over all of

{c(·)l}|B|−1
l=1 . Letting {γl}L−1

l=0 to be independently dis-
tributed truncated gamma variables permits posterior
Gibbs sampling while enforcing the monotonicity con-
straints and still permitting diversity over prior dis-
tributions. For example, one could encourage some of
the γ’s near the middle (of L) of the list to be large,
in which case the risks would be widely spaced in the
middle of the list (but this would force closer spacing
at the top of the list where the risks concentrate near
1). Finally, K, which models the risk of patients not
satisfying any rules, is Gamma distributed.

3 Fitting the Model

First we describe our approach to finding the deci-
sion list with the maximum a posteriori probability.
Then we discuss our approach to perform Monte Carlo
sampling from the posterior distribution over decision
list parameters θ = {L, c0,...,L−1(·),K, γ0,...,L−1} as de-
scribed in Equation (13),

ppost(L, c0,...,L−1(·),K, γ0,...,L−1|y1,...,N ; x1,...,N ).
(18)

3.1 Obtaining the MAP decision list

We adopted a simulated annealing approach to find
θ∗ = {L∗, c0,...,L∗−1(·)∗,K∗, γ0,...,L∗−1}, where

L∗, c∗0,...,L∗−1(·),K∗, γ∗0,...,L∗−1 (19)

∈ argmaxL,c0,...,L−1(·),K,γ0,...,L−1
L

where L is shorthand for the unnormalized log of the
posterior given in Equation (18). We note that the
optimization problem in Equation (19) is equivalent
to finding:

L∗, c0,...,L∗−1(·)∗ (20)

∈ argmaxL,{cl(·)}L−1
l=0
L(L, {cl(·)}L−1

l=0 ,K
∗, γ∗0,...,L−1)

where

K∗, γ∗0,...,L−1 (21)

∈ argmaxK,γ0,...,L−1
L(L, {cl(·)}L−1

l=0 ,K, γ0,...,L−1).

Note that K∗ and γ∗0,...,L−1 depend on L, {cl(·)}L−1
l=0 .

Furthermore, the solution to the subproblem of find-
ing K∗ and γ∗0,...,L−1 can be approximated closely us-
ing a simple procedure, as it involves maximizing the
posterior probability of a decision list given the rules
{cl(·)}L−1

l=0 . Optimizing Equation (20) lends itself bet-
ter to simulated annealing than Equation (19); opti-
mizing (20) involves optimization over a discrete space,
namely the set and order of rules cl(·). In this formula-
tion, at each simulated annealing iteration, we need to
evaluate the objective function for the current rule list
{cl(·)}L−1

l=0 , which involves solving the continuous sub-
problem of finding the corresponding K∗ and γ∗0,...,L−1.

Given a objective function E(s) over discrete search
space S, a function specifying the set of neighbors of a
state N(s), and a temperature schedule function over
time steps, T (t), a simulated annealing procedure is a
discrete time, discrete state Markov Chain {st} where
at time t, given the current state st, the next state st+1

is chosen by first randomly selecting a proposal s̀ from
the set N(s), and setting st+1 = s̀ with probability

min(1, exp(−E(s̀)−E(s)
T (t) )), and st+1 = st otherwise.

The search space of the optimization problem of Equa-
tion (20) is

{
L, {cl(·)}L−1

l=0

}
, the set of ordered lists of

rules drawing from the finite pre-mined set of rules B.
Based on Equation (20), we let

E({cl(·)}L−1
l=0 ) = −L(L, {cl(·)}L−1

l=0 ,K
∗, γ∗0,...,L−1). (22)

We simultaneously define the set of neighbors and
the process by which to randomly choose a neighbor
through the following random procedure that alters
the current rule list {cl(·)}L−1

l=0 to produce a new rule

list {c̀l(·)}L̀−1
l=0 (The new list’s length may be different):
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Choose uniformly at random one of the following 4
operations to apply to the current rule list, {cl(·)}L−1

l=0 :

1. SWAP: Select i 6= j uniformly from 0, . . . , L − 1,
and swap the rules at those 2 positions, letting
c̀i(·)← cj(·) and c̀j(·)← ci(·).

2. REPLACE: Select i uniformly from 0, . . . , L − 1,
draw c(·) from the the distribution

pc(·)(·|Θ;B, {wl}|B|−1
l=0 ) defined in Equation (16),

where Θ = {cl(·)}l=0,...,i−1,i+1,...,L−1 and set
c̀i(·)← c(·).

3. ADD: Choose one of the L + 1 possible in-
sertion points uniformly at random, draw a

rule c(·) from pc(·)(·|Θ;B, {wl}|B|−1
l=0 ), where

Θ = {cl(·)}l=0,...,L−1, and insert it at the chosen

insertion point, so that L̀← L+ 1.

4. REMOVE: Choose i uniformly at random from
0, . . . , L − 1, and remove ci(·) from the current
rule list, so that L̀← L− 1.

Note that this approach optimizes over the full set of
rule lists from itemsets, and does not rely on greedy
splitting. Even Bayesian tree methods that aim to
traverse a wider search space use greedy splitting and
local solutions, e.g. Chipman et al. (1998).

3.2 Obtaining the posterior

To perform posterior sampling, we use Gibbs sampling
steps over {γl}L−1

l=0 and K made possible by variable
augmentation, and Metropolis-Hastings steps over L
and {cl(·)}. We describe the variable augmentation
step, the schedule of updates we employ, and finally
the details of each individual update step.

Augmenting the model with two additional variables
Un, ζn for each n = 1, . . . , N preserves the marginal
distribution over the original variables, and enables
Gibbs sampling overK and each γl (see Dunson, 2004):

ζn ∼ Exponential(1) for n = 1, . . . , N (23)

Un ∼ Poisson(ζnvzn) for n = 1, . . . , N (24)

Yn = 1(Un > 0) for n = 1, . . . , N. (25)

Marginalizing over ζn, we see that in this augmented
model, yn ∼ Bernoulli(logistic(rzn)), as before:

p(Yn = 1) = p(Un > 0) (26)

= 1−
∫ ∞

0

p(Un = 0|ζn)p(ζn)dζn (27)

= 1−
∫ ∞

0

exp(−ζnvzn) exp(−ζn)dζn (28)

= 1− (1 + vzn)−1 (29)

=
exp(rzn)

1 + exp(rzn)
. (30)

3.2.1 Schedule of Updates

Given the augmented model, we cycle through the
following steps in the following deterministic or-
der. These will each be discussed in detail shortly.
Regarding notation, we will use use θaug to re-
fer to the parameters of the augmented model:
(L, {cl(·)}L−1

l=0 ,K, {γl}
L−1
l=0 , {Un}Nn=1, {ζn}Nn=1), so that

Gibbs updates can be described more succinctly.

Step 1 (Gibbs steps for each γl):
Sample γ̀l ∼ pγl(·|(θaug \ γl), {yn}Nn=1; {xn}Nn=1)
for l = 0, . . . , L− 1.

Step 2 (Gibbs step for K):
Sample K̀ ∼ pK(·|(θaug \K), {yn}Nn=1; {xn}Nn=1).

Step 3 (Collapsed Metropolis Hastings Step):
Perform Metropolis-Hastings update over
(L, {cl(·)}L−1

l=0 ), under the original model from
Equation (18). This can be viewed as a collapsed
Metropolis-Hastings step, where the collapsed param-
eters are the augmenting variables {Un}Nn=1, {ζn}Nz=1.

Step 4 (Gibbs step for ({ζn}Nn=1, {Un}Nn=1)):
Jointly sample

({ζ̀n}Nn=1, {Ùn}Nn=1)

∼ p{ζn}n,{Un}(·|θaug \ ({ζn}n, {Un}n), {yn}n; {xn}n).

Mixing Gibbs and collapsed Metropolis-Hastings sam-
pling steps requires special care to ensure the Markov
chain is proper in that it possesses the desired sta-
tionary distribution. We refer to van Dyk & Park
(2011) for details, but do note that after the collapsed
Metropolis-Hastings step, first performing a Gibbs up-
date of {ζn}Nn=1, and then a separate Gibbs update for
{Un}Nn=1 (or in reverse) would not have been proper.

3.2.2 Update Details

We now elaborate on each step of the update schedule:

Step 1 In this augmented model, the full conditional
distribution of each γl is Gamma distributed, so that it
can be sampled from directly. Let, for l = 0, . . . , L− 1

σ
(l)
k =

{
KΠL−1

i=k,i 6=lγi for 0 ≤ k ≤ l
0 for l < k ≤ L.

(31)

Then, it can be derived that

γl|(θaug \ γl), {yn}Nn=1; {xn}Nn=1 (32)

∼ Gamma

(
αl +

N∑
n=1

1[zn ≤ l]Un, βl +
N∑
n=1

ζnσ
(l)
zn

)
,

where αl, βl govern the prior of γl and zn as described
in Equation (7) denotes the rule a datum belongs to.
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Step 2 Similarily, let

ok =

{
ΠL−1
i=k γi for 0 ≤ k ≤ L− 1

1 for k = L.
(33)

Then

K|(θaug \K), {yn}Nn=1; {xn}Nn=1 (34)

∼ Gamma

(
αK +

N∑
n=1

Un, βK +
N∑
n=1

ζnozn

)
. (35)

Step 3 The reason for using a collapsed rather than
regular Metropolis-Hastings step was to improve chain
mixing. The Metropolis-Hastings proposal distribu-
tions over (L,{cl(·)}L−1

l=0 ) are exactly as in the proposal
distribution used to generate a successor state in the
simulated annealing we used to find the MAP decision
list. The only difference is that if the ADD opera-
tion is chosen and a rule c(·) inserted at position k in
the rule list, then sample γ̀k ∼ Gamma(αk, βk), the
prior distribution of γk, and insert it at position k
in {γl}L−1

l=0 . Thus, we simply provide the Metropolis-
Hastings Q probabilities. For simplicity, we do so for

the case when the weights {wl}|B|−1
l=0 associated with

each c(·) ∈ B are equal.

Q({c̀(·)}L̀−1
l=1 ; {cl(·)}L−1

l=1 ) =


1

(L+1)(|B|−L) if ADD
1

(|B|−L)L if REPLACE
1
L if REMOVE

2
L(L−1) if SWAP .

Step 4 In the full conditional distribution of
({ζn}Nn=1, {Un}Nn=1), the set of pairs of variables,
{(Un, ζn)}Nn=1 is mutually independent, due to condi-
tioning. Therefore to sample from it, it is sufficient
to independently sample (Un, ζn) for n = 1, . . . , N .
It can be shown that the following sampling scheme
samples from the full conditional distribution: For
n = 1, . . . , N , if yn = 0, set Ùn = 0 and sample

ζ̀n ∼ exponential(1 + vzn). (36)

Otherwise, sample

Ùn ∼ 1 + Geometric

(
1

1 + vzn

)
, then (37)

ζ̀n ∼ Gamma
(

1 + Ùn, 1 + vzn

)
. (38)

4 Simulation Studies

We show that for simulated data generated by a known
decision list, our simulated annealing procedure that
searches for the MAP decision list, with high proba-
bility, recovers the true decision list.

Figure 1: Mean distance to true list decreases with
sample size.

Given observations with arbitrary features, and a col-
lection of rules on those features, we can construct a
binary matrix where the rows represent observations
and the columns represent rules, and the entry is 1 if
the rule applies to that observation and 0 otherwise.
We need only simulate this binary matrix to repre-
sent the observations without losing generality. For
our simulations, we generated independent binary rule
sets with 100 rules by setting each feature value to 1
independently with probability 0.25.

We generated a random decision list of size 5 by select-
ing 5 rules at random, and setting the γ0, . . . , γ5 so that
the induced p0, . . . , p5 were roughly evenly spaced on
the unit interval: (.84, .70, .54, .40, .25, .14). For each
N , we performed the following procedure 100 times:
generate the random rule matrix, random decision list,
and assign it the aforementioned {γl}, obtain an inde-
pendent dataset of size N by generating labels from
this decision list, and then perform simulated anneal-
ing using the procedure described in Section 3.1 to
obtain a point estimate of the decision list. We then
calculate the edit distance of the decision list returned
by simulated annealing to the true decision list. Figure
1 shows the average distance over those 100 replicates,
for each N . We ran simulated annealing for 5000 steps
in each replicate, and used a gradual cooling schedule.

5 Experiments

Our main experimental result is an application of
Falling Rule Lists to predict 30 day hospital readmis-
sion from an ongoing collaboration with medical prac-
titioners (details to appear in Cronin et al. , 2014).

Since we placed an extremely strong restriction on
the characteristics of the predictive model (namely the
monotonicity property, sparsity of rules, and sparsity
of conditions per rule), we expect to lose predictive ac-
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curacy over unrestricted methods. The interpretabil-
ity benefit may or not be sufficient to compensate for
this, but this is heavily application-dependent. We
have found several cases where there is no loss in per-
formance (with a substantial gain in interpretability)
by using a falling rule list instead of, say, a support vec-
tor machine, consistent with the observations of Holte
(1993) about very simple classifiers performing well.

Later in this section, we aim to quantify the loss in pre-
dictive power from Falling Rule Lists over other meth-
ods by using an out-of-sample predictive performance
evaluation. Specifically, we compare to several base-
line methods on standard publicly available datasets to
quantify the possible loss in predictive performance.

5.1 Predicting Hospital Readmissions

We applied Falling Rule Lists to preliminary readmis-
sions data being compiled through a collaboration with
a major hospital in the U.S. (Cronin et al. , 2014),
where the goal is to predict whether a patient will be
readmitted to the hospital with 30 days, using data
prior to their release. The dataset contains features
and binary readmissions outcomes for approximately
8,000 patients who had no prior history of readmis-
sions. The features are very detailed, and include as-
pects like “impaired mental status,” “difficult behav-
ior,” “chronic pain,” “feels unsafe” and over 30 other
features that might be predictive of readmission. As
we will see, luckily a physician may not be required to
collect this amount of detailed information to assess
whether a given patient is at high risk for readmission.

For these experiments and the experiments in the next
section, no parameters were tuned in Falling Rule Lists
(FRL), and the global hyperparameters were chosen as
follows. We mined rules with a support of at least 5%
and a cardinality of at most 2 conditions per rule. We
assumed in the prior that conditioned on L, each rule
had an equal chance of being in the rule list. We set
the prior of {γl}|L to have noninformative and inde-
pendent distributions of gamma(1, 0.1), and the prior
expected length of the decision list, λ, to be 8. We
performed simulated annealing search for 5000 steps
with a constant temperature of 1 for simplicity.

We measured out-of-sample performance using the
AUROC from 5-fold cross validation where the MAP
decision list from training was used to predict on each
test fold in turn. We compared with SVM (with Radial
Basis Function kernels), `2 regularized logistic regres-
sion (Ridge regression, denoted LogReg), CART, and
random forests (denoted RF), implemented in Python
using the scikit-learn package. For SVM and logis-
tic regression, hyperparameters were tuned with grid
search in nested cross validation.

Method Mean AUROC (STD)

FRL .80 (.02)
NF FRL .75 (.02)
NF GRD .75 (.02)

RF .79 (.03)
SVM .62 (.06)

Logreg .82 (.02)
Cart .52 (.01)

Table 3: AUROC values for readmission data

Figure 2: ROC curves for readmissions prediction.

As discussed, decision lists consisting of rules from
an inductive logic programming method are not ex-
pected to exhibit strong performance. We tested nFoil
(Landwehr et al. , 2005) with the default settings (max
number of clauses set to 2) to obtain a set of rules.
These rules were ordered in two different ways, to form
two additional comparison methods: 1. by the empir-
ical risk of each rule (denoted NF GRD), and 2. by
using the set of rules as the pre-mined rule set that
FRL accepts as input (denoted NF FRL). Note that
the risk probabilities in rule lists returned by NF GRD
are not necessarily decreasing monotonically, and that
not all of the nFoil rules are necessarily in the rule
list returned by NF FRL, since omission of a rule can
increase the posterior.

The AUROC’s for the different methods are in Table 3,
indicating that there was no loss in accuracy for using
Falling Rule Lists on this particular dataset. For all
of the training folds, the decision lists had a length of
either 6 or 7 – all very sparse.

Figure 2 shows ROC curves for all test folds for all
methods. The mean ROC curves are bolded. For this
particular dataset, SVM RBF and CART did not per-
form well. It is unclear why SVM did not perform
well, as cross-validation was performed for SVM; usu-
ally SVM’s perform well when cross-validated (though
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Conditions Probability Support
IF BedSores AND Noshow THEN readmissions risk is: 33.25% 770
ELSE IF PoorPrognosis AND MaxCare THEN readmissions risk is: 28.42% 278
ELSE IF PoorCondition AND Noshow THEN readmissions risk is: 24.63% 337
ELSE IF BedSores THEN readmissions risk is: 19.81% 308
ELSE IF NegativeIdeation AND Noshow THEN readmissions risk is: 18.21% 291
ELSE IF MaxCare THEN readmissions risk is: 13.84% 477
ELSE IF Noshow THEN readmissions risk is: 6.00% 1127
ELSE IF MoodProblems THEN readmissions risk is: 4.45% 1325
ELSE Readmissions risk is: 0.88% 3031

Table 2: Falling rule list for patients with no multiple readmissions history.

it is definitely possible for them to have poor perfor-
mance on some datasets – on the other hand, CART
often performs poorly relative to other methods, in our
experience). As expected, the nFoil-based methods
exhibited worse performance than our faIling rule list
method. FRL performed on par with the best method,
despite its being limited to a very small number of fea-
tures with the monotonic structure.

Table 2 shows a point estimate obtained from train-
ing Falling Rule Lists on the full dataset, which took
88 seconds. The “probability” column is the empiri-
cal probability of readmission for each rule; “support”
indicates the number of patients classified by that rule.

The model indicates that patients with bed sores and
who have skipped appointments are the most likely
to be readmitted. The other conditions used in the
model include “PoorPrognosis” meaning the patient
is in need of palliative care services, “PoorCondition”
meaning the patient exhibits frailty, signs of neglect
or malnutrition, “NegativeIdeation” which means sui-
cidal or violent thoughts, and “MaxCare” which means
the patient needs maximum care (is non-ambulatory,
confined to bed). This model lends itself naturally to
decision-making, as one need only view the top of the
list to obtain a characterization of high risk patients.

5.2 Performance on Public Datasets

We performed an empirical comparison on several UCI
datasets (Bache & Lichman, 2013), using the above
experimental setup. This allows us to quantify the loss
in accuracy due to the restricted form of the model.

Table 4 displays the results. As discussed earlier, we
observed that even with the severe restrictions on the
model, performance levels are still on par with those
of other methods, and not often substantially worse.
This is likely due to the benefits of not using a greedy
splitting method, restricting to the space of mined
rules, careful formulation, and optimization.

Furthermore, FRL beats the nFoil based methods in

performance on all the public datasets. Again, the
reason is that the set of rules from nFoil was found us-
ing a different objective, not intended to predict well
when placed into a decision list. Even with NF FRL,
where any subset of the nFoil rules could be selected
and placed in any order, performance was poor, show-
ing the nFoil rule set did not contain rules that were
useful for a falling rule list. The set of nFoil rules was
always much smaller than those from FPGrowth (see
supplement), overly restricting the hypothesis space.

6 Conclusion

We present a new class of interpretable predictive
models that could potentially have a major benefit in
decision-making for some domains. As nicely stated
by the director of the U.S. National Institute of Jus-
tice (Ridgeway, 2013), an interpretable model that is
actually used is better than one that is more accurate
that sits on a shelf. We envision that models pro-
duced by FRL can be used, for instance, by physicians
in third world countries who require models printed on
laminated cards. In high stakes decisions (like medical
decisions), it is important we know whether to trust
the model we are using to make decisions; models like
FRL help tell us when (and when not) to trust.

Acknowledgment: We gratefully acknowledge fund-
ing from Wistron, Siemens, and NSF-CAREER IIS-
1053407.

Method Spam Mamm Breast Cars

FRL .91(.01) .82(.02) .95(.04) .89(.08)
NF FRL .90(.03) .67(.03) .70(.11) .60(.21)
NF GRD .91(.03) .72(.04) .82(.12) .62(.20)

SVM .97(.03) .83(.01) .99(.01) .94(.08)
Logreg .97(.03) .85(.02) .99(.01) .92(.09)
CART .88(.05) .82(.02) .93(.04) .72(.17)

RF .97(.03) .83(.01) .98(.01) .92(.05)

Table 4: AUROC value comparisons over datasets
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