Appendix A. Analysis of the active norm sampling algorithm

Proof of Lemma 1. This lemma is a direct corollary of Theorem 2 from [15]. First, let $P_i = \hat{c}_i / \hat{f}$ be the probability of selecting the *i*-th column of **M**. By assumption, we have $P_i \geq \frac{1-\alpha}{1+\alpha} \|\boldsymbol{x}_i\|_2^2 / \|\mathbf{M}\|_F^2$. Applying Theorem 2⁻³ from [15] we have that with probability at least $1 - \delta$, there exists an orthonormal set of vectors $\boldsymbol{y}^{(1)}, \dots, \boldsymbol{y}^{(k)} \in \mathbb{R}^{n_1}$ in span(**C**) such that

$$\left\| \mathbf{M} - \left(\sum_{j=1}^{k} \boldsymbol{y}^{(j)} \boldsymbol{y}^{(j)^{\top}} \right) \mathbf{M} \right\|_{F}^{2} \leq \left\| \mathbf{M} - \mathbf{M}_{k} \right\|_{F}^{2} + \frac{(1+\alpha)k}{(1-\alpha)\delta s} \left\| \mathbf{M} \right\|_{F}^{2}.$$

$$\tag{29}$$

Finally, to complete the proof, note that every column of $\left(\sum_{j=1}^{k} \boldsymbol{y}^{(j)} \boldsymbol{y}^{(j)^{\top}}\right) \mathbf{M}$ can be represented as a linear combination of columns in \mathbf{C} ; furthermore,

$$\|\mathbf{M} - \mathcal{P}_{C}(\mathbf{M})\|_{F} = \min_{\mathbf{X} \in \mathbb{R}^{k \times n_{2}}} \|\mathbf{M} - \mathbf{C}\mathbf{X}\|_{F} \le \left\|\mathbf{M} - \left(\sum_{j=1}^{k} \boldsymbol{y}^{(j)} \boldsymbol{y}^{(j)^{\top}}\right) \mathbf{M}\right\|_{F}.$$
(30)

Proof of Theorem 1. First, set $m_1 = \Omega(\mu_1 \log(n_2/\delta_1))$ we have that with probability $\geq 1 - \delta_1$ the inequality

$$(1-\alpha) \|\boldsymbol{x}_i\|_2^2 \le \hat{c}_i \le (1+\alpha) \|\boldsymbol{x}_i\|_2^2$$

holds with $\alpha = 0.5$ for every column *i*, using Lemma 2. Next, putting $s \ge 6k/\delta_2\varepsilon^2$ and applying Lemma 1 we get

$$\|\mathbf{M} - \mathcal{P}_C(\mathbf{M})\|_F \le \|\mathbf{M} - \mathbf{M}_k\|_F + \varepsilon \|\mathbf{M}\|_F$$
(31)

with probability at least $1-\delta_2$. Finally, note that when $\alpha \leq 1/2$ and $n_1 \leq n_2$ the bound in Lemma 3 is dominated by

$$\|\mathbf{M} - \widehat{\mathbf{M}}\|_{2} \le \|\mathbf{M}\|_{F} \cdot O\left(\sqrt{\frac{\mu_{1}}{m_{2}}}\log\left(\frac{n_{1}+n_{2}}{\delta}\right)\right).$$
(32)

Consequently, for any $\varepsilon' > 0$ if $m_2 = \Omega((\varepsilon')^{-2}\mu_1 \log^2((n_1 + n_2)/\delta_3))$ we have with probability $\ge 1 - \delta_3$

$$\|\mathbf{M} - \mathbf{M}\|_2 \le \varepsilon' \|\mathbf{M}\|_F.$$
(33)

The proof is then completed by taking $\varepsilon' = \varepsilon/\sqrt{s}$:

$$\begin{split} \|\mathbf{M} - \mathbf{C}\mathbf{X}\|_{F} &= \|\mathbf{M} - \mathcal{P}_{C}(\widehat{\mathbf{M}})\|_{F} \\ &\leq \|\mathbf{M} - \mathcal{P}_{C}(\mathbf{M})\|_{F} + \|\mathcal{P}_{C}(\mathbf{M} - \widehat{\mathbf{M}})\|_{F} \\ &\leq \|\mathbf{M} - \mathbf{M}_{k}\|_{F} + \varepsilon \|\mathbf{M}\|_{F} + \sqrt{s}\|\mathcal{P}_{C}(\mathbf{M} - \widehat{\mathbf{M}})\|_{2} \\ &\leq \|\mathbf{M} - \mathbf{M}_{k}\|_{F} + \varepsilon \|\mathbf{M}\|_{F} + \sqrt{s} \cdot \varepsilon' \|\mathbf{M}\|_{F} \\ &\leq \|\mathbf{M} - \mathbf{M}_{k}\|_{F} + 2\varepsilon \|\mathbf{M}\|_{F}. \end{split}$$

Appendix B. Analysis of the active volume sampling algorithm

Proof of Lemma 4. We first prove Eq. (15). Observe that $\dim(\mathcal{U}(C)) \leq s$. Let $\mathbf{R}_C = (\mathbf{R}^{(C(1))}, \cdots, \mathbf{R}^{(C(s))}) \in \mathbb{R}^{n_1 \times s}$ denote the selected s columns in the noise matrix \mathbf{R} and let $\mathcal{R}(C) = \operatorname{span}(\mathbf{R}_C)$ denote the span of selected columns in \mathbf{R} . By definition, $\mathcal{U}(C) \subseteq \mathcal{U} \cup \mathcal{R}(C)$, where $\mathcal{U} = \operatorname{span}(\mathbf{A})$ denotes the subspace spanned by columns in the deterministic matrix \mathbf{A} . Consequently, we have the following bound on $\|\mathcal{P}_{\mathcal{U}(C)}\mathbf{e}_i\|$ (assuming each entry in \mathbf{R} follows a zero-mean Gaussian distribution with σ^2 variance):

$$\|\mathcal{P}_{\mathcal{U}(C)}oldsymbol{e}_i\|_2^2 \hspace{2mm} \leq \hspace{2mm} \|\mathcal{P}_{\mathcal{U}}oldsymbol{e}_i\|_2^2 + \|\mathcal{P}_{\mathcal{U}^\perp\cap\mathcal{R}(C)}oldsymbol{e}_i\|_2^2$$

³The original theorem concerns random samples of rows; it is essentially the same for random samples of columns.

$$\leq \|\mathcal{P}_{\mathcal{U}}\boldsymbol{e}_{i}\|_{2}^{2} + \|\mathcal{P}_{\mathcal{R}(C)}\boldsymbol{e}_{i}\|_{2}^{2} \\ \leq \frac{k\mu_{0}}{n_{1}} + \|\mathbf{R}_{C}\|_{2}^{2}\|(\mathbf{R}_{C}^{\top}\mathbf{R}_{C})^{-1}\|_{2}^{2}\|\mathbf{R}_{C}^{\top}\boldsymbol{e}_{i}\|_{2}^{2} \\ \leq \frac{k\mu_{0}}{n_{1}} + \frac{(\sqrt{n_{1}} + \sqrt{s} + \epsilon)^{2}\sigma^{2}}{(\sqrt{n_{1}} - \sqrt{s} - \epsilon)^{4}\sigma^{4}} \cdot \sigma^{2}(s + 2\sqrt{s\log(2/\delta)} + 2\log(2/\delta)).$$

For the last inequality we apply Lemma 13 to bound the largest and smallest singular values of \mathbf{R}_C and Lemma 11 to bound $\|\mathbf{R}_C^{\top} \boldsymbol{e}_i\|_2^2$, because $\mathbf{R}_C^{\top} \boldsymbol{e}_i$ follow i.i.d. Gaussian distributions with covariance $\sigma^2 \mathbf{I}_{s \times s}$. If ϵ is set as $\epsilon = \sqrt{2\log(4/\delta)}$ then the last inequality holds with probability at least $1 - \delta$. Furthermore, when $s \leq n_1/2$ and δ is not exponentially small (e.g., $\sqrt{2\log(4/\delta)} \leq \frac{\sqrt{n_1}}{4}$), the fraction $\frac{(\sqrt{n_1}+\sqrt{s}+\epsilon)^2}{(\sqrt{n_1}-\sqrt{s}-\epsilon)^4}$ is approximately $O(1/n_1)$. As a result, with probability $1 - n_1\delta$ the following holds:

$$\mu(\mathcal{U}(C)) = \frac{n_1}{s} \max_{1 \le i \le n_1} \|\mathcal{P}_{\mathcal{U}(C)} \boldsymbol{e}_i\|_2^2 \\ \le \frac{n_1}{s} \left(\frac{k\mu_0}{n_1} + O\left(\frac{s + \sqrt{s\log(1/\delta)} + \log(1/\delta)}{n_1}\right)\right) = O\left(\frac{k\mu_0 + s + \sqrt{s\log(1/\delta)} + \log(1/\delta)}{s}\right).$$
(34)

Finally, putting $\delta' = n_1/\delta$ we prove Eq. (15).

Next we try to prove Eq. (16). Let \boldsymbol{x} be the *i*-th column of \mathbf{M} and write $\boldsymbol{x} = \boldsymbol{a} + \boldsymbol{r}$, where $\boldsymbol{a} = \mathcal{P}_{\mathcal{U}}(\boldsymbol{x})$ and $\boldsymbol{r} = \mathcal{P}_{\mathcal{U}^{\perp}}(\boldsymbol{x})$. Since the deterministic component of \boldsymbol{x} lives in \mathcal{U} and the random component of \boldsymbol{x} is a vector with each entry sampled from i.i.d. zero-mean Gaussian distributions, we know that \boldsymbol{r} is also a zero-mean random Gaussian vector with i.i.d. sampled entries. Note that $\mathcal{U}(C)$ does not depend on the randomness over $\{\mathbf{M}^{(i)} : i \notin C\}$. Therefore, in the following analysis we will assume $\mathcal{U}(C)$ to be a fixed subspace $\widetilde{\mathcal{U}}$ with dimension at most s.

The projected vector $\mathbf{x}' = \mathcal{P}_{\widetilde{\mathcal{U}}^{\perp}}\mathbf{x}$ can be written as $\tilde{\mathbf{x}} = \tilde{\mathbf{a}} + \tilde{\mathbf{r}}$, where $\tilde{\mathbf{a}} = \mathcal{P}_{\widetilde{\mathcal{U}}^{\perp}}\mathbf{a}$ and $\tilde{\mathbf{r}} = \mathcal{P}_{\widetilde{\mathcal{U}}^{\perp}}\mathbf{r}$. By definition, $\tilde{\mathbf{a}}$ lives in the subspace $\mathcal{U} \cap \widetilde{\mathcal{U}}^{\perp}$. So it satisfies the incoherence assumption

$$\mu(\tilde{\boldsymbol{a}}) = \frac{n_1 \|\tilde{\boldsymbol{a}}\|_{\infty}^2}{\|\tilde{\boldsymbol{a}}\|_2^2} \le k\mu(\mathcal{U}) \le k\mu_0.$$

$$(35)$$

On the other hand, because \tilde{r} is an orthogonal projection of some random Gaussian variable, \tilde{r} is still a Gaussian random vector, which lives in $\mathcal{U}^{\perp} \cap \widetilde{\mathcal{U}}^{\perp}$ with rank at least $n_1 - k - s$. Subsequently, we have

$$\begin{split} \mu(\tilde{\boldsymbol{x}}) &= n_1 \frac{\|\tilde{\boldsymbol{x}}\|_{\infty}^2}{\|\tilde{\boldsymbol{x}}\|_2^2} \leq 3n_1 \frac{\|\tilde{\boldsymbol{a}}\|_{\infty}^2 + \|\tilde{\boldsymbol{r}}\|_{\infty}^2}{\|\tilde{\boldsymbol{a}}\|_2^2 + \|\tilde{\boldsymbol{r}}\|_2^2} \\ &\leq 3n_1 \frac{\|\tilde{\boldsymbol{a}}\|_{\infty}^2}{\|\tilde{\boldsymbol{a}}\|_2^2} + 3n_1 \frac{\|\tilde{\boldsymbol{r}}\|_{\infty}^2}{\|\tilde{\boldsymbol{r}}\|_2^2} \\ &\leq 3k\mu_0 + \frac{6\sigma^2 n_1 \log(2n_1n_2/\delta)}{\sigma^2(n_1 - k - s) - 2\sigma^2 \sqrt{(n_1 - k - s)\log(n_2/\delta)}}. \end{split}$$

For the second inequality we use the fact that $\frac{\sum_i a_i}{\sum_i b_i} \leq \sum_i \frac{a_i}{b_i}$ whenever $a_i, b_i \geq 0$. For the last inequality we use Lemma 12 on the enumerator and Lemma 11 on the denominator. Finally, note that when $\max(s,k) \leq n_1/4$ and $\log(n_2/\delta) \leq n_1/64$ the denominator can be lower bounded by $\sigma^2 n_1/4$; subsequently, we can bound $\mu(\tilde{x})$ as

$$\mu(\tilde{\boldsymbol{x}}) \le 3k\mu_0 + \frac{24\sigma^2 n_1 \log(2n_1 n_2/\delta)}{\sigma^2 n_1} \le 3k\mu_0 + 24\log(2n_1 n_2/\delta).$$
(36)

Taking a union bound over all $n_2 - s$ columns yields the result.

To prove the norm estimation consistency result in Lemma 5 we first cite a seminal theorem from [20] which provides a tight error bound on a subsampled projected vector in terms of the norm of the true projected vector.

Theorem 4. Let \mathcal{U} be a k-dimensional subspace of \mathbb{R}^n and $\mathbf{y} = \mathbf{x} + \mathbf{v}$, where $\mathbf{x} \in \mathcal{U}$ and $\mathbf{v} \in \mathcal{U}^{\perp}$. Fix $\delta' > 0$, $m \geq \max\{\frac{8}{3}k\mu(\mathcal{U})\log(\frac{2k}{\delta'}), 4\mu(\mathbf{v})\log(1/\delta')\}$ and let Ω be an index set with entries sampled uniformly with replacement with probability m/n. Then with probability at least $1 - 4\delta'$:

$$\frac{m(1-\alpha)-k\mu(\mathcal{U})\frac{\beta}{1-\gamma}}{n}\|\boldsymbol{v}\|_{2}^{2} \leq \|\boldsymbol{y}_{\Omega}-\mathcal{P}_{U_{\Omega}}\boldsymbol{y}_{\Omega}\|_{2}^{2} \leq (1+\alpha)\frac{m}{n}\|\boldsymbol{v}\|_{2}^{2},$$
(37)

where $\alpha = \sqrt{2\frac{\mu(\boldsymbol{v})}{m}\log(1/\delta')} + 2\frac{\mu(\boldsymbol{v})}{3m}\log(1/\delta'), \ \beta = (1 + 2\sqrt{\log(1/\delta')})^2 \ and \ \gamma = \sqrt{\frac{8k\mu(\mathcal{U})}{3m}\log(2k/\delta')}.$

We are now ready to prove Lemma 5.

Proof of Lemma 5. By Algorithm 2, we know that $\dim(\mathcal{S}_t) = t$ with probability 1. Let $\boldsymbol{y} = \mathbf{M}^{(i)}$ denote the *i*-th column of \mathbf{M} and let $\boldsymbol{v} = \mathcal{P}_{\mathcal{S}_t} \boldsymbol{y}$ be the projected vector. We can apply Theorem 4 to bound the estimation error between $\|\boldsymbol{v}\|$ and $\|\boldsymbol{y}_{\Omega} - \mathcal{P}_{\mathcal{S}_t(\Omega)} \boldsymbol{y}_{\Omega}\|$.

First, when m is set as in Eq. (19) it is clear that the conditions $m \ge \frac{8}{3}t\mu(\mathcal{U})\log\left(\frac{2t}{\delta'}\right) = \Omega(k\mu_0\log(n/\delta)\log(k/\delta'))$ and $m \ge 4\mu(\boldsymbol{v})\log(1/\delta') = \Omega(k\mu_0\log(n/\delta)\log(1/\delta'))$ are satisfied. We next turn to the analysis of α , β and γ . More specifically, we want $\alpha = O(1)$, $\gamma = O(1)$ and $\frac{t\mu(\mathcal{U})}{m}\beta = O(1)$.

For α , $\alpha = O(1)$ implies $m = \Omega(\mu(\boldsymbol{v}) \log(1/\delta')) = \Omega(k\mu_0 \log(n/\delta) \log(1/\delta'))$. Therefore, by carefullying selecting constants in $\Omega(\cdot)$ we can make $\alpha \leq 1/4$.

For γ , $\gamma = O(1)$ implies $m = \Omega(t\mu(\mathcal{U})\log(t/\delta')) = \Omega(k\mu_0\log(n/\delta)\log(k/\delta'))$. By carefully selecting constants in $\Omega(\cdot)$ we can make $\gamma \leq 0.2$.

For β , $\frac{t\mu(\mathcal{U})}{m}\beta = O(1)$ implies $m = O(t\mu(\mathcal{U})\beta) = O(k\mu_0 \log(n/\delta) \log(1/\delta'))$. By carefully selecting constants we can have $\beta \leq 0.2$. Finllay, combining bounds on α , β and γ we prove the desired result.

Before proving Lemma 6, we first cite a lemma from [9] that connects the volume of a simplex to the permutation sum of singular values.

Lemma 8 ([9]). Fix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $m \leq n$. Suppose $\sigma_1, \dots, \sigma_m$ are singular values of \mathbf{A} . Then

$$\sum_{S \subseteq [n], |S|=k} \operatorname{vol}(\Delta(S))^2 = \frac{1}{(k!)^2} \sum_{1 \le i_1 < i_2 < \dots < i_k \le m} \sigma_{i_1}^2 \sigma_{i_2}^2 \cdots \sigma_{i_k}^2.$$
(38)

Now we are ready to prove Lemma 6.

Proof of Lemma 6. Let \mathbf{M}_k denote the best rank-k approximation of \mathbf{M} and assume the singular values of \mathbf{M} are $\{\sigma_i\}_{i=1}^{n_1}$. Let $C = \{i_1, \dots, i_k\}$ be the selected columns. Let $\tau \in \Pi_k$, where Π_k denotes all permutations with k elements. By $\mathcal{H}_{\tau,t}$ we denote the linear subspace spanned by $\{\mathbf{M}^{(\tau(i_1))}, \dots, \mathbf{M}^{(\tau(i_t))}\}\)$ and let $d(\mathbf{M}^{(i)}, \mathcal{H}_{\tau,t})$ denote the distance between column $\mathbf{M}^{(i)}$ and subspace $\mathcal{H}_{\tau,t}$. We then have

$$\hat{p}_{C} \leq \sum_{\tau \in \Pi_{k}} \left(\frac{5}{2} \right)^{k} \frac{\|\mathbf{M}^{(\tau(i_{1}))}\|_{2}^{2}}{\|\mathbf{M}\|_{F}^{2}} \frac{d(\mathbf{M}^{(\tau(i_{2}))}, \mathcal{H}_{\tau,1})^{2}}{\sum_{i=1}^{n_{2}} d(\mathbf{M}^{(i)}, \mathcal{H}_{\tau,1})^{2}} \cdots \frac{d(\mathbf{M}^{(\tau(i_{k}))}, \mathcal{H}_{\tau,k-1})^{2}}{\sum_{i=1}^{n_{2}} d(\mathbf{M}^{(i)}, \mathcal{H}_{\tau,k-1})^{2}} \\
\leq 2.5^{k} \cdot \frac{\sum_{\tau \in \Pi_{k}} \|\mathbf{M}^{(\tau(i_{1}))}\|^{2} d(\mathbf{M}^{(\tau(i_{2}))}, \mathcal{H}_{\tau,1})^{2} \cdots d(\mathbf{M}^{(\tau(i_{k}))}, \mathcal{H}_{\tau,k-1})^{2}}{\|\mathbf{M}\|_{F}^{2} \|\mathbf{M} - \mathbf{M}_{1}\|_{F}^{2} \cdots \|\mathbf{M} - \mathbf{M}_{k-1}\|_{F}^{2}} \\
= 2.5^{k} \cdot \frac{\sum_{\tau \in \Pi_{k}} (k!)^{2} \operatorname{vol}(\Delta(C))^{2}}{\|\mathbf{M}\|_{F}^{2} \|\mathbf{M} - \mathbf{M}_{1}\|_{F}^{2} \cdots \|\mathbf{M} - \mathbf{M}_{k-1}\|_{F}^{2}} \\
= 2.5^{k} \cdot \frac{(k!)^{3} \operatorname{vol}(\Delta(C))^{2}}{\sum_{i=1}^{n_{1}} \sigma_{i}^{2} \sum_{i=2}^{n_{2}} \sigma_{i}^{2} \cdots \sum_{i=k}^{n_{1}} \sigma_{i}^{2}} \\
\leq 2.5^{k} \cdot \frac{(k!)^{3} \operatorname{vol}(\Delta(C))^{2}}{\sum_{1 \le i_{1} < i_{2} < \cdots < i_{k} \le n_{1}} \sigma_{i_{1}}^{2} \sigma_{i_{2}}^{2} \cdots \sigma_{i_{k}}^{2}} \\
= 2.5^{k} \cdot \frac{k! \operatorname{vol}(\Delta(C))^{2}}{\sum_{1 \le i_{1} < i_{2} < \cdots < i_{k} \le n_{1}} \sigma_{i_{1}}^{2} \sigma_{i_{2}}^{2} \cdots \sigma_{i_{k}}^{2}} \\
= 2.5^{k} \cdot \frac{k! \operatorname{vol}(\Delta(C))^{2}}{\sum_{1 \le i_{1} < i_{2} < \cdots < i_{k} \le n_{1}} \sigma_{i_{1}}^{2} \sigma_{i_{2}}^{2} \cdots \sigma_{i_{k}}^{2}} \\
= 2.5^{k} \cdot \frac{k! \operatorname{vol}(\Delta(C))^{2}}{\sum_{1 \le i_{1} < i_{2} < \cdots < i_{k} \le n_{1}} \sigma_{i_{1}}^{2} \sigma_{i_{2}}^{2} \cdots \sigma_{i_{k}}^{2}} \\
= 2.5^{k} \cdot \frac{k! \operatorname{vol}(\Delta(C))^{2}}{\sum_{1 \le i_{1} < i_{2} < \cdots < i_{k} \le n_{1}} \sigma_{i_{1}}^{2} \sigma_{i_{2}}^{2} \cdots \sigma_{i_{k}}^{2}}} \\
= 2.5^{k} \cdot \frac{k! \operatorname{vol}(\Delta(C))^{2}}{\sum_{1 \le i_{1} < i_{2} < \cdots < i_{k} \le n_{1}} \sigma_{i_{1}}^{2} \sigma_{i_{2}}^{2} \cdots \sigma_{i_{k}}^{2}}} \\
= 2.5^{k} \cdot \frac{k! \operatorname{vol}(\Delta(C))^{2}}{\sum_{1 \le i_{1} < i_{2} < \cdots < i_{k} \le n_{1}} \sigma_{i_{1}}^{2} \sigma_{i_{2}}^{2} \cdots \sigma_{i_{k}}^{2}}} \\
= 2.5^{k} \cdot \frac{k! \operatorname{vol}(\Delta(C))^{2}}{\sum_{1 \le i_{1} < i_{2} < \cdots < i_{k} \le n_{1}} \sigma_{i_{1}}^{2} \sigma_{i_{2}}^{2} \cdots \sigma_{i_{k}}^{2}}} \\
= 2.5^{k} \cdot \frac{k! \operatorname{vol}(\Delta(C))^{2}}{\sum_{1 \le i_{1} < i_{2} < \cdots < i_{k} \le n_{1}} \sigma_{i_{1}}^{2} \sigma_{i_{2}}^{2} \cdots \sigma_{i_{k}}^{2}}} \\
= 2.5^{k} \cdot \frac{k! \operatorname{vol}(\Delta(C))^{2}}{\sum_{1 \le i_{1} < i_{2} < \cdots < i_{k} \le n_{1}} \sigma_{i_{1}}^{2} \sigma_{i_{2}}^{2} \cdots \sigma_{i_{k}}^{2}}} \\
= 2.5^{k} \cdot \frac{k! \operatorname{vol}(\Delta(C))^{2}}{\sum_{1 \le i_{1} < i_{1} < i_{$$

For the first inequality we apply Eq. (22) and for the second to last inequality we apply Lemma 8.

To prove the approximation error bound in Lemma 7 we need the following two technical lemmas, cited from [19, 3].

Lemma 9 ([19]). Suppose $\mathcal{U} \subseteq \mathbb{R}^n$ has dimension k and $\mathbf{U} \in \mathbb{R}^{n \times k}$ is the orthogonal matrix associated with \mathcal{U} . Let $\Omega \subseteq [n]$ be a subset of indices each sampled from *i.i.d.* Bernoulli distributions with probability m/n_1 . Then for some vector $\mathbf{y} \in \mathbb{R}^n$, with probability at least $1 - \delta$:

$$\|\mathbf{U}_{\Omega}^{\top}\boldsymbol{y}_{\Omega}\|_{2}^{2} \leq \beta \frac{m}{n_{1}} \frac{k\mu(\mathcal{U})}{n_{1}} \|\boldsymbol{y}\|_{2}^{2},$$
(39)

where β is defined in Theorem 4.

Lemma 10 ([3]). With the same notation in Lemma 9 and Theorem 4. With probability $\geq 1 - \delta$ one has

$$\|(\mathbf{U}_{\Omega}^{\top}\mathbf{U}_{\Omega})^{-1}\| \leq \frac{n_1}{(1-\gamma)m},\tag{40}$$

provided that $\gamma < 1$.

Now we can prove Lemma 7.

Proof of Lemma 7. Let $\mathcal{U} = \mathcal{U}(C)$ and $\mathbf{U} \in \mathbb{R}^{n_1 \times k}$ be the orthogonal matrix associated with \mathcal{U} (note that with probability one dim $(\mathcal{U}) = k$). Fix a column *i* and let $\boldsymbol{x} = \mathbf{M}^{(i)} = \boldsymbol{a} + \boldsymbol{r}$, where $\boldsymbol{a} \in \mathcal{U}$ and $\boldsymbol{r} \in \mathcal{U}^{\perp}$. What we want is to bound $\|\boldsymbol{x} - \mathbf{U}(\mathbf{U}_{\Omega}^{\top}\mathbf{U}_{\Omega})^{-1}\mathbf{U}_{\Omega}^{\top}\boldsymbol{x}_{\Omega}\|_{2}^{2}$ in terms of $\|\boldsymbol{r}\|_{2}^{2}$.

Write $\boldsymbol{a} = \mathbf{U}\tilde{\boldsymbol{a}}$. By Lemma 10, if *m* satisfies the condition given in the Lemma then with probability over $1 - \delta - \delta''$ we know $(\mathbf{U}_{\Omega}^{\top}\mathbf{U}_{\Omega})$ is invertible and furthermore, $\|(\mathbf{U}_{\Omega}^{\top}\mathbf{U}_{\Omega})^{-1}\|_{2} \leq 2n_{1}/m$. Consequently,

$$\mathbf{U}(\mathbf{U}_{\Omega}^{\top}\mathbf{U}_{\Omega})^{-1}\mathbf{U}_{\Omega}^{\top}\boldsymbol{a}_{\Omega} = \mathbf{U}(\mathbf{U}_{\Omega}^{\top}\mathbf{U}_{\Omega})^{-1}\mathbf{U}_{\Omega}^{\top}\mathbf{U}_{\Omega}\tilde{\boldsymbol{a}} = \mathbf{U}\tilde{\boldsymbol{a}} = \boldsymbol{a}.$$
(41)

That is, the subsampled projector preserves components of x in subspace \mathcal{U} .

Now let's consider the noise term \boldsymbol{r} . By Corollary 1 with probability $\geq 1 - \delta$ we can bound the incoherence level of \boldsymbol{y} as $\mu(\boldsymbol{y}) = O(k\mu_0 \log(n/\delta))$. The incoherence of subspace \mathcal{U} can also be bounded as $\mu(\mathcal{U}) = O(\mu_0 \log(n/\delta))$. Subsequently, given $m = \Omega(k\mu_0 \log(n/\delta) \log(n/\delta''))$ we have (with probability $\geq 1 - \delta - 2\delta''$)

$$\begin{split} \|\boldsymbol{x} - \mathbf{U}(\mathbf{U}_{\Omega}^{\top}\mathbf{U}_{\Omega})^{-1}\mathbf{U}_{\Omega}^{\top}(\boldsymbol{a} + \boldsymbol{r})\|_{2}^{2} \\ &= \|\boldsymbol{a} + \boldsymbol{r} - \mathbf{U}(\mathbf{U}_{\Omega}^{\top}\mathbf{U}_{\Omega})^{-1}\mathbf{U}_{\Omega}^{\top}(\boldsymbol{a} + \boldsymbol{r})\|_{2}^{2} \\ &= \|\boldsymbol{r} - \mathbf{U}(\mathbf{U}_{\Omega}^{\top}\mathbf{U}_{\Omega})^{-1}\mathbf{U}_{\Omega}^{\top}\boldsymbol{r}\|_{2}^{2} \\ &\leq \|\boldsymbol{r}\|_{2}^{2} + \|(\mathbf{U}_{\Omega}^{\top}\mathbf{U}_{\Omega})^{-1}\|_{2}^{2}\|\mathbf{U}_{\Omega}^{\top}\boldsymbol{r}\|_{2}^{2} \\ &\leq (1 + O(1))\|\boldsymbol{r}\|_{2}^{2}. \end{split}$$

For the second to last inequality we use the fact that $r \in \mathcal{U}^{\perp}$. By carefully selecting constants in Eq. (21) we can make

$$\|\boldsymbol{x} - \mathbf{U}(\mathbf{U}_{\Omega}^{\top}\mathbf{U}_{\Omega})^{-1}\mathbf{U}_{\Omega}^{\top}\boldsymbol{x}\|_{2}^{2} \leq 2.5 \|\mathcal{P}_{\mathcal{U}^{\perp}}\boldsymbol{x}\|_{2}^{2}.$$
(42)

Summing over all n_2 columns yields the desired result.

Appendix C. Some concentration inequalities

Lemma 11 ([21]). Let $X \sim \chi^2_d$. Then with probability $\geq 1 - 2\delta$ the following holds:

$$-2\sqrt{d\log(1/\delta)} \le X - d \le 2\sqrt{d\log(1/\delta)} + 2\log(1/\delta).$$
(43)

Lemma 12. Let $X_1, \dots, X_n \sim \mathcal{N}(0, \sigma^2)$. Then with probability $\geq 1 - \delta$ the following holds:

$$\max_{i} |X_i| \le \sigma \sqrt{2\log(2n/\delta)}.$$
(44)

Lemma 13 ([23]). Let **X** be an $n \times t$ random matrix with i.i.d. standard Gaussian random entries. If t < n then for every $\epsilon \ge 0$ with probability $\ge 1 - 2 \exp(-\epsilon^2/2)$ the following holds:

$$\sqrt{n} - \sqrt{t} - \epsilon \le \sigma_{\min}(\mathbf{X}) \le \sigma_{\max}(\mathbf{X}) \le \sqrt{n} + \sqrt{t} + \epsilon.$$
(45)