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We provide additional explanations and proofs for “Trend Filtering on Graphs”.

A Graph Trend Filtering Interpretations

A.1 Piecewise Polynomials over Graphs
Here we give some insight for our definition of the family of graph difference operators (5) and (6), based
on the idea of piecewise polynomials over graphs. In the univariate case, sparsity of β under the difference
operator D(k+1) implies a specific kth order piecewise polynomial structure for the components of β [6, 8].
Since the components of β correspond to (real-valued) input locations x = (x1, . . . xn), the interpretation
of a piecewise polynomial here is unambiguous. But for a graph, does sparsity of ∆(k+1)β mean that the
components of β are piecewise polynomial? And what does the latter even mean, as the components of β
are defined over the nodes? To address these questions, we intuitively define a piecewise polynomial over a
graph, and show that it implies sparsity under our constructed graph difference operators.

• Piecewise constant (k = 0): we say that a signal β is piecewise constant over a graph G if many of
the differences βi − βj are zero across edges (i, j) ∈ E in G. Note that this is exactly the property
associated with sparsity of ∆(1)β, since ∆(1) = D, the oriented incidence matrix of G.

• Piecewise linear (k = 1): we say that a signal β has a piecewise linear structure over G if β satisfies

βi −
1

ni

∑
(i,j)∈E

βj = 0,

for many nodes i ∈ V , where ni is the number of nodes adjacent to i. In words, we are requiring that
the signal components can be linearly interpolated from its neighboring values at many nodes in the
graph. This is quite a natural notion of (piecewise) linearity: requiring that βi be equal to the average
of its neighboring values would enforce linearity at βi under an appropriate embedding of the points in
Euclidean space. Again, this is the same as requiring ∆(2)β to be sparse, since ∆(2) = L, the graph
Laplacian.

• Piecewise polynomial (k ≥ 2): We say that β has a piecewise quadratic structure over G if the first
differences αi − αj of the second differences α = ∆(2)β are mostly zero, over edges (i, j) ∈ E.
Likewise, β has a piecewise cubic structure over G if the second differences αi − 1

ni

∑
(i,j)∈E αj

of the second differences α = ∆(2)β are mostly zero, over nodes i ∈ V . This argument extends,
alternating between leading first and second differences for even and odd k. Sparsity of ∆(k+1)β in
either case exactly corresponds to many of these differences being zero, by construction.
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A.2 Electrical Network Interpretation of GTF Structure
Lemma 1 reveals a mathematical structure for GTF estimates β̂, which satisfy β̂ ∈ ∆

(k+1)
−A for some set A. It

is interesting to interpret the results using the electrical network perspective for graphs [7]. In this perspective,
we think of replacing each edge in the graph with a resistor of value 1. If c ∈ Rn is a vector that describes
how much current is going in at each node in the graph, then v = Lc describes the induced voltage at each
node. Provided that 1>c = 0, which means that the total accumulation of current in the network is 0, we can
solve for the current values from the voltage values: c = L†v.

The odd case in Lemma 1 asserts that

null(∆
(k+1)
−A ) = span{1}+ {(L†)

k+1
2 v : v−A = 0}.

For k = 1, this says that GTF estimates are formed by assigning a sparse number of nodes in the graph
a nonzero voltage v, then solving for the induced current L†v (and shifting this entire current vector by a
constant amount). For k = 3, we assign a sparse number of nodes a nonzero voltage, solve for the induced
current, and then repeat this: we relabel the induced current as input voltages to the nodes, and compute the
new induced current. This process is again iterated for k = 5, 7, . . ..

The even case in Lemma 1 asserts that

null(∆
(k+1)
−A ) = span{1}+ (L†)

k
2 span{1C1 , . . .1Cs}.

For k = 2, this result says that GTF estimates are given by choosing a partition C1, . . . Cs of the nodes, and
assigning a constant input voltage to each element of the partition. We then solve for the induced current (and
potentially shift this by an overall constant amount). The process is iterated for k = 4, 6, . . . by relabeling
the induced current as input voltage.

The comparison between the structure of estimates for k = 2 and k = 3 is informative: in a sense, the
2nd order GTF estimates will be smoother than the 3rd order estimates, because a sparse input voltage vector
need not induce a current that is piecewise constant over nodes in the graph. E.g., an input voltage vector with
only a few nodes having very large nonzero values will induce a current that is peaked around these nodes,
but not piecewise constant.

B Proofs of Theoretical Results

B.1 Proof of Theorem 3
By assumption we can write

y = β0 + ε, ε ∼ N (0, σ2I).

Let ∆ ∈ Rr×n, and denote R = row(∆), the row space of ∆, and R⊥ = null(∆), the null space of ∆. Also
let PR be the projection onto R, and PR⊥ the projection onto R⊥. Consider

β̂ = argmin
β∈Rn

1

2
‖y − β‖22 + λ‖∆β‖1,

β̃ = argmin
β∈Rn

1

2
‖PRy − β‖22 + λ‖∆β‖1.

The first quantity β̂ ∈ Rn is the estimate of interest, the second one β̃ ∈ R is easier to analyze. Note that

β̂ = PR⊥y + β̃,

and write ‖x‖R = ‖PRx‖2, ‖x‖R⊥ = ‖PR⊥x‖2. Then

‖β̂ − β0‖22 = ‖ε‖2R⊥ + ‖β̃ − β0‖2R,
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so assuming that R⊥ is of constant dimension, it suffices to bound the first term. Now we establish a basic
inequality for β̃. By optimality, we have

1

2
‖y − β̃‖2R + λ‖∆β̃‖1 ≤

1

2
‖y − β0‖2R + λ‖∆β0‖1,

and after rearranging terms,

‖β̃ − β0‖2R ≤ 2ε>PR(β̃ − β0) + 2λ‖∆β0‖1 − 2λ‖∆β̃‖1. (B.1)

This is our basic inequality. In the first term above, we use PR = ∆†∆, and apply Holder’s inequality:

ε>∆†∆(β̃ − β0) ≤ ‖(∆†)>ε‖∞‖∆(β̃ − β0)‖1. (B.2)

Therefore if we choose λ ≥ ‖(∆†)>ε‖∞, then we see from (B.1) that

‖β̃ − β0‖2R ≤ 2λ‖∆(β̃ − β0)‖1 + 2λ‖∆β0‖1 − 2λ‖∆β̃‖1,

i.e.,
‖β̃ − β0‖2R ≤ 4λ‖∆β0‖1. (B.3)

Finally, ‖(∆†)>ε‖∞ ≤ OP(B
√

log r) by a standard result on maxima of Gaussians, where recall B is the
maximum `2 norm of the columns of ∆†. Thus with λ = Θ(B

√
log r), we have from (B.3),

‖β̃ − β0‖2R = OP
(
B
√

log r‖∆β0‖1
)
,

or
‖β̃ − β0‖2R

n
= OP

(
B
√

log r

n
‖∆β0‖1

)
,

as desired.

B.2 Proof of Corollary 4
Case 1. We consider ∆ = D(k+1), the univariate trend filtering operator of order k + 1. Here the number of
rows of the ∆ is r = n− k − 1, and the dimension of its null space is k + 1. Further, it is not hard to verify
that ∆† = PRH/k!, where recall R = row(∆), and H ∈ Rn×(n−k−1) contains the last n − k − 1 columns
of the falling factorial basis matrix, evaluated over inputs x1 = 1, . . . xn = n [8]. The largest column norm
of PRH/k! is on the order of nk+1/2, which proves the result.

Cases 2 and 3. When G is the Ramanujan d-regular graph, the number of edges in the graph is O(nd). The
operator ∆ = ∆(k+1) has number of rows r = n when k is odd and r = O(nd) when k is even; overall
this is O(nd). The dimension of the null space of ∆ is constant (it is in fact 1, since the graph is connected).
When G is the Erdos-Renyi random graph, the same bounds apply to the number of rows and the dimension
of the null space, except that the bounds become probabilistic ones.

Now we apply the crude inequality

B = max
i=1,...r

∆†ei ≤ max
‖x‖2≤1

∆†x = ‖∆†‖2,

the right-hand side being the maximum singular value of ∆†. As ∆ = ∆(k+1), the graph difference operator
of order k + 1, we claim that

‖∆†‖2 ≤ 1/λmin(L)
k+1
2 , (B.4)

where λmin(L) denotes the smallest nonzero eigenvalue of the graph Laplacian L. To see this, note first that
‖∆†‖2 = 1/σmin(∆), where the denominator is the smallest nonzero singular value of ∆. Now for odd k,
we have ∆(k+1) = L

k+1
2 , and the claim follows as

σmin(L
k+1
2 ) = min

x∈R:‖x‖2≤1
L

k+1
2 ≥

(
σmin(L)

) k+1
2 ,
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and σmin(L) = λmin(L), since L is symmetric. Above, R denotes the row space of L (the space orthogonal
to the vector 1 of all 1s). For even k, we have ∆(k+1) = DL

k
2 , and again

σmin(DL
k
2 ) = min

x∈R:‖x‖2≤1
DL

k+1
2 ≥ σmin(D)

(
σmin(L)

) k
2 ,

where σmin(D) =
√
λmin(L), since D>D = L. This verifies the claim.

Hence having established (B.4), it suffices to lower bound λmin(L) for the two graphs in question. Indeed,
for both graphs, we have the lower bound

λmin(L) = Ω(d−
√
d).

e.g., see Lubotzky et al. [3], Marcus et al. [4] for the Ramanujan graph and Feige and Ofek [2], Chung and
Radcliffe [1] for the Erdos-Renyi graph. This completes the proof.

B.3 Proof of Theorem 5
A modification of the Holder bound (B.2) in the proof of Theorem 3 leads to potentially a sharper bound.
Suppose that we were able to argue that

ε>PR(β̃ − β0) ≤ C1‖β̃ − β0‖R + C2‖∆(β̃ − β0)‖1, (B.5)

with probability tending to 1, for some C1, C2. Following the proof strategy of Theorem 3, then we would
take λ ≥ C2/2, and arrive at

‖β̃ − β0‖2R ≤ C1‖β̃ − β0‖R + 4λ‖∆β0‖1.

This is a quadratic of the form ax2 − bx − c ≤ 0 in x = ‖β̃ − β0‖R. As a > 0, the larger of its two roots
serves as a bound for x. That is, x ≤ (b+

√
b2 + 4ac)/(2a) ≤ b/a+

√
c/a, or

‖β̃ − β0‖R ≤ C1 +
√

4λ‖∆β0‖1. (B.6)

Depending onC1, C2, the above bound can be significantly stronger than the previous one in (B.3); ifC1 = 0,
then (B.6) simply reduces to (B.3); if C1 is too large, then (B.6) could be actually weaker than (B.3); but for
C1 somewhere in the middle, (B.6) can substantially improve on (B.3), if C2 is much smaller than B

√
log r.

Our next lemma shows that a bound of the form (B.5) is possible under the incoherence assumption ∆.
Plugging in the appropriate quantities C1, C2 into (B.6) (with λ = C2/2) then gives the final result.

Lemma B.1. Let ξ1 ≤ . . . ≤ ξn be the singular values of ∆, and let ψ1, . . . ψr be the left singular vectors,
satisfying the incoherence condition:

‖ψi‖∞ ≤ µ/
√
n, i = 1, . . . r,

for some µ > 0. For an index i0 ∈ {1, . . . n}, let

C = µ

√√√√2 log 2r

n

n∑
i=i0+1

1

ξ2i
.

Then, assuming that i0 →∞, we have

ε>PR(β̃ − β0) ≤ 1.001σ
(√
i0‖β̃ − β0‖R + C‖∆(β̃ − β0)‖1

)
,

with probability tending to 1.
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Proof. We will abuse notation and define for a scalar a the pseudoinverse to be a† = 1/a for a 6= 0 and 0
otherwise. Throughout this proof let [n] = {1, . . . , n}. Let the singular value decomposition of ∆ be

∆ = ΨΞΦ>.

where Ψ ∈ Rr×r, Φ ∈ Rn×n are orthogonal, and Ξ ∈ Rr×n has diagonal elements (Ξ)ii = ξi, i ∈ [n]. First,
let us establish that

∆† = ΦΞ†Ψ>,

where Ξ† ∈ Rn×r and (Ξ†)ii = ξ†i for i ∈ [n]. Consider a vector δ ∈ Rn such that
√
i0‖δ‖2 + C‖∆δ‖1 ≤ 1.

Denote the projection Pi0 = Φ[i0]Φ
>
[i0]

where Φ[i0] contains the first i0 right singular vectors. We can decom-
pose

ε>PRδ = ε>Pi0PRδ + ε>(I − Pi0)PRδ.

The first term can be bounded by

ε>Pi0PRδ ≤ ‖Pi0ε‖2‖PRδ‖2 ≤ 1.001σ
√
i0‖δ‖2,

via the fact that ‖Pi0ε‖22
d
=
∑i0
i=1 ε

2
i and the law of large numbers. We can bound the second term by

ε>(I − Pi0)PRδ = ε>(I − Pi0)∆†∆δ ≤ ‖(∆†)>(I − Pi0)ε‖∞‖∆δ‖1,

using PR = ∆†∆ and Holder’s inequality. Define gj = (I − Pi0)∆†ej for j ∈ [r] with ej the jth canonical
basis vector. So,

‖gj‖22 = ‖Φ[n]\[i0]Ξ
†Ψ>ej‖22 ≤

µ2

n

n∑
k=i0+1

(ξ†k)2,

by rotational invariance of ‖ · ‖2 and the incoherence assumption. Then, by a standard result of the maxima
of Gaussians,

‖(∆†)>(I − Pi0)ε‖∞ = max
j∈[r]

|g>j ε| ≤ 1.001σ

√√√√2 log(2r)
µ2

n

n∑
k=i0+1

(ξ†k)2 = 1.001σC,

with probability approaching 1. Hence with probability tending to 1,

ε>PRδ ≤ 1.001σ
(√
i0‖δ‖2 + C‖∆δ‖1

)
≤ 1.001σ,

for all δ such that
√
i0‖δ‖2 + C‖∆δ‖1 ≤ 1. Applying this to the particular choice

δ = (β̃ − β0)/(
√
i0‖(β̃ − β0)‖2 + C‖∆(β̃ − β0)‖1),

proves the lemma.

B.4 Proof of Corollary 6
We can associate to every vertex in the torus a pair i1, i2 ∈ [`] × [`]. Recall that ∆ in this context is the
combinatorial Laplacian L. It can be shown that the eigenvalues and eigenvectors of ∆ associated with the
pair are

2(2− cos(2πi1)− cos(2πi2), N−2` (sin(2πk1i1/`))k1∈[`] ⊗ (sin(2πk2i2/`))k2∈[`] = ψ(i1,i2),
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where N` is a normalizing constant that forces the eigenvectors to be of unit norm. Due to this constraint,
N` ∼

√
`, where a ∼ b indicates that a = b(1 + o(1)). We have that

‖ψ(i1,i2)‖∞ ∼ n
−1/2

uniformly, and so it obeys the coherence condition with µ arbitrarily close to 1 for n large enough. The
remainder of this proof comes from Sharpnack et al. [5], but we include it here for completeness. Now, we
turn to calculating the functional

∑n
i=i0+1 ξ

−2
i . For i ∈ [`], we have |{(i1, i2) : i1 ∨ i2 = i}| ≤ 2i and we

know that ξi1,i2 ≥ 2(1− cos(2πi1 ∨ i2/`)). Letting j0 ∈ [`] such that j0 = o(`), then

1

n

∑
i1,i2:i1∨i2>j0

1

ξ2i1,i2
≤ 1

n

∑̀
j=j0

2j

(2(1− cos(2πj/`)))2

≤ 1

2`

∑̀
j=j0

j/`

(1− cos(2πj/`))2

∼ 1

2

∫ 1

j0/`

x

(1− cos(2πx))2
dx ∼ 1

2

(
`

j0

)3

,

by a Taylor expansion about x = 0. Moreover, i0 = |{i1, i2 ∈ [`] : i1 ∨ i2 ≤ j0}| = j20 and so we will seek
to balance i0 = j20 with

√
(log n)`3/j30 . This is accomplished by

j0 ∼ (log n)1/7n3/14,

which is the order of C. Applying Theorem 5 with i0 = j20 and C as above gives us our result.
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