
A Greedy Homotopy Method

for Regression with Nonconvex Constraints

– Supplementary Material –

Fabian L. Wauthier Peter Donnelly
Wellcome Trust Centre for Human Genetics and Department of Statistics

University of Oxford

1 Proofs of Section 3

Recall that given a partition G = {G1, . . . , Gg} of {1, . . . , p} without singleton or empty sets, and
a vector θ = (θ1, . . . , θg) ≥ 0, we defined

Ωθ,G(β)=
∑

i<j∈Gg′∈G

ωθg′ (βi, βj)

|Gg′ | − 1
ωθg′ (βi, βj) = min(|βi|, |βj |)(1 + θg′) + max(|βi|, |βj |). (1)

Let Bθ,G(τ) = {β ∈ Rp : Ωθ,G(β) ≤ τ} be the induced constraint balls and Γ(i) ∈ {1, . . . , g} the
(unique) group so that i ∈ GΓ(i).

1.1 Proof of Proposition 1

Proposition 1 (Union Decomposition). Let the partition be G = {G1, . . . , Gg} and the parameter
θ = (θ1, . . . , θg) ≥ 0. There is a finite set Sθ,G ⊂ Rp of vectors s ≥ 1, so that for any τ > 0

Bθ,G(τ) =
⋃

s∈Sθ,G
Bs(τ). (2)

Define Πg′ to be all permutations πg′ of the elements in Gg′ and let ΠG = ×gg′=1Πg′ be their cross-
product, whose elements π ∈ ΠG are g-tuples of permutations π = (π1, . . . , πg). For some π ∈ ΠG,
denote by πΓ(i)(i) ∈ {1, . . . , |GΓ(i)|} the position of i ∈ GΓ(i) in permutation πΓ(i). We have

Sθ,G = ∪π∈ΠG{sπ} (3)

sπ,i = 1 + (πΓ(i)(i)− 1)
θΓ(i)

|GΓ(i)| − 1
∀i = 1, . . . , p. (4)

Proof. We first showBθ,G(τ) ⊆
⋃
s∈Sθ,G Bs(τ). Consider some β ∈ Bθ,G(τ) and let π = (π1, . . . , πg)

be a tuple of permutations (not necessarily unique) induced by sorting the elements |βi| within
each group specified by G so that for each group index g′ we have

|βπ−1

g′ (1)| ≥ . . . ≥ |βπ−1

g′ (|Gg′ |)|. (5)

1

By construction of Ωθ,G(·), β lies in the setβ′ ∈ Rp :

g∑
g′=1

|Gg′ |∑
i=1

(
(|Gg′ | − i) + (i− 1)(1 + θg′)

|Gg′ | − 1

)
|β′
π−1

g′ (i)
| ≤ τ

 (6)

=

β′ ∈ Rp :

g∑
g′=1

|Gg′ |∑
i=1

(
1 +

(i− 1)θg′

|Gg′ | − 1

)
|β′
π−1

g′ (i)
| ≤ τ

 (7)

=

β′ ∈ Rp :

g∑
g′=1

∑
i∈Gg′

(
1 + (πg′(i)− 1)

θg′

|Gg′ | − 1

)
|β′i| ≤ τ

 (8)

=

{
β′ ∈ Rp :

p∑
i=1

(
1 +

(
πΓ(i)(i)− 1

) θΓ(i)

|GΓ(i)| − 1

)
|β′i| ≤ τ

}
= Bsπ (τ) (9)

We therefore conclude that Bθ,G(τ) ⊆
⋃
s∈Sθ,G Bs(τ), with

Sθ,G = ∪π∈ΠG{sπ} (10)

sπ,i = 1 + (πΓ(i)(i)− 1)
θΓ(i)

|GΓ(i)| − 1
∀i = 1, . . . , p. (11)

For the other direction, suppose that β ∈ Bsπ̃ (τ) for some arbitrary tuple of permutations π̃ ∈ ΠG ,
which means that

p∑
i=1

(
1 +

(
π̃Γ(i)(i)− 1

) θΓ(i)

|GΓ(i)| − 1

)
|βi| ≤ τ. (12)

Then notice that if π is a (not necessarily unique) tuple of permutations induced by ordering
elements |βi| within groups, we have, by arguing from pairwise swaps within groups that take π̃
to π, that

p∑
i=1

(
1 +

(
πΓ(i)(i)− 1

) θΓ(i)

|GΓ(i)| − 1

)
|βi| ≤

p∑
i=1

(
1 +

(
π̃Γ(i)(i)− 1

) θΓ(i)

|GΓ(i)| − 1

)
|βi| ≤ τ, (13)

and so β ∈ Bθ,G(τ). It follows that
⋃
s∈Sθ,G Bs(τ) ⊆ Bθ,G(τ) and so Bθ,G(τ) =

⋃
s∈Sθ,G Bs(τ).

2

1.2 Proof of Proposition 2

Recall that we are considering the nonconvex optimization problem

β(τ) ∈ argmin
β∈Rp

Jτ (β) (P1)

= argmin
β∈Rp

{
1

2n ||y −Xβ||
2
2 if β ∈ Bθ,G(τ)

∞ o.w.
.

Proposition 2 (Local Piecewise Linearity). Suppose X has absolutely continuous distribution
and that ∃τ ′ > 0 s.t. @β ∈ Bθ,G(τ ′) which is a minimum of ||y−Xβ||22. Let τmax be the supremum
over these τ ′. The set of local minima of Jτ (·) in (P1) with τ ∈ (0, τmax) is w.p. 1 a finite union
of piecewise linear paths, each path indexed by τ and lying in the boundary of a ball, bd(Bs(τ)), s ∈
Sθ,G.

Proof. Given the assumptions, for all τ ∈ (0, τmax), the elements β on the boundary of Bθ,G(τ)
satisfy (y −Xβ)>X 6= 0. For each τ ∈ (0, τmax), let Mθ,G(τ) be the set of local minima of Jτ (·).
Let the set Sθ,G be defined as in Proposition 1: For ΠG the set of g-tuples of permutations induced
by G,

Sθ,G = ∪π∈ΠG{sπ} (14)

sπ,i = 1 + (πΓ(i)(i)− 1)
θΓ(i)

|GΓ(i)| − 1
∀i = 1, . . . , p. (15)

For some sπ ∈ Sθ,G , define Msπ (τ) to be the solution to (P1) with Bθ,G(τ) replaced by Bsπ (τ).
For each sπ ∈ Sθ,G the ball Bsπ (τ) corresponds to a weighted `1 norm, and if X is drawn from
an absolutely continuous distribution, then the solution Msπ (τ) is with probability 1 unique on
(0, τmax) [6]. Additionally, the result of Rosset and Zhu [5] shows that the resulting regularization
path Msπ (τ) is piecewise linear on (0, τmax). Due to the union decomposition of Proposition 1,
it follows immediately that Mθ,G(τ) ⊆

⋃
sπ∈Sθ,GMsπ (τ) for τ ∈ (0, τmax). However, we seek not

a superset of Mθ,G(τ), but a characterization as a union of paths on the boundaries of weighted
`1 balls. That, is we seek a set P ⊆ ΠG so that Mθ,G(τ) =

⋃
π∈PMsπ (τ) for τ ∈ (0, τmax). The

existence of such a set P can be guaranteed if for any sπ ∈ Sθ,G ,Msπ (τ) either lies ∀τ ∈ (0, τmax)
in the interior of Bθ,G(τ) or it lies ∀τ ∈ (0, τmax) on the boundary of Bθ,G(τ). To show this, we
show that for τ ∈ (0, τmax) no local minimum inMθ,G(τ) lies at a concave kink of Bθ,G(τ) (which
are the points where a path would switch from being in the interior to being on the boundary or
vice versa).

Suppose then (for the purpose of deriving a contradiction) that for some τ ∈ (0, τmax), we have
that β is a local minimum in Mθ,G(τ) that lies at one of the concave kinks of Bθ,G(τ). If β lies
at a concave kink, then since τmax > 0, we know that for at least two elements i 6= j ∈ G ∈ G,
βi 6= 0, βj 6= 0. For if only a single element 6= 0, then we lie at one of the points of Bθ,G(τ) and if
the only two nonzero elements lie in different groups, β cannot lie at a concave kink. Specifically,
the concave kink is identified by sets of indices i in a group G ∈ G so that the corresponding
βi 6= 0 have identical magnitude. The vector β induces a set Σ ⊆ ΠG of g-tuples of permutations σ
by sorting |βi| by their magnitudes within each group G ∈ G = {G1, . . . , Gg} (with tie-breaking).
We know that for each σ ∈ Σ, ||diag(sσ)β||1 = τ , that is, β lies on the boundary of Bsσ (τ). Each
σ thus corresponds to an active constraint on β. Since we can think of β as a local minimum of
||y −Xβ||22, subject to either of these (convex) constraints, we have by convexity for any σ ∈ Σ a
subgradient vector zσ ∈ ∂||β||1 and a constant λσ so that

(y −Xβ)>X = λσdiag(zσ)sσ. (16)

Because there are at least two elements i 6= j ∈ G ⊆ G with |βi| = |βj | 6= 0 we know that
∀σ ∈ Σ, zσ,i = sgn(βi), zσ,j = sgn(βj), which implies that zσ,isσ,i 6= 0, zσ,jsσ,j 6= 0. Additionally,

3

by construction (y −Xβ)>X 6= 0 and so we know λσ 6= 0. By the construction of sπ in Eq. (15),
we know that ∃σ1 6= σ2 ∈ Σ, so that sσ1

and sσ2
differ only on elements i, j. However Eq. (16)

then cannot simultaneously hold unless λσ = 0 and (y −Xβ)>X = 0 which we ruled out earlier.
Thus we have a contradiction and so the assumption that β lies at a concave kink must be wrong.

Because local minima inMθ,G(τ) never lie at concave kinks of Bθ,G(τ) for τ ∈ (0, τmax), we know
that for each local minimum path on (0, τmax), there is a π ∈ ΠG so that the path lies on Bsπ (τ).
That is, there is some nonempty subset P ⊆ ΠG so that Mθ,G(τ) =

⋃
π∈PMsπ (τ) is a union of

piecewise linear paths.

4

2 Proofs of Section 4

2.1 Proof of Proposition 3

Recall that we are considering the surrogate problem

β̄(λ) ∈ argminβ∈Rp
1

2n
||y −Xβ||22 + λ ||diag(s∗)β||1 . (S)

For a positive vector b, let β̄b(λ) be a solution to (S) with penalty λ||diag(b)β||1.

Proposition 3 (Recoverability of (S)). Suppose X has absolutely continuous distribution. For
any vectors a ≥ b ≥ 1 and λ > 0, w.p. 1 β̄a(λ), β̄b(λ) are unique. If additionally ||diag(a)β̄b(λ)||1 =
||diag(b)β̄b(λ)||1, then β̄a(λ) = β̄b(λ).

Proof. Since X is absolutely continuous, a ≥ b ≥ 0 and λ > 0, it follows that β̄a(λ), β̄b(λ) are
almost surely unique [6]. Since a ≥ b ≥ 1, we have ∀β ∈ Rp

1

2n
||y −Xβ||22 + λ ||diag(b)β||1 ≤

1

2n
||y −Xβ||22 + λ ||diag(a)β||1 . (17)

However, we also know

λ
∣∣∣∣diag(b)β̄b(λ)

∣∣∣∣
1

= λ
∣∣∣∣diag(a)β̄b(λ)

∣∣∣∣
1
. (18)

It follows that we must have β̄a(λ) = β̄b(λ).

5

3 Proofs of Section 5

Section 5 compares the estimator of β∗ produced by the RepLasso algorithm, with the estimator
of β∗ produced by the Lasso. For convenience we reproduce the RepLasso algorithm below.

Algorithm 1: REPLASSO(X, y,G, θ)

ȳ = 0, A = (), L = 0, λ = ||X>y||∞, s(λ) = 1, β̄(λ) = 0
while λ > 0

Stage 1

if L = 0 # Add a variable
A = (A, i∗), where i∗ = argmaxj∈Ac

∣∣X>j (y − ȳ)/sj(λ)
∣∣

sM (λ−) = sM (λ) +
θΓ(i∗)

|GΓ(i∗)|−11M , sMc(λ−) = sMc(λ), with M =
{
Ac ∩GΓ(i∗)

}
if L = 1 # Delete a variable
A = A\i∗, where i∗ = argi∈AJβ̄i(λ) = 0K

Stage 2
{
w̄A = AA

(
X>AXA

)−1
diag(sgn

(
X>A (y − ȳ)

)
)sA(λ), with AA s.t. ||XAw̄A||22 = 1

Stage 3

Find smallest ρ > 0 s.t.
• ∃j ∈ Ac s.t. |X>j (y − ȳ − ρXAw̄A)/sj(λ)| = λ− ρ : set L = 0
• ∃i ∈ A s.t. β̄i(λ) 6= 0 and β̄i(λ) + ρwi = 0: set L = 1

Stage 4

{
β̄A(λ− ρ) = β̄A(λ) + ρw̄A, β̄Ac(λ− ρ) = 0, ȳ = Xβ̄(λ− ρ)
λ = λ− ρ

return β̄

The RepLasso is a generalization of the Lasso homotopy method, which maintains a set of weights
s(λ). Indeed, the RepLasso is identical to the Lars algorithm with Lasso modification of Efron et
al. [1] if we force θ = 0, which implies that ∀λ, s(λ) = 1 (We note, however, that for notational
convenience the definition of w̄A differs slightly from that in Efron et al. [1] in that case). In
the following we will carry out our comparison of RepLasso with the Lasso homotopy method by
comparing the RepLasso with θ 6= 0 and the RepLasso with θ = 0. We will denote by β̂(λ) the
estimator resulting from the specialization to the Lasso case. Similarly, we let ŵA be the vector
corresponding to w̄A for the Lasso specialization. Suppose that the support set of β∗ is S , S(β∗).
Let Xj be the column j of X and XA a matrix which consists of the columns indexed by A.

The proofs of Section 5 use the following assumptions.

A1: ∀G ∈ G, |{i ∈ G : β∗i 6= 0}| ≤ 1

A2: ∀A ⊂ S and uA the equiangular vector in Eq. (2.6) of [1], @j ∈ Ac, |X>AuA| = |X>j uA|1

6

3.1 Proof of Theorem 2

Theorem 2 (Lasso Recovery). Assume that A1–2 hold. Conditioned on X, y, we have for any
λmin > 0

∀λ ≥ λmin S(β̂(λ)) ⊆ S =⇒ ∀λ ≥ λmin β̂(λ) = β̄(λ).

Proof. Suppose then that ∀λ ≥ λmin, S(β̂(λ)) ⊆ S. Suppose that β̂(λmin) corresponds to iteration
t of the Lasso. For t′ ≤ t, let Ât′ and Āt′ be the sequence of active sets of the Lasso and RepLasso
up to iteration t. With a slight abuse of notation we will temporarily treat an active set as an
unordered set. Assumption A2 guarantees that for the Lasso, any variable that is at some point
in the active set is also at some point in the support set. To see this, note that that by A2,
the vector ŵA never contains a zero element. If it did, then an equiangular vector uA of XA as
in Eq. (2.6) of [1] could be constructed using a strict subset of vectors indexed by A, violating
assumption A2. But if ŵA does not contain a zero element, then the elements in the active set A
cannot indefinitely be assigned a β̂A(λ) coefficient of zero as λ is swept out. Finally, because we

know ∀λ ≥ λmin, S(β̂(λ)) ⊆ S, this means that ∀t′ ≤ t, Ât′ ⊆ S. We will now argue by induction
that the induced sequence of active sets Āt′ of the RepLasso also satisfies ∀t′ ≤ t, Āt′ ⊆ S.

Base case: Since s(||X>y||∞) = 1, the first variable selected by RepLasso and the Lasso method
is the same. That is, Â1 = Ā1 ⊆ S at iteration 1.

Inductive step: Assume that ∀t′′ ≤ t′, Ât′′ = Āt′′ ⊆ S. Since ∀t′′ ≤ t′, Āt′′ ⊆ S, we know by A1
that for all λ up to iteration t′, s(λ) did not change on S, i.e. sS(λ) = 1. This in particular means
that both the Lasso and the RepLasso will have arrived at the same value of λ and intermediate
estimate β̂(λ) = β̄(λ) of β∗ at the end of stage 4 of iteration t′− 1 and the same vectors ŵA = w̄A
at the end of stage 2 of iteration t′. To see this, notice that since ∀t′′ ≤ t′, Āt′′ ⊆ S, and since for
all λ up to iteration t′ we had sS(λ) = 1, the RepLasso is up to stage 2 of iteration t′ equivalent
to running Lasso on the subset of variables XS , y.

At stage 3 of iteration t′, the RepLasso algorithm determines whether to add or remove a variable
from Āt′ in stage 1 of iteration t′ + 1. Since the value of λ and the intermediate variables β̂(λ) =
β̄(λ) and ŵA = w̄A are the same at stage 2 of iteration t′ we can now use properties of s(λ) to
show that this implies Ât′+1 = Āt′+1. We consider two cases:

1. The Lasso determines to add a variable in iteration t′ + 1 (first bullet in stage 3). Since
sS(λ) = 1 did not change on S, since we always have s(λ) ≥ 1 and since Ât′+1 ⊆ S, it
follows that the RepLasso will add the same variable.

2. The Lasso determines to remove a variable in iteration t′+1 (second bullet in stage 3). Since
sS(λ) = 1 did not change on S and since we always have s(λ) ≥ 1, it then follows that the
RepLasso will remove the same variable.

Hence, it follows that Ât′+1 = Āt′+1 ⊆ S. By the principle of induction, we have shown that
∀t′ ≤ t, Āt′ ⊆ S.

Now notice that the value of λ at the end of stage 4 of iteration t must be the same for RepLasso
and Lasso and that for that value we have by definition λ < λmin. Next, since for all values of
λ > λmin we have sS(λ) = 1, and since ∀t′ ≤ t, Āt′ ⊆ S, RepLasso is up to λmin equivalent to

running Lasso on XS , y, and so ∀λ ≥ λmin, β̂(λ) = β̄(λ).

7

4 RepLars: A RepLasso variant

As noted in the paper, if θ = 0, and we force L = 0 then the RepLasso algorithm reduces to the
Lars algorithm of Efron et al. [1]. (We note, however, that the definition of w̄A differs slightly
from that of the Lars algorithm given in [1]). When we force L = 0 but allow θ 6= 0 we have a
new algorithm, which we call RepLars. In this section we present this algorithm and analyze its
behavior.

Algorithm 2: REPLARS(X, y,G, θ)

ȳ = 0, A = (), λ = ||X>y||∞, s(λ) = 1, β̄(λ) = 0
while λ > 0

Stage 1

{
A = (A, i∗), where i∗ = argmaxj∈Ac

∣∣X>j (y − ȳ)/sj(λ)
∣∣

sM (λ−) = sM (λ) +
θΓ(i∗)

|GΓ(i∗)|−11, sMc(λ−) = sMc(λ), with M =
{
Ac ∩GΓ(i∗)

}
Stage 2

{
w̄A = AA

(
X>AXA

)−1
diag(sgn

(
X>A (y − ȳ)

)
)sA(λ), with AA s.t. ||XAw̄A||22 = 1

Stage 3
{

Find smallest ρ > 0 s.t. ∃j ∈ Ac s.t. |X>j (y − ȳ − ρXAw̄A)/sj(λ)| = λ− ρ

Stage 4

{
β̄A(λ− ρ) = β̄A(λ) + ρw̄A, β̄Ac(λ− ρ) = 0, ȳ = Xβ̄(λ− ρ)
λ = λ− ρ

return β̄

In the following we will compare of RepLars with the Lars by comparing RepLars with θ > 0 and
RepLars with θ = 0. We will denote by β̂ the Lars estimate corresponding to β̄ produced by the
algorithm above. Similarly, we let ŵA be the vector in the Lars specialization corresponding to
w̄A above. We will assume throughout this analysis that variables are added to the active set one
by one.

8

Theorem 3 (Lars Recovery). Assume that A1–2 hold. Conditioned on X, y, we have for any
λmin > 0

∀λ ≥ λmin S(β̂(λ)) ⊆ S =⇒ ∀λ ≥ λmin β̂(λ) = β̄(λ). (19)

Proof. Suppose that ∀λ ≥ λmin S(β̂(λ)) ⊆ S. Suppose further that β̂(λmin) corresponds to
iteration t of Lars. For t′ ≤ t let Ât′ be the active sets of Lars at iteration t′. With a slight abuse
of notation we will temporarily treat an active set as an unordered set. Assumption A2 guarantees
that any variable that is at some point in the active set is also at some point in the support set.
To see this, note that that by A2, the vector ŵA never contains a zero element. If it did, then
an equiangular vector uA of XA as in Eq. (2.6) of [1] could be constructed using a strict subset of
vectors indexed by A, violating assumption A2. But if ŵA does not contain a zero element, then
the elements in the active set A cannot indefinitely be assigned a β̂A(λ) coefficient of zero as λ is

swept out. Finally, because we know ∀λ ≥ λmin, S(β̂(λ)) ⊆ S, this means that ∀t′ ≤ t, Ât′ ⊆ S.
We will now argue by induction that the induced sequence of active sets Āt′ of the RepLars also
satisfies ∀t′ ≤ t, Āt′ ⊆ S.

Base case: Since s(||X>y||∞) = 1, the first variable selected by RepLars and the Lars method is
the same. That is, Â1 = Ā1 ⊆ S at iteration 1.

Inductive step: Assume that ∀t′′ ≤ t′, Ât′′ = Āt′′ ⊆ S. Since ∀t′′ ≤ t′, Āt′′ ⊆ S, we know by A1
that for all λ up to iteration t′, s(λ) did not change on S, i.e. sS(λ) = 1. This in particular means
that both the Lars and the RepLars will have arrived at the same value of λ and intermediate
estimate β̂(λ) = β̄(λ) of β∗ at the end of stage 4 of iteration t′− 1 and the same vectors ŵA = w̄A
at the end of stage 2 of iteration t′. To see this, notice that since ∀t′′ ≤ t′, Āt′′ ⊆ S, and since for
all λ up to iteration t′ we had sS(λ) = 1, the RepLars is up to stage 2 of iteration t′ equivalent to
running Lars on the subset of variables XS , y.

At stage 3 of iteration t′, the RepLars algorithm determines which variable to add to Āt′ in stage
1 of iteration t′+1. Since the value of λ and the intermediate variables β̂(λ) = β̄(λ) and ŵA = w̄A
are the same at stage 2 of iteration t′ we can now use properties of s(λ) to show that this implies
Ât′+1 = Āt′+1. Specifically, since (1) sS(λ) = 1 did not change on S; (2) we always have s(λ) ≥ 1;
and (3) Ât′+1 ⊆ S, it follows that the RepLars will add the same variable.

Hence, it follows that Ât′+1 = Āt′+1 ⊆ S. By the principle of induction, we have shown that
∀t′ ≤ t, Āt′ ⊆ S.

Notice that the value of λ at the end of stage 4 of iteration t must be the same for RepLars and
Lars, and that for that value we have by definition λ < λmin. Since ∀t′ ≤ t, Āt′ ⊆ S, and since for
all λ up to iteration t we had sS(λ) = 1, the RepLars is up to λmin equivalent to running Lars on

the subset of variables XS , y and so ∀λ ≥ λmin, β̂(λ) = β̄(λ).

As in the main paper, several corollaries on the support recovery behavior of RepLars and Lars
follow immediately. For example, we have

Corollary 2 (Support Recovery). Assume that A1–2 hold. Conditioned on X, y, we have for
any λmin > 0

∀λ ≥ λmin S(β̂(λ)) ⊆ S =⇒ ∀λ ≥ λminS(β̄(λ)) ⊆ S

∀λ≥λminS±(β̂(λ))⊆S± =⇒ ∀λ≥λminS±(β̄(λ))⊆S±.

Thus, under A1–2, whenever Lars recovers the correct (signed) support, so does RepLars. Hence,
we see that RepLars cannot do worse than Lars in terms of (signed) support recovery.

9

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

P
(S

±
(β̂

Ŝ
)
=

S
±
(β

∗ Ŝ
)

|S|

RepLasso
SGL
Lasso
Z
JR
PBHT
HJ

(a) ρ ≈ 0.1

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

P
(S

±
(β̂

Ŝ
)
=

S
±
(β

∗ Ŝ
)

|S|

RepLasso
SGL
Lasso
Z
JR
PBHT
HJ

(b) ρ ≈ 0.2

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

P
(S

±
(β̂

Ŝ
)
=

S
±
(β

∗ Ŝ
)

|S|

RepLasso
SGL
Lasso
Z
JR
PBHT
HJ

(c) ρ ≈ 0.3

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

P
(S

±
(β̂

Ŝ
)
=

S
±
(β

∗ Ŝ
)

|S|

RepLasso
SGL
Lasso
Z
JR
PBHT
HJ

(d) ρ ≈ 0.5

Figure 1: (a), (b), (c), (d) Results on synthetic data with n = 172, p = 1000,G = groups of 5 and
within-group correlations ρ. We show the empirical probability that a subset of the correct signed
support is recovered as a function of support size. For each base-method we show three curves,
grouped by color. The performance of the existing Lasso variant (i.e., Lasso, Z, JR, PBHT, HJ)
is shown as dashed-dotted curve; the performance of the algorithm with the Lasso replaced by
RepLasso/SGL is shown in solid/dashed respectively (see text for details).

5 Additional Experimental Results
In this section we present experimental results for the high dimensional setting (n� p). Figure 1
shows results for a dataset with n = 172, p = 1000 and a correct support set of size 5. The
setup of is otherwise the same as in Figures 3(a), (b) in the main paper, however, for convenience
we will briefly summarize it here. As in the main paper, the figures show the probability of
correctly recovering a correctly signed subset of the true support for varying levels of within-group
correlation ρ. The red solid, dashed-dotted and dashed lines correspond to RepLasso, Lasso, and
Sparse Group Lasso (SGL), as before. Also, we again evaluated the performance of four other
methods that solve a standard Lasso problem after pre-processing the data X, y in some way. For
each algorithm we show three curves, grouped by colors: the original method is shown as dashed-
dotted curve, the method with the Lasso replaced by RepLasso as solid curve, and the method
with the Lasso replaced by SGL as dashed curve. The four methods are: (1) the Adaptive Lasso
of Zou [7] (Z); (2) the “Whitened” Lasso of Jia and Rohe [3] (JR); (3) the Preconditioned Lasso
of Paul et al. [4] (PBHT); and (4) Correlation Sifting of Huang and Jojic [2] (HJ). Since n < p we
let the Adaptive Lasso scale columns of X by univariate regression coefficients. We notice that
while the magnitude of the improvement of RepLasso variants over Lasso variants has decreased
relative to those in Figure 3 of the main paper, there is still a strict improvement, in line with
Theorem 2 and Corollary 1 of the main paper. Algorithms using SGL as a drop-in replacement
for the Lasso still perform worse than the corresponding Lasso or RepLasso variants. Finally, as
the problems get harder (i.e., ρ increases), the methods become indistinguishable (except for HJ).

10

References

[1] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least Angle Regression. Ann. Stat.,
32:407–499, 2004.

[2] J.C. Huang and N. Jojic. Variable selection through Correlation Sifting. In RECOMB, volume
6577 of LNCS, pages 106–123, 2011.

[3] J. Jia and K. Rohe. “Preconditioning” to comply with the irrepresentable condition. 2012.

[4] D. Paul, E. Bair, T. Hastie, and R. Tibshirani. “Preconditioning” for feature selection and
regression in high-dimensional problems. Ann. Stat., 36(4):1595–1618, 2008.

[5] S. Rosset and J. Zhu. Piecewise linear regularized solution paths. Ann. Stat., pages 1012–1030,
2007.

[6] R.J. Tibshirani. The Lasso problem and uniqueness. Electronic Journal of Statistics, 7:1456–
1490, 2013.

[7] H. Zou. The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc., 101(476):1418–
1429, 2006.

11

	Proofs of Section 3
	Proof of Proposition 1
	Proof of Proposition 2

	Proofs of Section 4
	Proof of Proposition 3

	Proofs of Section 5
	Proof of Theorem 2

	RepLars: A RepLasso variant
	Additional Experimental Results

