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Abstract

This supplemental document provides addi-
tional information that does not fit in the pa-
per due to the space limit. Section 1 gives
related mathematical basics, including ma-
jorizations of convex and concave functions,
as well as the definitions of information diver-
gences. Section 2 presents more examples on
developing MM algorithms for manifold em-
bedding, in addition to the t-SNE included
in the paper. Section 3 illustrates that many
existing manifold embedding methods can be
unified into the Neighbor Embedding frame-
work given in Section 5 of the paper. Section
4 provides proofs of the theorems in the pa-
per. Section 5 gives an example of QL be-
yond manifold embedding. Section 6 gives
the statistics and source of the experimented
datasets. Section 7 provides supplemental
experiment results.

1 Preliminaries

Here we provide two lemmas related to majorization
of concave/convex functions and definitions of infor-
mation divergences.

1.1 Majorization of concave/convex functions

1) A concave function can be upper-bounded by its
tangent.
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Lemma 1. If f(z) is concave in z, then

f(x̃) ≤f(x) +

〈
∂f(x̃)

∂x̃

∣∣∣
x̃=x

, x̃− x
〉

=

〈
∂f(x̃)

∂x̃

∣∣∣
x̃=x

, x̃

〉
+ constant

def
= G(x̃, x).

For a scalar concave function f(), this simplifies to
f(x̃) ≤ G(x̃, x) = x̃f ′(x) + constant. Obviously,

G(x, x) = f(x) and
∂f(x̃)

∂x̃

∣∣∣
x̃=x

=
∂G(x̃, x)

∂x̃

∣∣∣
x̃=x

.

2) A convex function can be upper-bounded by using
the Jensen’s inequality.

Lemma 2. If f(z) is convex in z, and x̃ = [x̃1, . . . , x̃n]
as well as x = [x1, . . . , xn] are nonnegative,

f

(
n∑
i=1

x̃i

)
≤

n∑
i=1

xi∑
j xj

f

(
x̃i
xi∑
j xj

)

=

n∑
i=1

xi∑
j xj

f

 x̃i
xi

∑
j

xj

 def
= G(x̃, x).

Obviously G(x, x) = f (
∑n
i=1 xi). Their first deriva-

tives also match:

∂G(x̃, x)

∂x̃i

∣∣∣
x̃=x

=
xi∑
j xj

f ′

 x̃i
xi

∑
j

xj

∑j xj

xi

∣∣∣
x̃=x

=f ′

∑
j

xj


=
∂f (

∑n
i=1 x̃i)

∂x̃i

∣∣∣
x̃=x

.

1.2 Information divergences

Information divergences, denoted by D(p||q), were
originally defined for probabilities and later extended
to measure the difference between two (usually non-
negative) tensors p and q, where D(p||q) ≥ 0, and
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D(p||q) = 0 iff p = q. To avoid notational clutter
we only give vectorial definitions; it is straightforward
to extend the formulae to matrices and higher-order
tensors.

Let Dα, Dβ , Dγ , and Dr respectively denote α-, β-,
γ-, and Rényi-divergences. Their definitions are (see
e.g. [3])

Dα(p||q) =
1

α(α− 1)

∑
i

[
pαi q

1−α
i − αpi + (α− 1)qi

]
,

Dβ(p||q) =
1

β(β − 1)

∑
i

[
pβi + (β − 1)qβi − βpiq

β−1
i

]
,

Dγ(p||q) =
ln (
∑
i p
γ
i )

γ(γ − 1)
+

ln (
∑
i q
γ
i )

γ
−

ln
(∑

i piq
γ−1
i

)
γ − 1

,

Dr(p||q) =
1

r − 1
ln

(∑
i

p̃ri q̃
1−r
i

)
,

where pi and qi are the entries in p and q respectively,
p̃i = pi/

∑
j pj , and q̃i = qi/

∑
j qj . To handle p’s

containing zero entries, we only consider nonnegative
α, β, γ and r. These families are rich as they cover
most commonly used divergences in machine learning
such as normalized Kullback-Leibler divergence (ob-
tained from Dr with r → 1 or Dγ with γ → 1), non-
normalized KL-divergence (α→ 1 or β → 1), Itakura-
Saito divergence (β → 0), squared Euclidean distance
(β = 2), Hellinger distance (α = 0.5), and Chi-square
divergence (α = 2). Different divergences have become
widespread in different domains. For example, DKL is
widely used for text documents (e.g. [7]) and DIS is
popular for audio signals (e.g. [4]). In general, estima-
tion using α-divergence is more exclusive with larger
α’s, and more inclusive with smaller α’s (e.g. [10]). For
β-divergence, the estimation becomes more robust but
less efficient with larger β’s.

2 More Development Examples

The paper provides an example of developing a MM
algorithm for t-Distributed Stochastic Neighbor Em-
bedding (t-SNE); here we provide additional examples
of developing MM algorithms for other manifold em-
bedding methods.

2.1 Elastic Embedding (EE)

Given a symmetric and nonnegative matrix P and λ >
0, Elastic Embedding [2] minimizes

JEE(Ỹ ) =
∑
ij

Pij‖ỹi − ỹj‖2 + λ
∑
ij

exp
(
−‖ỹi − ỹj‖2

)
=−

∑
ij

Pij ln Q̃ij + λ
∑
ij

Q̃ij

where Q̃ij = exp
(
−‖ỹi − ỹj‖2

)
.

The EE objective is naturally decomposed into

A(P, Q̃) =−
∑
ij

Pij ln Q̃ij

B(Q̃) =λ
∑
ij

Q̃ij .

The quadratification of A(P, Q̃) is simply identical,
with W = P . The final majorization function is

G(Ỹ , Y ) =
∑
ij

Pij‖ỹi − ỹj‖2 +
〈

Ψ, Ỹ
〉

+
ρ

2
‖Ỹ − Y ‖2 + constant,

where

Ψ =
∂B

∂Ỹ

∣∣∣
Ỹ=Y

= −4λLQY.

Thus the MM update rule of EE is

Y new =
(
LP +

ρ

4
I
)−1 (

λLQY +
ρ

4
Y
)
.

2.2 Stochastic Neighbor Embedding (SNE)

Suppose the input matrix is row-stochastic, i.e. Pij ≥ 0
and

∑
j Pij = 1. Denote q̃ij = exp

(
−‖ỹi − ỹj‖2

)
and

Q̃ij = q̃ij/
∑
b q̃ib. Stochastic Neighbor Embedding

[6] minimizes total Kullback-Leibler (KL) divergence

between P and Q̃ rows:

JSNE(Ỹ )

=
∑
i

∑
j

Pij ln
Pij

Q̃ij

=−
∑
ij

Pij ln q̃ij +
∑
i

ln
∑
j

q̃ij + constant

=
∑
ij

Pij‖ỹi − ỹj‖2 +
∑
i

ln
∑
j

q̃ij + constant

Thus we can decompose the SNE objective into
A(P, q̃) +B(q̃) + constant, where

A(P, q̃) =
∑
ij

Pij‖ỹi − ỹj‖2

B(q̃) =
∑
i

ln
∑
j

q̃ij .
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Again the quadratification of A(P, q̃) is simply iden-
tical, with W = P . The final majorization function
is

G(Ỹ , Y ) =
∑
ij

Pij‖ỹi − ỹj‖2 +
〈

Ψ, Ỹ
〉

+
ρ

2
‖Ỹ − Y ‖2 + constant,

where

Ψ =
∂B

∂Ỹ

∣∣∣
Ỹ=Y

= −2LQ+QT Y.

Thus the MM update rule of SNE is

Y new =
(
LP+PT +

ρ

2
I
)−1 (

LQ+QT Y +
ρ

2
Y
)
.

Similarly, we can develop the rule for symmetric SNE
(s-SNE) [12]:

Js-SNE(Y ) =
∑
ij

Pij ln
Pij
Qij

,

Y new =
(
LP +

ρ

4
I
)−1 (

LQY +
ρ

4
Y
)
,

where
∑
ij Pij = 1, Qij = qij/

∑
ab qab and qij =

exp
(
−‖yi − yj‖2

)
; and for Neighbor Retrieval Visu-

alizer (NeRV) [13]:

JNeRV(Y ) =λ
∑
i

∑
j

Pij ln
Pij
Qij

+ (1− λ)
∑
i

∑
j

Qij ln
Qij
Pij

,

Y new =
(
LP+PT +

ρ

2
I
)−1 (

Ψ +
ρ

2
Y
)

where P and Q are defined same manner as in SNE,
and

Ψ =
∂JNeRV + λ

∑
i

∑
j Pij ln qij

∂Y
.

2.3 LinLog

Suppose a weighted undirected graph is encoded in
a symmetric and nonnegative matrix P (i.e. the
weighted adjacency matrix). The node-repulsive Lin-
Log graph layout method [11] minimizes the following
energy function:

JLinLog(Ỹ ) =
∑
ij

Pij‖ỹi − ỹj‖ − λ
∑
ij

ln ‖ỹi − ỹj‖.

We write Q̃ = ‖ỹi−ỹj‖−1 and then decompose the Lin-

Log objective function into A(P, Q̃) +B(P, Q̃), where

A(P, Q̃) =
∑
ij

Pij‖ỹi − ỹj‖

B(P, Q̃) =− λ
∑
ij

ln ‖ỹi − ỹj‖.

Since the square root function is concave, by Lemma
1 we can upper bound A(P, Q̃) by

A(P, Q̃) ≤
∑
ij

Pij
2‖yi − yj‖

‖ỹi − ỹj‖2 + constant

That is, Wij =
Pij

2‖yi−yj‖ = 1
2PijQij in the quadratifi-

cation phase. The final majorization function of the
LinLog objective is

G(Ỹ , Y ) =
∑
ij

Pij
2‖yi − yj‖

‖ỹi − ỹj‖2 +
〈

Ψ, Ỹ
〉

+
ρ

2
‖Ỹ − Y ‖2 + constant,

where

Ψ =
∂B

∂Ỹ

∣∣∣
Ỹ=Y

= −2λLQ◦QY,

where ◦ is the elementwise product. Then the MM
update rule of LinLog is

Y new =
(
LP◦Q +

ρ

2
I
)−1 (

Lλ◦Q◦QY +
ρ

2
Y
)
.

2.4 Multidimensional Scaling with Kernel
Strain (MDS-KS)

Strain-based multidimensional scaling maximizes the
cosine between the inner products in the input and
output spaces (see e.g. [1]):

JMDS-S(Ỹ ) =

∑
ij Pij〈ỹi, ỹj〉√∑

ij P
2
ij ·
√∑

ij〈ỹi, ỹj〉2

where Pij = 〈xi, xj〉. The inner products 〈ỹi, ỹj〉
above can be seen as a linear kernel Q̃ij = 〈ỹi, ỹj〉
and simply lead to kernel PCA of P . In this exam-
ple we instead consider a nonlinear embedding kernel
Q̃ij = exp(−‖ỹi − ỹj‖2), where the corresponding ob-
jective function is ∑

ij PijQ̃ij√∑
ij P

2
ij ·
√∑

ij Q̃
2
ij

,

and maximizing it is equivalent to minimizing its neg-
ative logarithm

JMDS-KS(Ỹ )

=− ln
∑
ij

PijQ̃ij +
1

2
ln
∑
ij

Q̃2
ij +

1

2
ln
∑
ij

P 2
ij .

We decompose the MDS-KS objective function into
A(P, Q̃) +B(P, Q̃) + constant, where

A(P, Q̃) =− ln
∑
ij

PijQ̃ij

B(P, Q̃) =
1

2
ln
∑
ij

Q̃2
ij .
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We can upper bound A(P, Q̃) by the Jensen’s inequal-
ity (Lemma 2):

A(P, Q̃) ≤−
∑
ij

PijQij∑
ab PabQab

ln

 PijQ̃ij
PijQij∑
ab PabQab


=
∑
ij

PijQij∑
ab PabQab

‖ỹi − ỹj‖2

+
∑
ij

PijQij∑
ab PabQab

ln
Qij∑

ab PabQab
.

That is, Wij =
PijQij∑
ab PabQab

in the quadratification

phase.

The final majorization function of the MDS-KS objec-
tive is

G(Ỹ , Y ) =
∑
ij

PijQij∑
ab PabQab

‖ỹi − ỹj‖2 +
〈

Ψ, Ỹ
〉

+
ρ

2
‖Ỹ − Y ‖2 + constant,

where

Ψ =
∂B

∂Ỹ

∣∣∣
Ỹ=Y

= −LUY,

with Uij =
Q2
ij∑

abQ
2
ab

. Then the MM update rule of

MDS-KS is

Y new =
(
LW +

ρ

4
I
)−1 (

LUY +
ρ

4
Y
)
.

3 Neighbor Embedding

In Section 5 of the paper, we review a framework for
manifold embedding which is called Neighbor Embed-
ding (NE) [16, 17]. Here we demonstrate that many
manifold embedding objectives, including the above
examples, can be equivalently formulated as an NE
problem.

NE minimizes D(P ||Q̃), where D is a divergence from
α-, β-, γ-, or Rényi-divergence families, and the em-
bedding kernel in the paper is parameterized as Q̃ij =(
c+ a‖ỹi − ỹj‖2

)−b/a
for a ≥ 0, b > 0, and c ≥ 0

(adapted from [15]).

First we show the parameterized form of Q̃ includes
the most popularly used embedding kernels. When

a = 1, b = 1, and c = 1, Q̃ij =
(
1 + ‖ỹi − ỹj‖2

)−1
is the Cauchy kernel (i.e. the Student-t kernel with
a single degree of freedom); when a → 0 and b = 1,

Q̃ij = exp
(
−‖ỹi − ỹj‖2

)
is the Gaussian kernel; when

a = 1, b = 1/2, c = 0, Q̃ij = ‖ỹi − ỹj‖−1 is the inverse
to the Euclidean distance.

Next we show some other existing manifold embed-
ding objectives can equivalently expressed as NE. Ob-
viously SNE and its variants belong to NE. Moreover,
we have

• arg minỸ JEE(Ỹ ) = arg minỸ Dβ→1(P ||λQ̃), with

Q̃ij = exp
(
−‖ỹi − ỹj‖2

)
[17].

Proof.

JEE(Ỹ )

=
∑
ij

Pij‖ỹi − ỹj‖2 + λ
∑
ij

exp
(
−‖ỹi − ỹj‖2

)
=−

∑
ij

Pij ln Q̃ij + λ
∑
ij

Q̃ij

=
∑
ij

Pij ln
Pij

λQ̃ij
+ λ

∑
ij

Q̃ij −
∑
ij

Pij

−
∑
ij

Pij lnPij + (lnλ+ 1)
∑
ij

Pij

=Dβ→1(P ||λQ̃) + constant.

• arg minỸ JLinLog(Ỹ ) = arg minỸ Dβ→0(P ||λQ̃),

with Q̃ij = ‖ỹi − ỹj‖−1 [17].

Proof.

1

λ
JLinLog(Ỹ )

=
1

λ

∑
ij

Pij‖ỹi − ỹj‖ −
∑
ij

ln ‖ỹi − ỹj‖,

=
∑
ij

[
Pij

λQ̃ij
− ln

1

Q̃ij

]

=
∑
ij

[
Pij

λQ̃ij
− ln

Pij

λQ̃ij
− 1

]
+
∑
ij

[
ln
Pij
λ

+ 1

]
=Dβ→0(P ||λQ̃) + constant.

• arg minỸ JMDS-KS(Ỹ ) = arg minỸ Dγ=2(P ||Q̃) by
their definitions.

4 Proofs

Here we provide proofs of the five theorems in the pa-
per.
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4.1 Proof of Theorem 1

Proof. Since B is upper-bounded by its Lipschitz sur-
rogate

B(P, Q̃) = B(Ỹ ) ≤ B(Y ) + 〈Ψ, Ỹ − Y 〉+
ρ

2
‖Ỹ − Y ‖2F ,

we have H(Y, Y ) = G(Y, Y ). Therefore J (Y ) =
H(Y, Y ) = G(Y, Y ) ≥ G(Y new, Y ) ≥ J (Y new), where
the first inequality comes from minimization and the
second is ensured by the backtracking.

4.2 Proof of Theorem 2

The proposed MM updates share many convergence
properties with the Expectation-Maximization (EM)
algorithm. In this section we follow the steps in [14] to
show that the MM updates will converge a stationary
point of J . A stationary point can be a local optimum
or a saddle point.

The convergence result is a special case of the Global
Convergence Theorem (GCT; [19]) which is quoted be-
low. A map A from points of X to subsets of X is
called a point-to-set map on X. It is said to be closed
at x if xk → x, xk ∈ X and yk → y, yk ∈ A(xk), imply
y ∈ A(x). For point-to-point map, continuity implies
closedness.

Global Convergence Theorem. (GCT; from [14])
Let the sequence {xk}∞k=0 be generated by xk+1 ∈
M(xk), where M is a point-to-set map on X. Let
a solution set Γ ∈ X be given, and suppose that:

i all points xk are contained in a compact set S ⊂
X;

ii M is closed over the complement of Γ;

iii there is a continuous function α on X such that

(a) if x /∈ Γ, α(x) > α(y) for all y ∈M(x), and

(b) if x ∈ Γ, α(x) ≥ α(y) for all y ∈M(x)

Then all the limit points of {xk} are in the solution
set Γ and α(xk) converges monotonically to α(x) for
some x ∈ Γ.

The proof can be found in [19].

Before showing the convergence of MM, we need the
following Lemmas. For brevity, denoteM : Y → Y new

the map by using the MM update Eq. 4 in the paper.
Let S and F be the sets of stationary points of J (Y )
and fixed points of M, respectively.

Lemma 3. S = F .

Proof. The fixed points of the MM update rule appear
when

Y = (2LW+WT + ρI)
−1

(−Ψ + ρY )

(2LW+WT + ρI)Y = (−Ψ + ρY )

2LW+WT Y + Ψ =0, (1)

which is recognized as ∂H
∂Ỹ

∣∣∣
Ỹ=Y

= 0. Since we re-

quire the majorization function H shares the tangent

with J , i.e. ∂J
∂Ỹ

∣∣∣
Ỹ=Y

= ∂H
∂Ỹ

∣∣∣
Ỹ=Y

, Eq. 1 is equivalent

to ∂J
∂Ỹ

∣∣∣
Ỹ=Y

= 0, the condition of stationary points of

J . Therefore F ⊆ S.

On the other hand, because QL requires that G and

J share the same tangent at Y , and thus ∂J
∂Ỹ

∣∣∣
Ỹ=Y

= 0

implies ∂G
∂Ỹ

∣∣∣
Ỹ=Y

= 0, i.e. Y = M(Y ). Therfore S ⊆
F

Lemma 4. J (Y new) < J (Y ) if Y /∈ F .

Proof. Because G is convexly quadratic, it has a
unique minimum Y new = M(Y ). If Y /∈ F , i.e. Y 6=
M(Y ), we have Y 6= Y new, which implies J (Y new) ≤
G(Y new, Y ) < G(Y, Y ) = J (Y ).

Now we are ready to prove the convergence to station-
ary points (Theorem 2).

Proof. Consider S the solution set Γ, and J the con-
tinuous function α in the GCT theorem. Lemma 3
shows that this is equivalent to considering F the so-
lution set. Next we show that the QL-majorization
and its resulting map M fulfill the conditions of the
GCT theorem: J (Y new) ≥ J (Y ) and the bounded-
ness assumption of J imply Condition i;M is a point-
to-point map and thus the continuity of G over both
Ỹ and Y implies the closedness condition ii; Lemma
4 implies iii(a); Theorem 1 in the paper implies iii(b).
Therefore, the proposed MM updates are a special case
of GCT and thus converge to a stationary point of
J .

4.3 Proof of Theorem 3

Proof. Since Aij is concave to ‖ỹi − ỹj‖2, it can be
upper-bounded by its tangent:

Aij(Pij , Q̃ij)

≤Aij(Pij , Qij)

+

〈
∂Aij

∂‖ỹi − ỹj‖2
∣∣∣
Ỹ=Y

, ‖ỹi − ỹj‖2 − ‖yi − yj‖2
〉

=

〈
∂Aij

∂‖ỹi − ỹj‖2
∣∣∣
Ỹ=Y

, ‖ỹi − ỹj‖2
〉

+ constant.
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That is, Wij =
∂Aij

∂‖ỹi−ỹj‖2

∣∣∣
Ỹ=Y

.

For the tangent sharing, first we haveH(Y, Y ) = J (Y )

because obviously Aij(Pij , Q̃ij) = Aij(Pij , Qij) when

Ỹ = Y . Next, because

∂A

∂Ỹst
=
∑
ij

Aij
‖ỹi − ỹj‖2

∂‖ỹi − ỹj‖2

∂Ỹst

=2
∑
j

Wsi (ỹst − ỹit)

=2
(
LW+WT Ỹ

)
st

is the same as

∂
∑
ijWij‖ỹi − ỹj‖2 + constant

∂Ỹst
= 2

(
LW+WT Ỹ

)
st
,

we have ∂H

∂Ỹ

∣∣∣
Ỹ=Y

= ∂J
∂Ỹ

∣∣∣
Ỹ=Y

.

4.4 Proof of Theorem 4

Proof. Obviously all α- and β-divergences are addi-
tively separable. Next we show the concavity in the
given range. Denote ξij = ‖ỹi − ỹj‖2 for brevity.

α-divergence. We decompose an α-divergence into
Dα(P ||Q̃) = A(P, Q̃) +B(P, Q̃) + constant, where

A(P, Q̃) =
∑
ij

Aij(Pij , Q̃ij) =
∑
ij

1

α(α− 1)
PαijQ̃

1−α
ij

=
∑
ij

1

α(α− 1)
Pαij (c+ aξij)

−b(1−α)/a

B(P, Q̃) =
1

α

∑
ij

Q̃ij

The second derivative of

Aij =
1

α(α− 1)
Pαij (c+ aξij)

−b(1−α)/a

to ξij is

∂2Aij
∂ξ2ij

=
bPαij((α− 1)b− a)

(
(aξij + c)−

b
a

)1−α
α(ax+ c)2

.

Since a, b, c, and Pij are nonnegative, we have
∂2Aij
∂ξ2ij

≤
0 iff α((α − 1)b − a) ≤ 0 and α 6= 0. That is, Aij is
concave in ξij iff α ∈ (0, 1 + a/b].

β-divergence. We decompose a β-divergence into

Dβ(P ||Q̃) = A(P, Q̃) +B(P, Q̃) + constant, where

A(P, Q̃) =
∑
ij

Aij(Pij , Q̃ij) =
∑
ij

1

1− β
PijQ̃

β−1
ij

=
∑
ij

1

1− β
Pij (c+ aξij)

−b(β−1)/a

B(P, Q̃) =
1

β

∑
ij

Q̃βij

The second derivative of Aij =
1

1−βPij (c+ aξij)
−b(β−1)/a

with respect to ξij is

−
bPij(a+ b(β − 1))

(
(aξij + c)−

b
a

)β−1
(aξij + c)2

(2)

Since a, b, c, and Pij are nonnegative, we have
∂2Aij
∂ξ2ij

≤
0 iff −(a+ b(β − 1)) ≤ 0. That is Aij is concave in ξij
iff β ∈ [1− a/b,∞).

Special case 1 (α → 1 or β → 1): DI(P ||Q̃) =

−
∑
ij Pij ln Q̃ij +

∑
ij Q̃ij + constant. We write

A(P, Q̃) =
∑
ij

Aij(Pij , Q̃ij) = −
∑
ij

Pij ln Q̃ij

=
∑
ij

b

a
Pij ln (c+ aξij)

B(P, Q̃) =
∑
ij

Q̃ij

The second derivative of Aij = b
aPij ln (c+ aξij) with

respect to ξij is − abPij
(aξij+c)2

, which is always non-

positive.

Special case 2 (α→ 0 for Pij > 0): Ddual-I(P ||Q̃) =∑
ij Q̃ij lnPij +

∑
ij Q̃ij ln Q̃ij −

∑
ij Q̃ij . We write

A(P, Q̃) =
∑
ij

Aij(Pij , Q̃ij) =
∑
ij

Q̃ij lnPij

=
∑
ij

(c+ aξij)
−b/a

lnPij

B(P, Q̃) =
∑
ij

Q̃ij ln Q̃ij −
∑
ij

Q̃ij

The second derivative of Aij = (c+ aξij)
−b/a

lnPij
with respect to ξij is b(a+b) lnPij(aξij+c)

− ba−2, which
is non-positive iff Pij ∈ (0, 1].

Special case 3 (β → 0): DIS(P ||Q̃) =
∑
ij PijQ̃

−1
ij +
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∑
ij ln Q̃ij + constant. We write

A(P, Q̃) =
∑
ij

Aij(Pij , Q̃ij) =
∑
ij

PijQ̃
−1
ij

=
∑
ij

Pij (c+ aξij)
b/a

B(P, Q̃) =
∑
ij

ln Q̃ij .

The second derivative of Aij = Pij (c+ aξij)
b/a

with

respect to ξij is (b−a)bPij(aξij + c)
b
a−2, which is non-

positive iff a ≥ b, or equivalently 0 ∈ [1− a/b,∞].

4.5 Proof of Theorem 5

The proofs are done by zeroing the derivative of the
right hand side with respect to λ (see [17]). The closed-
form solutions of λ at the current estimate for τ ≥ 0
are

λ∗ = arg min
λ
Dα→τ (P ||λQ) =

(∑
ij P

τ
ijQ

1−τ
ij∑

ij Qij

) 1
τ

,

λ∗ = arg min
λ
Dβ→τ (P ||λQ) =

∑
ij PijQ

τ−1
ij∑

ij Q
τ
ij

,

with the special case

λ∗ = exp

(
−
∑
ij Qij ln(Qij/Pij)∑

ij Qij

)
for α→ 0.

5 Examples of QL beyond Manifold
Embedding

To avoid vagueness we defined the scope to be manifold
embedding, which already is a broad field and one of
listed AISTATS research areas. Within this scope the
work is general.

It is also naturally applicable to any other optimiza-
tion problems amenable to QL majorization. QL is
applicable to any cost function J = A + B, where
A can be tightly and quadratically upper bounded by
Eq. 2 in the paper, and B is smooth. Next we give an
example beyond visualization and discuss its potential
extensions.

Consider a semi-supervised problem: given a training
set comprising a supervised subset {(xi, yi)}ni=1 and
an unsupervised subset {xi}Ni=n+1, where xi ∈ RD are
vectorial primary data and yi ∈ {−1, 1} are supervised
labels, the task is to learn a linear function z = 〈w, x〉+
b for predicting y.

In this example a composite cost function is used:

J (w, b) = A(w, b) +B(w, b)

where A(w) is a locality preserving regularizer (see e.g.
[5])

A(w, b) = λ

N∑
i=1

N∑
j=1

Sij(zi − zj)2

and B(w, b) is an empirical loss function [9]

B(w, b) = (1− λ)

n∑
i=1

[1− tanh(yizi)]

with λ ∈ [0, 1] the tradeoff parameter and Sij the local
similarity between xi and xj (e.g. a Gaussian kernel).

Because B is non-convex and non-concave, conven-
tional majorization techniques that require convex-
ity/concavity such as CCCP [18] are not applicable.
However, we can apply QL here (Lipschitzation to B
and quadratification to A), which gives the update rule
for w (denote X = [x1 . . . xN ]):

wnew =
(
λXLS+ST

2

XT + ρI
)−1(∂B

∂w
+ ρw

)
.

This example can be further extended with the same
spirit, where B is replaced by another smooth loss
function which is non-convex and non-concave, e.g. [8]

B(w, b) = (1− λ)

n∑
i=1

[
1− 1

1 + exp(−yizi)

]2
,

and XLS+ST

2

XT can be replaced by other positive

semi-definite matrices.

6 Datasets

Twelve datasets have been used in our experiments.
Their statistics and sources are given in Table 1. Below
are brief descriptions of the datasets.

• SCOTLAND: It lists the (136) multiple directors of
the 108 largest joint stock companies in Scotland
in 1904-5: 64 non-financial firms, 8 banks, 14 in-
surance companies, and 22 investment and prop-
erty companies (Scotland.net).

• COIL20: the COIL-20 dataset from Columbia
University Image Library, images of toys from dif-
ferent angles, each image of size 128× 128.

• 7SECTORS: the 4 Universities dataset from CMU
Text Learning group, text documents classified to
7 sectors; 10,000 words with maximum informa-
tion gain are preserved.
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Table 1: Dataset statistics and sources

Dataset #samples #classes Domain Source

SCOTLAND 108 8 network PAJEK
COIL20 1440 20 image COIL
7SECTORS 4556 7 text CMUTE
RCV1 9625 4 text RCV1
PENDIGITS 10992 10 image UCI
MAGIC 19020 2 telescope UCI
20NEWS 19938 20 text 20NEWS
LETTERS 20000 26 image UCI
SHUTTLE 58000 7 aerospace UCI
MNIST 70000 10 image MNIST
SEISMIC 98528 3 sensor LIBSVM
MINIBOONE 130064 2 physics UCI

PAJEK http://vlado.fmf.uni-lj.si/pub/networks/data/

UCI http://archive.ics.uci.edu/ml/

COIL http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

CMUTE http://www.cs.cmu.edu/~TextLearning/datasets.html

RCV1 http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/

20NEWS http://people.csail.mit.edu/jrennie/20Newsgroups/

MNIST http://yann.lecun.com/exdb/mnist/

LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

• RCV1: text documents from four classes, with
29992 words.

• PENDIGITS: the UCI pen-based recognition of
handwritten digits dataset, originally with 16 di-
mensions.

• MAGIC: the UCI MAGIC Gamma Telescope Data
Set, 11 numerical features.

• 20NEWS: text documents from 20 newsgroups;
10,000 words with maximum information gain are
preserved.

• LETTERS: the UCI Letter Recognition Data Set, 16
numerical features.

• SHUTTLE: the UCI Statlog (Shuttle) Data Set, 9
numerical features. The classes are imbalanced.
Approximately 80% of the data belongs to class
1.

• MNIST: handwritten digit images, each of size 28×
28.

• SEISMIC: the LIBSVM SensIT Vehicle (seismic)
data, with 50 numerical features (the seismic sig-
nals) from the sensors on vehicles.

• MINIBOONE: the UCI MiniBooNE particle identi-
fication Data Set, 50 numerical features. This
dataset is taken from the MiniBooNE experiment

and is used to distinguish electron neutrinos (sig-
nal) from muon neutrinos (background).

7 Supplemental experiment results

7.1 Evolution curves: objective vs. iteration

Figure 1 shows the evolution curves of the t-SNE ob-
jective (cost function value) as a function of iteration
for the compared algorithms. This supplements the
results in the paper of objective vs. running time.

7.2 Average number of MM trials

The proposed backtracking algorithm for MM involves
an inner loop for searching for ρ. We have recorded the
numbers of trials in each outer loop iteration. The av-
erage number of trials is then calculated. The means
and standard deviations across multiple runs are re-
ported in Table 2.

We can see that for all datasets, the average number
of trials is around two. The number is generally and
slightly decreased with larger datasets. Two trials in
an iteration means that ρ remains unchanged after the
inner loop. This indicates potential speedups may be
achieved in future work by keeping ρ constant in most
iterations.

We have also recorded the average of number of func-
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Figure 1: Evolution of the t-SNE objective (cost function value) as a function of iteration for the compared algo-
rithms. The first and second rows were exactly calculated, while the third row uses Barnes-Hut approximation.

Table 2: Average number of MM trials and SD func-
tion calls over all iterations (mean ± standard devia-
tion over 10 runs)

dataname N MM trials SD fun.calls
SCOTLAND 108 2.00±0.00 21.91±1.88

COIL20 1.4K 1.94±0.11 1.92±0.29
7SECTORS 4.6K 2.00±0.00 3.06±0.34

RCV1 9.6K 2.00±0.00 2.56±0.09
PENDIGITS 11K 2.00±0.00 6.30±5.51

MAGIC 19K 2.00±0.00 2.12±0.06
20NEWS 20K 2.00±0.00 3.85±0.33

LETTERS 20K 2.00±0.01 13.30±4.00
SHUTTLE 58K 2.07±0.02 4.16±0.66

MNIST 70K 2.10±0.04 2.90±0.23
SEISMIC 99K 2.02±0.00 3.64±0.42

MINIBOONE 130K 2.07±0.01 3.29±0.20

tion calls to t-SNE objectives by the SD algorithm (last
column of Table 2). It can be seen that the SD often
requires more cost function calls than MM, which is
one of the reasons that SD is slower.

7.3 ρ value and number of MM trials vs.
iteration

However, the above average number of trials does not
mean that ρ will remain nearly constant around its
initial value. Actually ρ can vary greatly in different
iterations. See Figure 2 for example, where the ranges
of ρ in the first 300 iterations are [3.6 × 10−21, 2.6 ×
10−4], [6.2 × 10−8, 1.6 × 10−5], and [3.9 × 10−9, 4.0 ×
10−6] for COIL20, 20NEWS, and MNIST, respectively.
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