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Abstract

Nonlinear dimensionality reduction by man-
ifold embedding has become a popular and
powerful approach both for visualization
and as preprocessing for predictive tasks,
but more efficient optimization algorithms
are still crucially needed.  Majorization-
Minimization (MM) is a promising approach
that monotonically decreases the cost func-
tion, but it remains unknown how to tightly
majorize the manifold embedding objective
functions such that the resulting MM algo-
rithms are efficient and robust. We propose a
new MM procedure that yields fast MM algo-
rithms for a wide variety of manifold embed-
ding problems. In our majorization step, two
parts of the cost function are respectively up-
per bounded by quadratic and Lipschitz sur-
rogates, and the resulting upper bound can
be minimized in closed form. For cost func-
tions amenable to such QL-majorization, the
MM yields monotonic improvement and is ef-
ficient: In experiments, the newly developed
MM algorithms outperformed five state-of-
the-art optimization approaches in manifold
embedding tasks.

1 Introduction

Nonlinear dimensionality reduction (NLDR) is crucial
for visualization of data during the first steps of ex-
ploratory data analysis and can also be helpful as
preprocessing for machine learning and data mining
tasks. Several NLDR approaches are based on man-
ifold embedding, which aims to discover an underly-
ing lower-dimensional manifold of the data embedded
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in the high-dimensional feature space, and then un-
fold the manifold. Manifold embedding research has
led to applications for example in computer vision, so-
cial computing, bioinformatics, and natural language
processing. Many manifold embedding methods have
been introduced, including methods based on eigende-
compositions such as Principal Component Analysis
(PCA), Isomap [27], and Locally Linear Embedding
(LLE) [25], and recent methods including Stochastic
Neighbor Embedding [10, 30], Elastic Embedding [4],
and the Neighbor Retrieval Visualizer [32].

Most recent well-performing manifold embedding ap-
proaches involve unconstrained minimization of a non-
convex cost function. However, algorithms proposed
so far, both dedicated approaches and those based on
conventional iterative optimization, have at least some
of the following drawbacks: (i) they cannot guarantee
that the cost is decreased after each iteration with-
out resorting to line search strategies; (ii) they often
converge slowly; and (iii) they are sensitive to initial-
izations. Majorization-Minimization (MM, [23]) algo-
rithms can overcome the first drawback, but their per-
formance depends on construction of an upper bound.
For complicated cost functions, including manifold em-
bedding cost functions, it remains unknown how to de-
sign a tight upper-bounding function that leads to an
efficient and robust MM algorithm.

We propose a new approach for MM algorithms us-
ing a new upper-bounding technique QL-majorization.
In QL-majorization, partial Hessian information is en-
coded in a quadratic surrogate for a part of the cost
function, and the remaining part is majorized by a
Lipschitz surrogate. The MM algorithms produced by
QL-majorization have notable advantages. The pro-
duced majorization function can be minimized in a
closed form without line searches. The resulting al-
gorithms (i) monotonically decrease the manifold em-
bedding cost, (ii) often converge faster than other opti-
mizers, and (iii) are less sensitive to the starting point.

The resulting MM approach is applicable to all ma-
chine learning tasks whose cost functions satisfy simple
requirements; as examples we develop MM algorithms
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for several prominent manifold embedding methods
that optimize the embedding based on various infor-
mation divergences and embedding kernels. In exper-
iments on manifold embedding problems, the MM al-
gorithms produced by QL-majorization converge faster
and yield better-quality embeddings than state-of-the-
art optimizers. The MM algorithms improve perfor-
mance consistently, regardless of whether the com-
pared methods start from simple random initializa-
tions or with a state-of-the-art initialization strategy.

2 Manifold Embedding

Nonlinear dimensionality reduction (NLDR) finds a
low-dimensional mapping Y = [y, ... ,yN]T e RNxr
of N high-dimensional data objects. In our experi-
ments we focus on r = 2 dimensional outputs as is
common in visualization tasks, but the methods are
applicable to other r as well. NLDR methods based on
finding and unfolding a lower-dimensional manifold of
data can be called manifold embedding methods. Suc-
cessful manifold embedding methods include Isomap
[27], Locally Linear Embedding [25], Laplacian Eigen-
map [1], Maximum Variance Unfolding [34], Stochastic
Neighbor Embedding [10, 30], Elastic Embedding [4],
Neighbor Retrieval Visualizer [32], and several others;
see [31] for a recent review. Many modern manifold
embedding methods are based on a nonnegative square
matrix P that encodes the pairwise proximities be-
tween the high-dimensional data objects. Correspond-
ingly, let @ denote the matrix of proximities between
the lower-dimensional mapped points. The manifold
embedding problem can be formulated as minimiza-
tion of a cost function J(Y') over Y. The cost function
is often non-convex and typically depends on P and
where @ is computed from Y.

Typical non-convex optimization methods in manifold
embedding involve update steps where constant step
sizes do not guarantee decrease of the objective; expen-
sive line search of the step size is often needed to de-
crease J. In contrast, algorithms such as expectation-
maximization (EM) would be guaranteed to monoton-
ically decrease the cost in each update. EM algorithms
are based on minimizing an auxiliary bound of a cost,
and are theoretically appealing as each step analyti-
cally updates parameters to yield the global optimum
of the bound. It would be appealing to use the same
technique for manifold embedding. However, unlike in
standard applications of EM, for many manifold em-
bedding cost functions it is difficult to find an aux-
iliary bounding that would yield efficient and robust
optimization; one reason is that the costs involve com-
plicated interactions between objects in the mapped
space, thus the costs are complicated functions of Y.

We now propose a new technique to build upper
bounds; this makes it possible to apply an EM-type
optimization technique in manifold embedding. Be-
low we use Y, Y, and Y™V to respectively denote the
current estimate, the variable, and the new estimate.
Similarly, the proximities @) are computed from the
variable Y and the ) from the current estimate. In
this paper, matrix-wise summation is off-diagonal, i.e.,
D Means » o

3 QL-Upper Bounds for MM

Majorization-Minimization (MM) is an iterative opti-
mization method, of which EM is a special case. The
MM iterations guarantee decrease of the cost function
after each iteration. To minimize J(Y) with respect to
Y, MM first constructs an auxiliary function G(Y,Y)
such that G(Y,Y) > J(Y) and G(Y,Y) = J(Y) for
all Y (this construction is called majorization), and
next solves YV = arg ming G (Y,Y) (this step is then
called minimization). Iterating these two steps thus
monotonically reduces J because J(Y) = G(Y,Y) >
GY™v V) > J(Ymev).,

The key to a good MM algorithm is to construct
G(Y,Y) so that it can be analytically minimized with
respect to Y but is still close to the cost J(Y). Finding
the auxiliary function G(Y,Y) depends on the struc-
ture of J ()7) Below we propose a two-phase pro-
cedure, called QL-majorization, to develop such an
upper-bounding function for manifold embedding.

QL-majorization. Assume the cost function can be
divided into two parts:

J(Y)=AP,Q)+ B(P,Q), (1)

where A satisfies a simple upper bound condition de-
scribed below. We can then construct the auxiliary
function G in two phases which we call quadratifica-
tion and Lipschitzation.

e (Quadratification) Let the function A have a simple
upper bound consisting of pairwise-quadratic terms
of the form A(P, Q) < 3, Wi;[|9:—5;*+constant,
where the multipliers W;; do not depend on Y.
Then J(Y) < H(Y,Y) where

H(Y,Y) = Z Wi l|5: — 511> + B(P, Q) + const. (2)
(]
For tight majorization, we also require H to

share the tangent with J at the current estimate,
; — ek - 07

Le. H(YY) = J(Y) and 2 oy = ovly_y
Finding # is often accomplished by using the con-
cavity /convexity of and within J; we show exam-

ples in Sections 4 and 5.
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o (Lipschitzation) Upper bound B by its Lipschitz
surrogate such that H(Y,Y) < G(Y,Y), where

Y) =3 Wilgs = 511 + (2,7 = V)
ij
+ g||17_Y||2+const., (3)

with ¥ = g%
of B(P,Q).

’~ and p is the Lipschitz constant
Y=y

The resulting upper bound G (17 Y’) can be minimized
with respect to Y in closed form by setting the gradient
of G(Y,Y) with respect to Y to zero and solving for
Y which gives the update rule

ynew _ (2£W+WT + p[)—l (_\I/ + PY) 5 (4)

where Lj; denotes the Laplacian of the subscripted
matrix M, that is, Lyy = A — M where A is di-
agonal and Ay = Zj M;;. For some functions B
the Lipschitz constant p is easy to compute; other-
wise, if p is unknown, it is sufficient to use simple
backtracking [20] to enforce point-wise majorization
G(Y™v)Y) > J(Y"*V). The resulting method is de-
scribed in Algorithm 1.

By the above construction, we achieve the following
guarantees of monotonicity (and thus objective con-
vergence if J is lower-bounded) and stationary points
(proofs in the supplemental document):

Theorem 1. J(Y") < J(Y) after applying Eq. 4.
Theorem 2. If J is a bounded function, iteratively
applying Fq. 4 converges to a stationary point of J.

Note that similar to EM, we do not claim convergence
to local optima for the proposed MM updates.

The computational cost of the proposed MM algorithm
is O(|E| + Nlog N), where |E| is the number of non-
zeros in P and N is the number of data points. Algo-
rithm 1 involves an outer loop to iteratively update Y
and an inner loop to search for p. In each outer loop
iteration, the algorithm calculates W, Ly, and
U, where the computational cost is O(|E| + N log N)
by using speedup trees (see e.g. [29, 36]). Calculat-
ing G(Y'™,Y) in the inner loop is cheap with W
and U already computed. Thus the cost of verify-
ing G(Y"™,Y) > J(Y") in each inner loop iteration
is dominated by the evaluation of J(Y"¥), which is
also O(|E|+ Nlog N). Lastly, applying Eq. 4 requires
solving a linear system, which can be done by a few
conjugate gradient steps, each with O(|E|) cost.

4 Example: MM for t-SNE

We use the method of Section 3 to introduce an
MM algorithm for t-Distributed Stochastic Neigh-

Algorithm 1 QL-Majorization-Minimization algo-
rithm with backtracking for Manifold Embedding
Input: proximity matrix P, initial p > 0, inflating
factor v > 1, and initial Y.
repeat
p < p/v; calculate W, Ly, and ¥
while TRUE do
Apply Eq. 4 to get Y'Y
if G(Y'™W.Y) > J(Y") then
break;
end if
p—pxXV
end while
Y - Yyuwy
until stopping criterion is met
Output: low-dimensional representations Y.

bor Embedding (t-SNE, [30]). Given } ,, P;; =
1, the t-SNE cost function can be divided as
J(Y) = > Pijln Jf = A(P,Q) + B(Q) + constant,
]
L+ 115 — g11*) " 5
—— AP,Q) =
S+ e - g 209
Zz] P ln(l + ||g’t - g]H2)? a’nd B(Q) = anzj(l +
lg: — y]|| )~1. The concave function In() can be ma-
jorized by its tangent line. Thus we have A(P,Q) <
> PU% + constant, i.e. W;; =
¢i; = (14 |lyi — y;]|*)~! in quadratification. There-
fore a majorization function of t-SNE is G(Y,Y) =
i Paaislii—is12+ (2| Y =Y )+4I7-Y >+
constant. Zeroing the gradient of G(?,Y) to Y gives
the MM update rule for t-SNE:

where Qij =

745 with

o= (e 21) (et 0). 6

where Lj; again denotes the Laplacian of the sub-
scripted matrix M, and o denotes elementwise prod-
uct. This update rule implements Eq. 4 for t-SNE and
is used in Algorithm 1 to yield the MM algorithm for
t-SNE. Because B(Q) is smooth and has a finite upper
bound of its derivative, its Lipschitz constant is also
finite (i.e. the finite upper-bound of p).

We provide more examples in the supplemental doc-
ument, where we develop MM algorithms for Elas-
tic Embedding [4], Stochastic Neighbor Embedding
(SNE) with Gaussian kernel [10], symmetric SNE
(s-SNE; [30]), Neighbor Retrieval Visualizer (NeRV;
[32]), LinLog [21], and Multidimensional Scaling with
kernel-strain (MDS-KS; [3]).
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5 MM for Neighbor Embedding

The MM development procedure can be easily applied
not only to t-SNE but to a large class of problems
including many manifold embedding problems. The
quadratification step is easy for all cost functions hav-
ing a similar general form as defined below (proof in
the supplemental document).

Theorem 3. If (i) J(Y) = >, Aij(Py, Qi) +
B(P, @), that is, A(P,Q) in Eq. 1 is additively sep-
arable, and (ii) A;; is concave in ||g; — ;% then in

DA,

Eq. 4, Wij = m ?:Y.

Next we show that a large collection of manifold em-
bedding cost functions, especially those of Neighbor
Embedding (NE, [37]) methods, fulfill the conditions
of Theorem 3, and thus the above quadratification in-
serted in Eq. 4 and Algorithm 1 yields an MM algo-
rithm for them. NE minimizes the discrepancy be-
tween the input proximities P and the output prox-
imities () over Y. The discrepancy is measured by an
information divergence D(P||Q@), which in this work
is from the a-, B-, - and Rényi-divergence fami-
lies. To be concrete, we parameterize [35] Q;; =
(c+ allg; —gj||2)*b/“ for a > 0, b > 0, and ¢ > 0,
which includes many existing manifold embedding cost
functions (shown in the supplemental document; note
that the limit a — 0 yields Gaussian proximities).

Theorem 4. Suppose D is one of the a- or (-
divergences. Then the cost function J(Y) = D(P]|Q)
fulfills both conditions in Theorem 3 when o € (0,1 +
a/b] or B €[l —a/b, ).

For the Cauchy kernel (¢ = b = ¢ = 1), the above
ranges include the most commonly used divergences
such as (non-normalized) Kullback-Leibler (KL) (o —
1), dual Kullback-Leibler (o« — 0), Hellinger (o =
1/2), x? (o = 2), Itakura-Saito (8 — 0), and squared
Euclidean (8 = 2).

For nonseparable divergences, such as the normalized
KL, we can convert the divergences to their separable
counterparts by the following optimization equivalence
with an additional scaling factor A:

Theorem 5. (from [37]) Let D, Dg, D~, and D,
denote the a-, -, v- and Rényi-divergences. Then

arg min DW_W(PHQV) = arg min [min D/g_)T(PH)\jQV)],
Y Yy “A>0

argmin D,_,.(P||Q) = arg min [ min DOHT(PH/\@)].
Y v SA>0

The optimization for nonseparable divergences thus
proceeds by interleaving minimizations over A, which is
given in closed form, with minimizations over Y given
by the proposed MM algorithm.

6 Related Work

Majorization-Minimization algorithms date back to
1970’s. Ortega and Rheinboldt enunciated the prin-
ciple in the context of line search methods [23]. Later
Expectation-Maximization as an important special
case of MM was proposed by Dempster et al. [6]. In
the same year, de Leeuw and Heiser presented an MM
algorithm for multidimensional scaling [5]. There are
many subsequent appearances of MM in various appli-
cations, for example, robust regression [11], quadratic
bounding principle [2]|, medical imaging (e.g. [16, 24]),
quantile regression [13], survival analysis [14], paired
and multiple comparisons [12], variable selection [15],
DNA sequence analysis [26], discriminant analysis [18],
IRLS (e.g. [38]), image restoration [7] and hyper-
parameter learning [8]. Recently Mairal also proposed
a set of stochastic MM algorithms for large-scale op-
timization [19]. The key point in MM development
is to devise a tight bounding function which can be
efficiently optimized. Generic methods for construct-
ing the bounding function include Jensen’s inequal-
ity for a convex function, tangent plane (supporting
hyper-plane) of a concave function, upper-bounding
surrogates due to Lipschitz continuity, quadratic up-
per bound of the second-order Taylor expansion [2], in-
equality between the generalized means, and Cauchy-
Schwartz inequality. Although MM is familiar in the
machine learning literature, it remains unknown how
to construct the bounding function for modern mani-
fold embedding (ME) objectives such as t-SNE. These
objectives are highly non-convex and cannot be ma-
jorized by a single inequality listed above.

The proposed MM algorithm employs two phases
of majorization: quadratification and Lipschitzation.
Using both upper bounds distinguishes our method
from other optimization approaches.

Without quadratification, minimizing the Lipschitz
surrogate j(Y)—|—<V, Y — Y>+§ |Y —Y'||2 of the whole

cost function J(Y) leads to the gradient descent (GD)
method Y™ =Y —2V, where V = 82| . The GD
optimization is slow and often falls into poor local op-
tima (see [33] and also Section 7) because it only uses
the first-order derivative information. There are meth-
ods that approximate the second-order derivatives by
using the history of gradients, for example, Limited-
memory BFGS (L-BFGS) [22]. However, in Section 7
we show that such approximations are often inaccurate
for the manifold embedding problem and thus subject
to slow convergence.

On the other hand, without the Lipschitz surrogate
it is often difficult to use quadratification alone, that
is, to find a quadratic upper bound for the whole cost
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Table 1: Mean converged t-SNE cost function values (£ standard deviation) obtained with the compared algorithms.
We use exact calculation for datasets where N < 20K, and Barnes-Hut approximation otherwise. The boldface cells show

the best mean converged cost function value in each row.

dataname N GD L-BFGS MOMENTUM SD FPHSSNE MM
SCOTLAND 108  0.964+0.02 0.9240.02 1.26+0.28 7.27£5.89 1.2240.14 0.91+0.01
COIL20 14K 0.9840.04 0.8440.03 0.8440.02 0.80+0.01  1.02+0.04 0.79£0.00
7TSECTORS 4.6K 2.294+0.02 2.36+0.02 2.18+0.01 2.20£0.18 2.30£0.01 2.0940.01
RCV1 9.6K 3.094+0.11 2.974+0.04 2.60+0.01 2.52+0.01 2.77£0.02 2.47+0.01
PENDIGITS 11K 2.314+0.09 2.46+0.10 1.86+0.04 1.78+£0.09 2.194+0.03 1.67+0.01
MAGIC 19K  3.35+£0.09 3.71£0.05 2.80+0.03 2.4440.02 3.16£0.08 2.37+0.01
20NEWS 20K  4.95+0.07 4.2440.06 3.511+0.03 3.35+0.03  3.95+0.11 3.22+0.02
LETTERS 20K 3.03£0.21 2.69+0.10 1.89+0.03 9.06+11.58 2.61+0.10 1.4440.01
SHUTTLE 58K 6.20£0.81 3.20%0.13 2.17£0.02 1.60+£0.11 2.91+0.01 1.47+0.05
MNIST 70K 6.91+£0.83 5.14+0.11 3.831+0.04 3.47+0.02 4.14£0.04 3.42+0.02
SEISMIC 99K  8.65+0.00 7.54+1.43 4.321+0.03 3.99£0.15 4.58+£0.03 3.85+0.01
MINIBOONE 130K 9.14+0.00 9.1440.00 4.1240.03 3.56+0.04 4.58+0.02 3.54+0.02

J (}7) Mere quadratification can be used in classi-
cal multidimensional scaling, where one can write out
the weighted least-square error and majorize the cross
term by the Cauchy-Schwarz inequality. This is called
the stress majorization strategy [5, 9, 17|, which brings
a better convergence rate than the steepest descent
method, because it uses a more accurate approxima-
tion to the Hessian. However, such a majorization
strategy cannot, in general, be extended to other man-
ifold embedding objectives, especially for the terms
that are not known to be convex or concave. These
difficult terms are upper bounded by Lipschitz surro-
gates in our method, as long as they are smooth in
Y.

Spectral Direction (SD) [33] gives a search direction
which has a similar form as Eq. 4. Using the same de-
composition form [4, 33| as in Eq. 1, SD employs the
quasi-Newton strategy where it keeps only the second-
order derivatives of A and discards those of B. SD
heuristically adds a very small positive € to the diago-
nal of partial Hessian H (e.g. ¢ = 10719 min; {H;;}) as
a remedy for positive definiteness. A similar search di-
rection was earlier used in [28] with € = 0. According
to our derivation, the SD strategy is close to lineariz-
ing the B term in Eq. 1 throughout the iterations.
Although p in our MM algorithm has a similar role
as €, we emphasize that p can adaptively change in
a much broader region, which is critical for efficiency
and robustness. Moreover, unlike the previous meth-
ods (e.g. [22, 28, 33|), our MM algorithm does not use
line search but instead uses a curved exploration tra-
jetory in its inner loop. We will show this is more
effective in minimizing the ME cost functions.

7 Experiments

We compare the performance of the proposed MM al-
gorithm with five other optimizers on 12 publicly avail-
able datasets from different domains. In most experi-

ments we focus on t-SNE because it is the most used
method in the machine learning community. We also
present preliminary results of other manifold embed-
ding methods beyond t-SNE.

For vectorial datasets, the input to t-SNE is the k-
Nearest Neighbor matrix p (k-NN, k=10 in all re-
ported results), with p;; = 1 if j is among the k
nearest neighbors of ¢ or vice versa, and p;; = 0 oth-
erwise. Conclusions are the same for £ = 15 and
k = 20. For undirected network data, we simply use
the (weighted) adjacency matrix as p. We then nor-

malize P;j = pij/ > qp Pab-

The other compared optimizers include gradient
descent with line search (GD), Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [22],
gradient descent with momentum (MOMENTUM)
[30], spectral direction with line search (SD) [33],
and a fixed-point algorithm for heavy-tailed s-SNE
(FPHSSNE) [35]. We use default settings in all the
other algorithms. For MM, we used v = 2 and initial
p = 1075 throughout all experiments.

Each compared method was run for each dataset ten
times. In each run, all algorithms start from the same
random initialization Y = randn(N, 2) x 10~*. Differ-
ent random seeds were used across the ten runs. An
algorithm stops at the t-th iteration if (i) ¢ > 3000,
(ii) it consumes more than 20 hours, (iii) the relative
cost function change | J; — J;—1]/|Ji—1| < 1074, or (iv)
Y™ — Y|/ Y]l < 10-5.

7.1 Small data sets

In the first group of experiments, the compared opti-
mizers were tested on eight data sets with N < 20, 000
data objects. For these small-scale manifold embed-
ding tasks, we can use exact calculation for the objec-
tive function and gradient, and an exact linear system
solver for Eq. 5.
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Figure 1: Evolution of the t-SNE objective (cost function value) as a function of time for the compared algorithms. The
first and second rows were exactly calculated, while the third row uses Barnes-Hut approximation.

The eight plots in the first two rows of Fig. 1 illustrate
the t-SNE objective evolution as a function of time.
The results show that MM is clearly faster than GD, L-
BFGS, MOMENTUM and FPHSSNE. For some data
sets such as COIL20 and LETTERS, although MM is
slower than SD at the beginning, it overtakes SD and
achieves better cost function values in all plots. For
SCOTLAND, the SD curve jumps to a useless high value
after about three seconds. Note that the MM curves
can be coarser than the other methods that employ
small steps, because MM usually requires fewer iter-
ations and makes no assumption on the curvature of
the objective function.

In Table 1, the top eight rows of results show that
MM returns the best mean converged cost function
values for all tested small data sets. Moreover, MM
also achieves the smallest standard deviations, which
indicates the MM with QL-majorization is less sensi-
tive to different random starting layouts. In contrast,
the other optimizers can be much more sensitive for
certain data sets (e.g., SD for SCOTLAND and LETTERS).

The resulting visualizations of 20NEWS are shown in
Fig. 2. We can see that the layout learned by using
MM is the best in terms of the smallest t-SNE cost
function value and of identifying the 20 newsgroups.
We quantify the latter performance by the area under
the precision-recall curve (AUC; retrieval by k-NN in
the 2D space with different k’s). A larger AUC is

better.

7.2 Large data sets

In the second group of experiments, we tested the op-
timizers on four large data sets (N > 58K). It is in-
feasible to compute the t-SNE objective and gradients
exactly due to the O(N?) cost. We thus use an es-
tablished approximation technique called Barnes-Hut
trees for scalable computation of cost functions and
gradients [29, 36]. Conjugate gradient solvers are used
for Eq. 5. It has been shown that for Neighbor Em-
bedding the approximation loss by using Barnes-Hut
trees and conjugate gradient solvers is very small [36].
The other settings are the same as for the small data
sets.

The results are given in the last row of Fig. 1 and in
the last four rows of Table 1. The conclusions are the
same as the ones for small data sets: MM is the fastest,
especially in the long run, and achieves the best mean
cost function value with small standard deviations.

7.3 Over-attraction initialization

Next we show that the MM algorithm also wins when
more careful initializations are used. Here we test
a popular initialization strategy that amplifies the A
term in the cost function by a factor § > 1 at the early
iterations (see e.g. [4, 21, 30]). For many manifold em-
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GD L-BFGS MOMENTUM

objective=4.99 . . . objective=4.15 objective=3.48

AUC=0.11 +:° AUC=0.08 AUC=0.14 "o« -e
- v

SD FPHSSNE MM

objective=3.40 ° objective=3.90, objective=3.21

AUC=0.23 AUC=0.15 - AUC=0.29

Figure 2: t-SNE visualizations of the 20NEWS data set. Our proposed method, MM with QL-majorization, yields the
best results. (The SD visualization is nearly invisible because most mapped points are crowded in the bottom, with 16
outliers drifting far away in the top, even though we use a larger marker size to increase visibility.)

bedding problems, this often leads to over-attraction
at the initialization stage (also called “early exaggera-
tion” [30]). How to choose 6 and the length of initial-
ization stage are open problems. Here we empirically
used € = 4 and 30 initialization iterations, except that
for MOMENTUM we used 6 = 12 for large datasets
(N > 10°) [29] and 100 initialization iterations.

We tested the compared algorithms with the over-
attraction initialization on the MNIST data set. Fig-
ure 3 shows the evolution of the t-SNE objective over
the running time. The cost decreases much faster with
MM than with the other algorithms. In contrast, L-
BFGS, MOMENTUM and FPHSSNE require nearly
one hour to reduce the cost lower than four. SD is
unstable in this case; even though it is close to MM
in some runs, SD gets stuck in some plateau at early
iterations. In some other runs SD is even worse, failing
to reduce the cost lower than five after two hours. GD
does not reduce the t-SNE cost at all with the over-
attraction initialization. Table 3 shows the results of
t-SNE cost function values over ten runs. It can be
seen that MM achieves the best mean cost with pretty
small standard deviations.

------ GD
8.41 A S —L-BFGS
R S MOMENTUM
H SD
8.7014: | T~ FPHSSNE
o | —MM
=
8
& 5.34r
s}
4.25-
3'380 1000 2000 3000 4000

time (seconds)

Figure 3: Evolution of the t-SNE objective (cost function
value) as a function of time for the compared optimization
algorithms with the over-attraction initialization for MNIST.

7.4 Preliminary Results beyond t-SNE

We have compared the proposed MM algorithm with
other optimizers for other manifold embedding objec-
tives (MDS-KS, s-SNE and NeRV). The preliminary
results are obtained with simple random initializations
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Table 2: Mean resulting manifold embedding cost function values (4 standard deviation) across ten runs. Random
initializations have been used. The best mean converged cost function value in each row has been boldfaced.

MDS-KS
dataname N GD L-BFGS SD MM
COIL20 1.4K 0.43£0.08 0.84+0.78 0.154+0.02 0.13+0.00

20NEWS 20K 1.60+0.22 1.87+1.51 1.19+0.09 1.11+0.03
MNIST 70K 2.27+0.69 1.63+1.41 3.59+0.58 1.57+0.04
s-SNE
dataname N GD L-BFGS SD MM
COIL20 1.4K 1.244+0.13 0.72+0.07 0.59+0.04 0.62+0.03
20NEWS 20K 5.784+0.23 6.47+1.00 5.31+0.04 5.29+0.02
MNIST 70K 6.484+1.35 6.55+1.97 4.66+0.02 4.68+0.03
NeRV
dataname N GD L-BFGS SD MM
COIL20 1.4K 1.94e+0341.71e+02 3.28¢+03+3.14e+03  1.86e+03+5.38¢+02  1.33e+03+3.70e-+02
20NEWS 20K 1.45e+05+3.04e+04 1.69e+05+1.60e+04 1.40e+05+6.84e+02 1.40e+05+1.24e-+03
MNIST 70K 4.91e+05+3.43e+04 5.83e+05+1.70e+05 4.47e+05+1.68e+03 4.47e+05+1.69e+403

Table 3: Resulting t-SNE objectives (mean+standard de-
viation) on MNIST with the compared optimization algo-
rithms, using the over-attraction initialization. Boldface
indicates the smallest mean objective.

Optimizer Objective

GD 8.4140.00

L-BFGS 3.73+0.25
MOMENTUM  3.5140.01
SD  3.57£0.61

FPHSSNE 3.9740.02

MM 3.384+0.01

on three datasets (COIL20, 20NEWS, and MNIST). We
omit FPHSSNE because currently it is not applica-
ble to the above objectives. MOMENTUM is also
omitted because it has overflow problems in most of
its runs. This is probably due to a wrong learn-
ing step size, but we did not have time to solve this
open problem here. For NeRV we used A\ = 0.9 in
jNeRV = /\DKL(PHQ) + (1 - )\)DKL(QHP) and added
€ = 1071% to P to avoid log-of-zero. Caching of the
Cholesky decomposition has been suggested [33], but
we did not apply it on the curvature matrix because
here the Cholesky factor is usually much denser than
the input matrix P.

The results over ten runs of the four compared optimiz-
ers are given in Table 2. For MDS-KS, MM achieves
the smallest mean cost function values across ten runs,
also with much smaller standard deviations. MM and
SD perform the best for s-SNE and NeRV in terms
of the smallest mean and standard deviations of the
resulting objective values. There are only slight differ-
ences between their converged results.

8 Conclusions and Future Work

We proposed a novel upper-bounding principle to con-
struct Majorization-Minimization algorithms for man-
ifold embedding problems. The proposed principle
can be applied to many manifold embedding problems
where a part of the cost function can be majorized
by a quadratic upper bound and the rest by variable
Lipschitz surrogates. In this paper and the supple-
mental document we provide explicit update rules for
several manifold embedding methods. The resulting
update rules make use of partial Hessian information,
monotonically decrease cost in each iteration, and each
update analytically yields the global optimum of the
majorization function without needing line search.

Empirical results showed that the newly developed
MM algorithms are often faster and result in better
objective function values than other existing optimiz-
ers. The MM algorithms also perform robustly with
different initializations.

In this work we have used simple backtracking to op-
timize p in Eq. 4. In practice we find that the aver-
age number of trials over all iterations is usually two.
More comprehensive strategies with suitable heuris-
tics could further improve the efficiency. For exam-
ple, when monotonicity is not a major concern, other
curvature conditions could be used to accelerate the
optimization trajectory.
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